Revert r332501 for now, as it can cause build failures on i386.

Reported upstream as <https://bugs.llvm.org/show_bug.cgi?id=37133>.

Reported by:	emaste, ci.freebsd.org
PR:		225330
This commit is contained in:
dim 2018-04-14 14:57:32 +00:00
parent dde78cf895
commit 5a917c072a
21 changed files with 184 additions and 870 deletions

View File

@ -449,13 +449,6 @@ public:
/// Replace successor OLD with NEW and update probability info.
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
/// Copy a successor (and any probability info) from original block to this
/// block's. Uses an iterator into the original blocks successors.
///
/// This is useful when doing a partial clone of successors. Afterward, the
/// probabilities may need to be normalized.
void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
/// Transfers all the successors from MBB to this machine basic block (i.e.,
/// copies all the successors FromMBB and remove all the successors from
/// FromMBB).

View File

@ -646,14 +646,6 @@ void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
removeSuccessor(OldI);
}
void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
succ_iterator I) {
if (Orig->Probs.empty())
addSuccessor(*I, Orig->getSuccProbability(I));
else
addSuccessorWithoutProb(*I);
}
void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
Predecessors.push_back(Pred);
}

View File

@ -265,10 +265,13 @@ MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
/// @param reg - The Reg to append.
static void translateRegister(MCInst &mcInst, Reg reg) {
#define ENTRY(x) X86::x,
static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
uint8_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
MCPhysReg llvmRegnum = llvmRegnums[reg];
uint8_t llvmRegnum = llvmRegnums[reg];
mcInst.addOperand(MCOperand::createReg(llvmRegnum));
}

View File

@ -66,9 +66,6 @@ FunctionPass *createX86OptimizeLEAs();
/// Return a pass that transforms setcc + movzx pairs into xor + setcc.
FunctionPass *createX86FixupSetCC();
/// Return a pass that lowers EFLAGS copy pseudo instructions.
FunctionPass *createX86FlagsCopyLoweringPass();
/// Return a pass that expands WinAlloca pseudo-instructions.
FunctionPass *createX86WinAllocaExpander();

View File

@ -1,734 +0,0 @@
//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
/// flag bits.
///
/// We have to do this by carefully analyzing and rewriting the usage of the
/// copied EFLAGS register because there is no general way to rematerialize the
/// entire EFLAGS register safely and efficiently. Using `popf` both forces
/// dynamic stack adjustment and can create correctness issues due to IF, TF,
/// and other non-status flags being overwritten. Using sequences involving
/// SAHF don't work on all x86 processors and are often quite slow compared to
/// directly testing a single status preserved in its own GPR.
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>
using namespace llvm;
#define PASS_KEY "x86-flags-copy-lowering"
#define DEBUG_TYPE PASS_KEY
STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
STATISTIC(NumTestsInserted, "Number of test instructions inserted");
STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
namespace llvm {
void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
} // end namespace llvm
namespace {
// Convenient array type for storing registers associated with each condition.
using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
class X86FlagsCopyLoweringPass : public MachineFunctionPass {
public:
X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Pass identification, replacement for typeid.
static char ID;
private:
MachineRegisterInfo *MRI;
const X86InstrInfo *TII;
const TargetRegisterInfo *TRI;
const TargetRegisterClass *PromoteRC;
CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
MachineInstr &CopyDefI);
unsigned promoteCondToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator TestPos,
DebugLoc TestLoc, X86::CondCode Cond);
std::pair<unsigned, bool>
getCondOrInverseInReg(MachineBasicBlock &TestMBB,
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
X86::CondCode Cond, CondRegArray &CondRegs);
void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
DebugLoc Loc, unsigned Reg);
void rewriteArithmetic(MachineBasicBlock &TestMBB,
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
MachineInstr &MI, MachineOperand &FlagUse,
CondRegArray &CondRegs);
void rewriteCMov(MachineBasicBlock &TestMBB,
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
MachineInstr &CMovI, MachineOperand &FlagUse,
CondRegArray &CondRegs);
void rewriteCondJmp(MachineBasicBlock &TestMBB,
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
MachineInstr &JmpI, CondRegArray &CondRegs);
void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
MachineInstr &CopyDefI);
void rewriteSetCC(MachineBasicBlock &TestMBB,
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
MachineInstr &SetCCI, MachineOperand &FlagUse,
CondRegArray &CondRegs);
};
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
"X86 EFLAGS copy lowering", false, false)
INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
"X86 EFLAGS copy lowering", false, false)
FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
return new X86FlagsCopyLoweringPass();
}
char X86FlagsCopyLoweringPass::ID = 0;
void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
}
namespace {
/// An enumeration of the arithmetic instruction mnemonics which have
/// interesting flag semantics.
///
/// We can map instruction opcodes into these mnemonics to make it easy to
/// dispatch with specific functionality.
enum class FlagArithMnemonic {
ADC,
ADCX,
ADOX,
RCL,
RCR,
SBB,
};
} // namespace
static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
switch (Opcode) {
default:
report_fatal_error("No support for lowering a copy into EFLAGS when used "
"by this instruction!");
#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
case X86::MNEMONIC##8##SUFFIX: \
case X86::MNEMONIC##16##SUFFIX: \
case X86::MNEMONIC##32##SUFFIX: \
case X86::MNEMONIC##64##SUFFIX:
#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
case X86::MNEMONIC##8ri: \
case X86::MNEMONIC##16ri8: \
case X86::MNEMONIC##32ri8: \
case X86::MNEMONIC##64ri8: \
case X86::MNEMONIC##16ri: \
case X86::MNEMONIC##32ri: \
case X86::MNEMONIC##64ri32: \
case X86::MNEMONIC##8mi: \
case X86::MNEMONIC##16mi8: \
case X86::MNEMONIC##32mi8: \
case X86::MNEMONIC##64mi8: \
case X86::MNEMONIC##16mi: \
case X86::MNEMONIC##32mi: \
case X86::MNEMONIC##64mi32: \
case X86::MNEMONIC##8i8: \
case X86::MNEMONIC##16i16: \
case X86::MNEMONIC##32i32: \
case X86::MNEMONIC##64i32:
LLVM_EXPAND_ADC_SBB_INSTR(ADC)
return FlagArithMnemonic::ADC;
LLVM_EXPAND_ADC_SBB_INSTR(SBB)
return FlagArithMnemonic::SBB;
#undef LLVM_EXPAND_ADC_SBB_INSTR
LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
LLVM_EXPAND_INSTR_SIZES(RCL, r1)
LLVM_EXPAND_INSTR_SIZES(RCL, ri)
return FlagArithMnemonic::RCL;
LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
LLVM_EXPAND_INSTR_SIZES(RCR, r1)
LLVM_EXPAND_INSTR_SIZES(RCR, ri)
return FlagArithMnemonic::RCR;
#undef LLVM_EXPAND_INSTR_SIZES
case X86::ADCX32rr:
case X86::ADCX64rr:
case X86::ADCX32rm:
case X86::ADCX64rm:
return FlagArithMnemonic::ADCX;
case X86::ADOX32rr:
case X86::ADOX64rr:
case X86::ADOX32rm:
case X86::ADOX64rm:
return FlagArithMnemonic::ADOX;
}
}
static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
MachineInstr &SplitI,
const X86InstrInfo &TII) {
MachineFunction &MF = *MBB.getParent();
assert(SplitI.getParent() == &MBB &&
"Split instruction must be in the split block!");
assert(SplitI.isBranch() &&
"Only designed to split a tail of branch instructions!");
assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
"Must split on an actual jCC instruction!");
// Dig out the previous instruction to the split point.
MachineInstr &PrevI = *std::prev(SplitI.getIterator());
assert(PrevI.isBranch() && "Must split after a branch!");
assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
"Must split after an actual jCC instruction!");
assert(!std::prev(PrevI.getIterator())->isTerminator() &&
"Must only have this one terminator prior to the split!");
// Grab the one successor edge that will stay in `MBB`.
MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
// Analyze the original block to see if we are actually splitting an edge
// into two edges. This can happen when we have multiple conditional jumps to
// the same successor.
bool IsEdgeSplit =
std::any_of(SplitI.getIterator(), MBB.instr_end(),
[&](MachineInstr &MI) {
assert(MI.isTerminator() &&
"Should only have spliced terminators!");
return llvm::any_of(
MI.operands(), [&](MachineOperand &MOp) {
return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
});
}) ||
MBB.getFallThrough() == &UnsplitSucc;
MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
// Insert the new block immediately after the current one. Any existing
// fallthrough will be sunk into this new block anyways.
MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
// Splice the tail of instructions into the new block.
NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
// Copy the necessary succesors (and their probability info) into the new
// block.
for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
if (IsEdgeSplit || *SI != &UnsplitSucc)
NewMBB.copySuccessor(&MBB, SI);
// Normalize the probabilities if we didn't end up splitting the edge.
if (!IsEdgeSplit)
NewMBB.normalizeSuccProbs();
// Now replace all of the moved successors in the original block with the new
// block. This will merge their probabilities.
for (MachineBasicBlock *Succ : NewMBB.successors())
if (Succ != &UnsplitSucc)
MBB.replaceSuccessor(Succ, &NewMBB);
// We should always end up replacing at least one successor.
assert(MBB.isSuccessor(&NewMBB) &&
"Failed to make the new block a successor!");
// Now update all the PHIs.
for (MachineBasicBlock *Succ : NewMBB.successors()) {
for (MachineInstr &MI : *Succ) {
if (!MI.isPHI())
break;
for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
OpIdx += 2) {
MachineOperand &OpV = MI.getOperand(OpIdx);
MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
if (OpMBB.getMBB() != &MBB)
continue;
// Replace the operand for unsplit successors
if (!IsEdgeSplit || Succ != &UnsplitSucc) {
OpMBB.setMBB(&NewMBB);
// We have to continue scanning as there may be multiple entries in
// the PHI.
continue;
}
// When we have split the edge append a new successor.
MI.addOperand(MF, OpV);
MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
break;
}
}
}
return NewMBB;
}
bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
<< " **********\n");
auto &Subtarget = MF.getSubtarget<X86Subtarget>();
MRI = &MF.getRegInfo();
TII = Subtarget.getInstrInfo();
TRI = Subtarget.getRegisterInfo();
PromoteRC = &X86::GR8RegClass;
if (MF.begin() == MF.end())
// Nothing to do for a degenerate empty function...
return false;
SmallVector<MachineInstr *, 4> Copies;
for (MachineBasicBlock &MBB : MF)
for (MachineInstr &MI : MBB)
if (MI.getOpcode() == TargetOpcode::COPY &&
MI.getOperand(0).getReg() == X86::EFLAGS)
Copies.push_back(&MI);
for (MachineInstr *CopyI : Copies) {
MachineBasicBlock &MBB = *CopyI->getParent();
MachineOperand &VOp = CopyI->getOperand(1);
assert(VOp.isReg() &&
"The input to the copy for EFLAGS should always be a register!");
MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
// FIXME: The big likely candidate here are PHI nodes. We could in theory
// handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
// enough that it is probably better to change every other part of LLVM
// to avoid creating them. The issue is that once we have PHIs we won't
// know which original EFLAGS value we need to capture with our setCCs
// below. The end result will be computing a complete set of setCCs that
// we *might* want, computing them in every place where we copy *out* of
// EFLAGS and then doing SSA formation on all of them to insert necessary
// PHI nodes and consume those here. Then hoping that somehow we DCE the
// unnecessary ones. This DCE seems very unlikely to be successful and so
// we will almost certainly end up with a glut of dead setCC
// instructions. Until we have a motivating test case and fail to avoid
// it by changing other parts of LLVM's lowering, we refuse to handle
// this complex case here.
DEBUG(dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
CopyDefI.dump());
report_fatal_error(
"Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
}
auto Cleanup = make_scope_exit([&] {
// All uses of the EFLAGS copy are now rewritten, kill the copy into
// eflags and if dead the copy from.
CopyI->eraseFromParent();
if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
CopyDefI.eraseFromParent();
++NumCopiesEliminated;
});
MachineOperand &DOp = CopyI->getOperand(0);
assert(DOp.isDef() && "Expected register def!");
assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
if (DOp.isDead())
continue;
MachineBasicBlock &TestMBB = *CopyDefI.getParent();
auto TestPos = CopyDefI.getIterator();
DebugLoc TestLoc = CopyDefI.getDebugLoc();
DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
// Scan for usage of newly set EFLAGS so we can rewrite them. We just buffer
// jumps because their usage is very constrained.
bool FlagsKilled = false;
SmallVector<MachineInstr *, 4> JmpIs;
// Gather the condition flags that have already been preserved in
// registers. We do this from scratch each time as we expect there to be
// very few of them and we expect to not revisit the same copy definition
// many times. If either of those change sufficiently we could build a map
// of these up front instead.
CondRegArray CondRegs = collectCondsInRegs(TestMBB, CopyDefI);
for (auto MII = std::next(CopyI->getIterator()), MIE = MBB.instr_end();
MII != MIE;) {
MachineInstr &MI = *MII++;
MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
if (!FlagUse) {
if (MI.findRegisterDefOperand(X86::EFLAGS)) {
// If EFLAGS are defined, it's as-if they were killed. We can stop
// scanning here.
//
// NB!!! Many instructions only modify some flags. LLVM currently
// models this as clobbering all flags, but if that ever changes this
// will need to be carefully updated to handle that more complex
// logic.
FlagsKilled = true;
break;
}
continue;
}
DEBUG(dbgs() << " Rewriting use: "; MI.dump());
// Check the kill flag before we rewrite as that may change it.
if (FlagUse->isKill())
FlagsKilled = true;
// Once we encounter a branch, the rest of the instructions must also be
// branches. We can't rewrite in place here, so we handle them below.
//
// Note that we don't have to handle tail calls here, even conditional
// tail calls, as those are not introduced into the X86 MI until post-RA
// branch folding or black placement. As a consequence, we get to deal
// with the simpler formulation of conditional branches followed by tail
// calls.
if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
auto JmpIt = MI.getIterator();
do {
JmpIs.push_back(&*JmpIt);
++JmpIt;
} while (JmpIt != MBB.instr_end() &&
X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
X86::COND_INVALID);
break;
}
// Otherwise we can just rewrite in-place.
if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
rewriteCMov(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
} else if (X86::getCondFromSETOpc(MI.getOpcode()) != X86::COND_INVALID) {
rewriteSetCC(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
} else if (MI.getOpcode() == TargetOpcode::COPY) {
rewriteCopy(MI, *FlagUse, CopyDefI);
} else {
// We assume that arithmetic instructions that use flags also def them.
assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
"Expected a def of EFLAGS for this instruction!");
// NB!!! Several arithmetic instructions only *partially* update
// flags. Theoretically, we could generate MI code sequences that
// would rely on this fact and observe different flags independently.
// But currently LLVM models all of these instructions as clobbering
// all the flags in an undef way. We rely on that to simplify the
// logic.
FlagsKilled = true;
rewriteArithmetic(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
break;
}
// If this was the last use of the flags, we're done.
if (FlagsKilled)
break;
}
// If we didn't find a kill (or equivalent) check that the flags don't
// live-out of the basic block. Currently we don't support lowering copies
// of flags that live out in this fashion.
if (!FlagsKilled &&
llvm::any_of(MBB.successors(), [](MachineBasicBlock *SuccMBB) {
return SuccMBB->isLiveIn(X86::EFLAGS);
})) {
DEBUG({
dbgs() << "ERROR: Found a copied EFLAGS live-out from basic block:\n"
<< "----\n";
MBB.dump();
dbgs() << "----\n"
<< "ERROR: Cannot lower this EFLAGS copy!\n";
});
report_fatal_error(
"Cannot lower EFLAGS copy that lives out of a basic block!");
}
// Now rewrite the jumps that use the flags. These we handle specially
// because if there are multiple jumps we'll have to do surgery on the CFG.
for (MachineInstr *JmpI : JmpIs) {
// Past the first jump we need to split the blocks apart.
if (JmpI != JmpIs.front())
splitBlock(*JmpI->getParent(), *JmpI, *TII);
rewriteCondJmp(TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
}
// FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
// the copy's def operand is itself a kill.
}
#ifndef NDEBUG
for (MachineBasicBlock &MBB : MF)
for (MachineInstr &MI : MBB)
if (MI.getOpcode() == TargetOpcode::COPY &&
(MI.getOperand(0).getReg() == X86::EFLAGS ||
MI.getOperand(1).getReg() == X86::EFLAGS)) {
DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: "; MI.dump());
llvm_unreachable("Unlowered EFLAGS copy!");
}
#endif
return true;
}
/// Collect any conditions that have already been set in registers so that we
/// can re-use them rather than adding duplicates.
CondRegArray
X86FlagsCopyLoweringPass::collectCondsInRegs(MachineBasicBlock &MBB,
MachineInstr &CopyDefI) {
CondRegArray CondRegs = {};
// Scan backwards across the range of instructions with live EFLAGS.
for (MachineInstr &MI : llvm::reverse(
llvm::make_range(MBB.instr_begin(), CopyDefI.getIterator()))) {
X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
if (Cond != X86::COND_INVALID && MI.getOperand(0).isReg() &&
TRI->isVirtualRegister(MI.getOperand(0).getReg()))
CondRegs[Cond] = MI.getOperand(0).getReg();
// Stop scanning when we see the first definition of the EFLAGS as prior to
// this we would potentially capture the wrong flag state.
if (MI.findRegisterDefOperand(X86::EFLAGS))
break;
}
return CondRegs;
}
unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
DebugLoc TestLoc, X86::CondCode Cond) {
unsigned Reg = MRI->createVirtualRegister(PromoteRC);
auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
TII->get(X86::getSETFromCond(Cond)), Reg);
(void)SetI;
DEBUG(dbgs() << " save cond: "; SetI->dump());
++NumSetCCsInserted;
return Reg;
}
std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
unsigned &CondReg = CondRegs[Cond];
unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
if (!CondReg && !InvCondReg)
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
if (CondReg)
return {CondReg, false};
else
return {InvCondReg, true};
}
void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Pos,
DebugLoc Loc, unsigned Reg) {
// We emit test instructions as register/immediate test against -1. This
// allows register allocation to fold a memory operand if needed (that will
// happen often due to the places this code is emitted). But hopefully will
// also allow us to select a shorter encoding of `testb %reg, %reg` when that
// would be equivalent.
auto TestI =
BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8ri)).addReg(Reg).addImm(-1);
(void)TestI;
DEBUG(dbgs() << " test cond: "; TestI->dump());
++NumTestsInserted;
}
void X86FlagsCopyLoweringPass::rewriteArithmetic(
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
CondRegArray &CondRegs) {
// Arithmetic is either reading CF or OF. Figure out which condition we need
// to preserve in a register.
X86::CondCode Cond;
// The addend to use to reset CF or OF when added to the flag value.
int Addend;
switch (getMnemonicFromOpcode(MI.getOpcode())) {
case FlagArithMnemonic::ADC:
case FlagArithMnemonic::ADCX:
case FlagArithMnemonic::RCL:
case FlagArithMnemonic::RCR:
case FlagArithMnemonic::SBB:
Cond = X86::COND_B; // CF == 1
// Set up an addend that when one is added will need a carry due to not
// having a higher bit available.
Addend = 255;
break;
case FlagArithMnemonic::ADOX:
Cond = X86::COND_O; // OF == 1
// Set up an addend that when one is added will turn from positive to
// negative and thus overflow in the signed domain.
Addend = 127;
break;
}
// Now get a register that contains the value of the flag input to the
// arithmetic. We require exactly this flag to simplify the arithmetic
// required to materialize it back into the flag.
unsigned &CondReg = CondRegs[Cond];
if (!CondReg)
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
MachineBasicBlock &MBB = *MI.getParent();
// Insert an instruction that will set the flag back to the desired value.
unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
auto AddI =
BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
.addDef(TmpReg, RegState::Dead)
.addReg(CondReg)
.addImm(Addend);
(void)AddI;
DEBUG(dbgs() << " add cond: "; AddI->dump());
++NumAddsInserted;
FlagUse.setIsKill(true);
}
void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
MachineBasicBlock::iterator TestPos,
DebugLoc TestLoc,
MachineInstr &CMovI,
MachineOperand &FlagUse,
CondRegArray &CondRegs) {
// First get the register containing this specific condition.
X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
unsigned CondReg;
bool Inverted;
std::tie(CondReg, Inverted) =
getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
MachineBasicBlock &MBB = *CMovI.getParent();
// Insert a direct test of the saved register.
insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
// Rewrite the CMov to use the !ZF flag from the test (but match register
// size and memory operand), and then kill its use of the flags afterward.
auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
CMovI.setDesc(TII->get(X86::getCMovFromCond(
Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
!CMovI.memoperands_empty())));
FlagUse.setIsKill(true);
DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
}
void X86FlagsCopyLoweringPass::rewriteCondJmp(
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
// First get the register containing this specific condition.
X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
unsigned CondReg;
bool Inverted;
std::tie(CondReg, Inverted) =
getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
MachineBasicBlock &JmpMBB = *JmpI.getParent();
// Insert a direct test of the saved register.
insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
// Rewrite the jump to use the !ZF flag from the test, and kill its use of
// flags afterward.
JmpI.setDesc(TII->get(
X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
const int ImplicitEFLAGSOpIdx = 1;
JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
}
void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
MachineOperand &FlagUse,
MachineInstr &CopyDefI) {
// Just replace this copy with the the original copy def.
MRI->replaceRegWith(MI.getOperand(0).getReg(),
CopyDefI.getOperand(0).getReg());
MI.eraseFromParent();
}
void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
MachineBasicBlock::iterator TestPos,
DebugLoc TestLoc,
MachineInstr &SetCCI,
MachineOperand &FlagUse,
CondRegArray &CondRegs) {
X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
// Note that we can't usefully rewrite this to the inverse without complex
// analysis of the users of the setCC. Largely we rely on duplicates which
// could have been avoided already being avoided here.
unsigned &CondReg = CondRegs[Cond];
if (!CondReg)
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
// Rewriting this is trivial: we just replace the register and remove the
// setcc.
MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
SetCCI.eraseFromParent();
}

View File

@ -27781,16 +27781,11 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
// Permit reads of the EFLAGS and DF registers without them being defined.
// Permit reads of the FLAGS register without it being defined.
// This intrinsic exists to read external processor state in flags, such as
// the trap flag, interrupt flag, and direction flag, none of which are
// modeled by the backend.
assert(Push->getOperand(2).getReg() == X86::EFLAGS &&
"Unexpected register in operand!");
Push->getOperand(2).setIsUndef();
assert(Push->getOperand(3).getReg() == X86::DF &&
"Unexpected register in operand!");
Push->getOperand(3).setIsUndef();
BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg());
MI.eraseFromParent(); // The pseudo is gone now.
@ -37834,6 +37829,25 @@ bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
}
}
/// This function checks if any of the users of EFLAGS copies the EFLAGS. We
/// know that the code that lowers COPY of EFLAGS has to use the stack, and if
/// we don't adjust the stack we clobber the first frame index.
/// See X86InstrInfo::copyPhysReg.
static bool hasCopyImplyingStackAdjustment(const MachineFunction &MF) {
const MachineRegisterInfo &MRI = MF.getRegInfo();
return any_of(MRI.reg_instructions(X86::EFLAGS),
[](const MachineInstr &RI) { return RI.isCopy(); });
}
void X86TargetLowering::finalizeLowering(MachineFunction &MF) const {
if (hasCopyImplyingStackAdjustment(MF)) {
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setHasCopyImplyingStackAdjustment(true);
}
TargetLoweringBase::finalizeLowering(MF);
}
/// This method query the target whether it is beneficial for dag combiner to
/// promote the specified node. If true, it should return the desired promotion
/// type by reference.

View File

@ -1100,6 +1100,8 @@ namespace llvm {
unsigned Factor) const override;
void finalizeLowering(MachineFunction &MF) const override;
protected:
std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo *TRI,

View File

@ -473,7 +473,7 @@ let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
usesCustomInserter = 1, Uses = [ESP, SSP] in {
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
"# TLS_addr32",
@ -493,7 +493,7 @@ let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
usesCustomInserter = 1, Uses = [RSP, SSP] in {
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
"# TLS_addr64",
@ -509,7 +509,7 @@ def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
// For i386, the address of the thunk is passed on the stack, on return the
// address of the variable is in %eax. %ecx is trashed during the function
// call. All other registers are preserved.
let Defs = [EAX, ECX, EFLAGS, DF],
let Defs = [EAX, ECX, EFLAGS],
Uses = [ESP, SSP],
usesCustomInserter = 1 in
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
@ -522,7 +522,7 @@ def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
// %rdi. The lowering will do the right thing with RDI.
// On return the address of the variable is in %rax. All other
// registers are preserved.
let Defs = [RAX, EFLAGS, DF],
let Defs = [RAX, EFLAGS],
Uses = [RSP, SSP],
usesCustomInserter = 1 in
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),

View File

@ -5782,7 +5782,7 @@ bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
return false;
}
X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) {
static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default: return X86::COND_INVALID;
case X86::JE_1: return X86::COND_E;
@ -5805,7 +5805,7 @@ X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) {
}
/// Return condition code of a SET opcode.
X86::CondCode X86::getCondFromSETOpc(unsigned Opc) {
static X86::CondCode getCondFromSETOpc(unsigned Opc) {
switch (Opc) {
default: return X86::COND_INVALID;
case X86::SETAr: case X86::SETAm: return X86::COND_A;
@ -6130,7 +6130,7 @@ void X86InstrInfo::replaceBranchWithTailCall(
if (!I->isBranch())
assert(0 && "Can't find the branch to replace!");
X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode());
X86::CondCode CC = getCondFromBranchOpc(I->getOpcode());
assert(BranchCond.size() == 1);
if (CC != BranchCond[0].getImm())
continue;
@ -6237,7 +6237,7 @@ bool X86InstrInfo::AnalyzeBranchImpl(
}
// Handle conditional branches.
X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode());
X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
if (BranchCode == X86::COND_INVALID)
return true; // Can't handle indirect branch.
@ -6433,7 +6433,7 @@ unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
if (I->isDebugValue())
continue;
if (I->getOpcode() != X86::JMP_1 &&
X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
break;
// Remove the branch.
I->eraseFromParent();
@ -6710,12 +6710,102 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
return;
}
if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
// FIXME: We use a fatal error here because historically LLVM has tried
// lower some of these physreg copies and we want to ensure we get
// reasonable bug reports if someone encounters a case no other testing
// found. This path should be removed after the LLVM 7 release.
report_fatal_error("Unable to copy EFLAGS physical register!");
bool FromEFLAGS = SrcReg == X86::EFLAGS;
bool ToEFLAGS = DestReg == X86::EFLAGS;
int Reg = FromEFLAGS ? DestReg : SrcReg;
bool is32 = X86::GR32RegClass.contains(Reg);
bool is64 = X86::GR64RegClass.contains(Reg);
if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) {
int Mov = is64 ? X86::MOV64rr : X86::MOV32rr;
int Push = is64 ? X86::PUSH64r : X86::PUSH32r;
int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32;
int Pop = is64 ? X86::POP64r : X86::POP32r;
int PopF = is64 ? X86::POPF64 : X86::POPF32;
int AX = is64 ? X86::RAX : X86::EAX;
if (!Subtarget.hasLAHFSAHF()) {
assert(Subtarget.is64Bit() &&
"Not having LAHF/SAHF only happens on 64-bit.");
// Moving EFLAGS to / from another register requires a push and a pop.
// Notice that we have to adjust the stack if we don't want to clobber the
// first frame index. See X86FrameLowering.cpp - usesTheStack.
if (FromEFLAGS) {
BuildMI(MBB, MI, DL, get(PushF));
BuildMI(MBB, MI, DL, get(Pop), DestReg);
}
if (ToEFLAGS) {
BuildMI(MBB, MI, DL, get(Push))
.addReg(SrcReg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(PopF));
}
return;
}
// The flags need to be saved, but saving EFLAGS with PUSHF/POPF is
// inefficient. Instead:
// - Save the overflow flag OF into AL using SETO, and restore it using a
// signed 8-bit addition of AL and INT8_MAX.
// - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH
// using LAHF/SAHF.
// - When RAX/EAX is live and isn't the destination register, make sure it
// isn't clobbered by PUSH/POP'ing it before and after saving/restoring
// the flags.
// This approach is ~2.25x faster than using PUSHF/POPF.
//
// This is still somewhat inefficient because we don't know which flags are
// actually live inside EFLAGS. Were we able to do a single SETcc instead of
// SETO+LAHF / ADDB+SAHF the code could be 1.02x faster.
//
// PUSHF/POPF is also potentially incorrect because it affects other flags
// such as TF/IF/DF, which LLVM doesn't model.
//
// Notice that we have to adjust the stack if we don't want to clobber the
// first frame index.
// See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment.
const TargetRegisterInfo &TRI = getRegisterInfo();
MachineBasicBlock::LivenessQueryResult LQR =
MBB.computeRegisterLiveness(&TRI, AX, MI);
// We do not want to save and restore AX if we do not have to.
// Moreover, if we do so whereas AX is dead, we would need to set
// an undef flag on the use of AX, otherwise the verifier will
// complain that we read an undef value.
// We do not want to change the behavior of the machine verifier
// as this is usually wrong to read an undef value.
if (MachineBasicBlock::LQR_Unknown == LQR) {
LivePhysRegs LPR(TRI);
LPR.addLiveOuts(MBB);
MachineBasicBlock::iterator I = MBB.end();
while (I != MI) {
--I;
LPR.stepBackward(*I);
}
// AX contains the top most register in the aliasing hierarchy.
// It may not be live, but one of its aliases may be.
for (MCRegAliasIterator AI(AX, &TRI, true);
AI.isValid() && LQR != MachineBasicBlock::LQR_Live; ++AI)
LQR = LPR.contains(*AI) ? MachineBasicBlock::LQR_Live
: MachineBasicBlock::LQR_Dead;
}
bool AXDead = (Reg == AX) || (MachineBasicBlock::LQR_Dead == LQR);
if (!AXDead)
BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true));
if (FromEFLAGS) {
BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL);
BuildMI(MBB, MI, DL, get(X86::LAHF));
BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX);
}
if (ToEFLAGS) {
BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL)
.addReg(X86::AL)
.addImm(INT8_MAX);
BuildMI(MBB, MI, DL, get(X86::SAHF));
}
if (!AXDead)
BuildMI(MBB, MI, DL, get(Pop), AX);
return;
}
DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
@ -7375,9 +7465,9 @@ bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
if (IsCmpZero || IsSwapped) {
// We decode the condition code from opcode.
if (Instr.isBranch())
OldCC = X86::getCondFromBranchOpc(Instr.getOpcode());
OldCC = getCondFromBranchOpc(Instr.getOpcode());
else {
OldCC = X86::getCondFromSETOpc(Instr.getOpcode());
OldCC = getCondFromSETOpc(Instr.getOpcode());
if (OldCC != X86::COND_INVALID)
OpcIsSET = true;
else
@ -9323,9 +9413,8 @@ bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
// FIXME: Return false for x87 stack register classes for now. We can't
// allow any loads of these registers before FpGet_ST0_80.
return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
RC == &X86::RFP80RegClass);
return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
}
/// Return a virtual register initialized with the

View File

@ -77,12 +77,6 @@ unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
bool HasMemoryOperand = false);
// Turn jCC opcode into condition code.
CondCode getCondFromBranchOpc(unsigned Opc);
// Turn setCC opcode into condition code.
CondCode getCondFromSETOpc(unsigned Opc);
// Turn CMov opcode into condition code.
CondCode getCondFromCMovOpc(unsigned Opc);

View File

@ -1235,18 +1235,18 @@ let mayLoad = 1, mayStore = 1, usesCustomInserter = 1,
let mayLoad = 1, mayStore = 1, usesCustomInserter = 1,
SchedRW = [WriteRMW] in {
let Defs = [ESP, EFLAGS, DF], Uses = [ESP] in
let Defs = [ESP, EFLAGS], Uses = [ESP] in
def WRFLAGS32 : PseudoI<(outs), (ins GR32:$src),
[(int_x86_flags_write_u32 GR32:$src)]>,
Requires<[Not64BitMode]>;
let Defs = [RSP, EFLAGS, DF], Uses = [RSP] in
let Defs = [RSP, EFLAGS], Uses = [RSP] in
def WRFLAGS64 : PseudoI<(outs), (ins GR64:$src),
[(int_x86_flags_write_u64 GR64:$src)]>,
Requires<[In64BitMode]>;
}
let Defs = [ESP, EFLAGS, DF], Uses = [ESP], mayLoad = 1, hasSideEffects=0,
let Defs = [ESP, EFLAGS], Uses = [ESP], mayLoad = 1, hasSideEffects=0,
SchedRW = [WriteLoad] in {
def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>,
OpSize16;
@ -1254,7 +1254,7 @@ def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>,
OpSize32, Requires<[Not64BitMode]>;
}
let Defs = [ESP], Uses = [ESP, EFLAGS, DF], mayStore = 1, hasSideEffects=0,
let Defs = [ESP], Uses = [ESP, EFLAGS], mayStore = 1, hasSideEffects=0,
SchedRW = [WriteStore] in {
def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", [], IIC_PUSH_F>,
OpSize16;
@ -1294,10 +1294,10 @@ def PUSH64i32 : Ii32S<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
Requires<[In64BitMode]>;
}
let Defs = [RSP, EFLAGS, DF], Uses = [RSP], mayLoad = 1, hasSideEffects=0 in
let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, hasSideEffects=0 in
def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", [], IIC_POP_FD>,
OpSize32, Requires<[In64BitMode]>, Sched<[WriteLoad]>;
let Defs = [RSP], Uses = [RSP, EFLAGS, DF], mayStore = 1, hasSideEffects=0 in
let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, hasSideEffects=0 in
def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", [], IIC_PUSH_F>,
OpSize32, Requires<[In64BitMode]>, Sched<[WriteStore]>;
@ -1382,7 +1382,8 @@ def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
} // Defs = [EFLAGS]
let SchedRW = [WriteMicrocoded] in {
let Defs = [EDI,ESI], Uses = [EDI,ESI,DF] in {
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in {
def MOVSB : I<0xA4, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src),
"movsb\t{$src, $dst|$dst, $src}", [], IIC_MOVS>;
def MOVSW : I<0xA5, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src),
@ -1393,33 +1394,36 @@ def MOVSQ : RI<0xA5, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src),
"movsq\t{$src, $dst|$dst, $src}", [], IIC_MOVS>;
}
let Defs = [EDI], Uses = [AL,EDI,DF] in
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in
def STOSB : I<0xAA, RawFrmDst, (outs), (ins dstidx8:$dst),
"stosb\t{%al, $dst|$dst, al}", [], IIC_STOS>;
let Defs = [EDI], Uses = [AX,EDI,DF] in
let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in
def STOSW : I<0xAB, RawFrmDst, (outs), (ins dstidx16:$dst),
"stosw\t{%ax, $dst|$dst, ax}", [], IIC_STOS>, OpSize16;
let Defs = [EDI], Uses = [EAX,EDI,DF] in
let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in
def STOSL : I<0xAB, RawFrmDst, (outs), (ins dstidx32:$dst),
"stos{l|d}\t{%eax, $dst|$dst, eax}", [], IIC_STOS>, OpSize32;
let Defs = [RDI], Uses = [RAX,RDI,DF] in
let Defs = [RDI], Uses = [RAX,RDI,EFLAGS] in
def STOSQ : RI<0xAB, RawFrmDst, (outs), (ins dstidx64:$dst),
"stosq\t{%rax, $dst|$dst, rax}", [], IIC_STOS>;
let Defs = [EDI,EFLAGS], Uses = [AL,EDI,DF] in
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI,EFLAGS], Uses = [AL,EDI,EFLAGS] in
def SCASB : I<0xAE, RawFrmDst, (outs), (ins dstidx8:$dst),
"scasb\t{$dst, %al|al, $dst}", [], IIC_SCAS>;
let Defs = [EDI,EFLAGS], Uses = [AX,EDI,DF] in
let Defs = [EDI,EFLAGS], Uses = [AX,EDI,EFLAGS] in
def SCASW : I<0xAF, RawFrmDst, (outs), (ins dstidx16:$dst),
"scasw\t{$dst, %ax|ax, $dst}", [], IIC_SCAS>, OpSize16;
let Defs = [EDI,EFLAGS], Uses = [EAX,EDI,DF] in
let Defs = [EDI,EFLAGS], Uses = [EAX,EDI,EFLAGS] in
def SCASL : I<0xAF, RawFrmDst, (outs), (ins dstidx32:$dst),
"scas{l|d}\t{$dst, %eax|eax, $dst}", [], IIC_SCAS>, OpSize32;
let Defs = [EDI,EFLAGS], Uses = [RAX,EDI,DF] in
let Defs = [EDI,EFLAGS], Uses = [RAX,EDI,EFLAGS] in
def SCASQ : RI<0xAF, RawFrmDst, (outs), (ins dstidx64:$dst),
"scasq\t{$dst, %rax|rax, $dst}", [], IIC_SCAS>;
let Defs = [EDI,ESI,EFLAGS], Uses = [EDI,ESI,DF] in {
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI,ESI,EFLAGS], Uses = [EDI,ESI,EFLAGS] in {
def CMPSB : I<0xA6, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src),
"cmpsb\t{$dst, $src|$src, $dst}", [], IIC_CMPS>;
def CMPSW : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src),
@ -2066,7 +2070,8 @@ def DATA32_PREFIX : I<0x66, RawFrm, (outs), (ins), "data32", [], IIC_NOP>,
} // SchedRW
// Repeat string operation instruction prefixes
let Defs = [ECX], Uses = [ECX,DF], SchedRW = [WriteMicrocoded] in {
// These use the DF flag in the EFLAGS register to inc or dec ECX
let Defs = [ECX], Uses = [ECX,EFLAGS], SchedRW = [WriteMicrocoded] in {
// Repeat (used with INS, OUTS, MOVS, LODS and STOS)
def REP_PREFIX : I<0xF3, RawFrm, (outs), (ins), "rep", []>;
// Repeat while not equal (used with CMPS and SCAS)
@ -2075,22 +2080,24 @@ def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>;
// String manipulation instructions
let SchedRW = [WriteMicrocoded] in {
let Defs = [AL,ESI], Uses = [ESI,DF] in
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [AL,ESI], Uses = [ESI,EFLAGS] in
def LODSB : I<0xAC, RawFrmSrc, (outs), (ins srcidx8:$src),
"lodsb\t{$src, %al|al, $src}", [], IIC_LODS>;
let Defs = [AX,ESI], Uses = [ESI,DF] in
let Defs = [AX,ESI], Uses = [ESI,EFLAGS] in
def LODSW : I<0xAD, RawFrmSrc, (outs), (ins srcidx16:$src),
"lodsw\t{$src, %ax|ax, $src}", [], IIC_LODS>, OpSize16;
let Defs = [EAX,ESI], Uses = [ESI,DF] in
let Defs = [EAX,ESI], Uses = [ESI,EFLAGS] in
def LODSL : I<0xAD, RawFrmSrc, (outs), (ins srcidx32:$src),
"lods{l|d}\t{$src, %eax|eax, $src}", [], IIC_LODS>, OpSize32;
let Defs = [RAX,ESI], Uses = [ESI,DF] in
let Defs = [RAX,ESI], Uses = [ESI,EFLAGS] in
def LODSQ : RI<0xAD, RawFrmSrc, (outs), (ins srcidx64:$src),
"lodsq\t{$src, %rax|rax, $src}", [], IIC_LODS>;
}
let SchedRW = [WriteSystem] in {
let Defs = [ESI], Uses = [DX,ESI,DF] in {
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [ESI], Uses = [DX,ESI,EFLAGS] in {
def OUTSB : I<0x6E, RawFrmSrc, (outs), (ins srcidx8:$src),
"outsb\t{$src, %dx|dx, $src}", [], IIC_OUTS>;
def OUTSW : I<0x6F, RawFrmSrc, (outs), (ins srcidx16:$src),
@ -2099,7 +2106,8 @@ def OUTSL : I<0x6F, RawFrmSrc, (outs), (ins srcidx32:$src),
"outs{l|d}\t{$src, %dx|dx, $src}", [], IIC_OUTS>, OpSize32;
}
let Defs = [EDI], Uses = [DX,EDI,DF] in {
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI], Uses = [DX,EDI,EFLAGS] in {
def INSB : I<0x6C, RawFrmDst, (outs), (ins dstidx8:$dst),
"insb\t{%dx, $dst|$dst, dx}", [], IIC_INS>;
def INSW : I<0x6D, RawFrmDst, (outs), (ins dstidx16:$dst),
@ -2109,21 +2117,18 @@ def INSL : I<0x6D, RawFrmDst, (outs), (ins dstidx32:$dst),
}
}
// EFLAGS management instructions.
let SchedRW = [WriteALU], Defs = [EFLAGS], Uses = [EFLAGS] in {
def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC_CMC_STC>;
def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_CLC_CMC_STC>;
def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CLC_CMC_STC>;
}
// DF management instructions.
// FIXME: These are a bit more expensive than CLC and STC. We should consider
// adjusting their schedule bucket.
let SchedRW = [WriteALU], Defs = [DF] in {
// Flag instructions
let SchedRW = [WriteALU] in {
def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC>;
def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_STC>;
def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>;
def STI : I<0xFB, RawFrm, (outs), (ins), "sti", [], IIC_STI>;
def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", [], IIC_CLD>;
def STD : I<0xFD, RawFrm, (outs), (ins), "std", [], IIC_STD>;
}
def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CMC>;
def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB;
}
// Table lookup instructions
let Uses = [AL,EBX], Defs = [AL], hasSideEffects = 0, mayLoad = 1 in

View File

@ -692,19 +692,6 @@ let Uses = [RAX, RBX, RCX, RDX], Defs = [RAX, RBX, RCX] in {
} // Uses, Defs
} // SchedRW
//===----------------------------------------------------------------------===//
// TS flag control instruction.
let SchedRW = [WriteSystem] in {
def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB;
}
//===----------------------------------------------------------------------===//
// IF (inside EFLAGS) management instructions.
let SchedRW = [WriteSystem], Uses = [EFLAGS], Defs = [EFLAGS] in {
def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>;
def STI : I<0xFB, RawFrm, (outs), (ins), "sti", [], IIC_STI>;
}
//===----------------------------------------------------------------------===//
// RDPID Instruction
let SchedRW = [WriteSystem] in {

View File

@ -251,19 +251,9 @@ def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
// Floating-point status word
def FPSW : X86Reg<"fpsw", 0>;
// Status flags register.
//
// Note that some flags that are commonly thought of as part of the status
// flags register are modeled separately. Typically this is due to instructions
// reading and updating those flags independently of all the others. We don't
// want to create false dependencies between these instructions and so we use
// a separate register to model them.
// Status flags register
def EFLAGS : X86Reg<"flags", 0>;
// The direction flag.
def DF : X86Reg<"DF", 0>;
// Segment registers
def CS : X86Reg<"cs", 1>;
def DS : X86Reg<"ds", 3>;
@ -507,10 +497,6 @@ def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
let CopyCost = -1; // Don't allow copying of status registers.
let isAllocatable = 0;
}
def DFCCR : RegisterClass<"X86", [i32], 32, (add DF)> {
let CopyCost = -1; // Don't allow copying of status registers.
let isAllocatable = 0;
}
// AVX-512 vector/mask registers.
def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],

View File

@ -608,10 +608,12 @@ def IIC_CMPXCHG_8B : InstrItinClass;
def IIC_CMPXCHG_16B : InstrItinClass;
def IIC_LODS : InstrItinClass;
def IIC_OUTS : InstrItinClass;
def IIC_CLC_CMC_STC : InstrItinClass;
def IIC_CLC : InstrItinClass;
def IIC_CLD : InstrItinClass;
def IIC_CLI : InstrItinClass;
def IIC_CMC : InstrItinClass;
def IIC_CLTS : InstrItinClass;
def IIC_STC : InstrItinClass;
def IIC_STI : InstrItinClass;
def IIC_STD : InstrItinClass;
def IIC_XLAT : InstrItinClass;

View File

@ -514,10 +514,12 @@ def AtomItineraries : ProcessorItineraries<
InstrItinData<IIC_CMPXCHG_16B, [InstrStage<22, [Port0, Port1]>] >,
InstrItinData<IIC_LODS, [InstrStage<2, [Port0, Port1]>] >,
InstrItinData<IIC_OUTS, [InstrStage<74, [Port0, Port1]>] >,
InstrItinData<IIC_CLC_CMC_STC, [InstrStage<1, [Port0, Port1]>] >,
InstrItinData<IIC_CLC, [InstrStage<1, [Port0, Port1]>] >,
InstrItinData<IIC_CLD, [InstrStage<3, [Port0, Port1]>] >,
InstrItinData<IIC_CLI, [InstrStage<14, [Port0, Port1]>] >,
InstrItinData<IIC_CMC, [InstrStage<1, [Port0, Port1]>] >,
InstrItinData<IIC_CLTS, [InstrStage<33, [Port0, Port1]>] >,
InstrItinData<IIC_STC, [InstrStage<1, [Port0, Port1]>] >,
InstrItinData<IIC_STI, [InstrStage<17, [Port0, Port1]>] >,
InstrItinData<IIC_STD, [InstrStage<21, [Port0, Port1]>] >,
InstrItinData<IIC_XLAT, [InstrStage<6, [Port0, Port1]>] >,

View File

@ -62,7 +62,6 @@ void initializeX86CallFrameOptimizationPass(PassRegistry &);
void initializeX86CmovConverterPassPass(PassRegistry &);
void initializeX86ExecutionDepsFixPass(PassRegistry &);
void initializeX86DomainReassignmentPass(PassRegistry &);
void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
} // end namespace llvm
@ -81,7 +80,6 @@ extern "C" void LLVMInitializeX86Target() {
initializeX86CmovConverterPassPass(PR);
initializeX86ExecutionDepsFixPass(PR);
initializeX86DomainReassignmentPass(PR);
initializeX86FlagsCopyLoweringPassPass(PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
@ -417,7 +415,6 @@ void X86PassConfig::addPreRegAlloc() {
addPass(createX86CallFrameOptimization());
}
addPass(createX86FlagsCopyLoweringPass());
addPass(createX86WinAllocaExpander());
}
void X86PassConfig::addMachineSSAOptimization() {

View File

@ -2559,8 +2559,6 @@ def mrtm : Flag<["-"], "mrtm">, Group<m_x86_Features_Group>;
def mno_rtm : Flag<["-"], "mno-rtm">, Group<m_x86_Features_Group>;
def mrdseed : Flag<["-"], "mrdseed">, Group<m_x86_Features_Group>;
def mno_rdseed : Flag<["-"], "mno-rdseed">, Group<m_x86_Features_Group>;
def msahf : Flag<["-"], "msahf">, Group<m_x86_Features_Group>;
def mno_sahf : Flag<["-"], "mno-sahf">, Group<m_x86_Features_Group>;
def msgx : Flag<["-"], "msgx">, Group<m_x86_Features_Group>;
def mno_sgx : Flag<["-"], "mno-sgx">, Group<m_x86_Features_Group>;
def msha : Flag<["-"], "msha">, Group<m_x86_Features_Group>;

View File

@ -198,7 +198,6 @@ bool X86TargetInfo::initFeatureMap(
LLVM_FALLTHROUGH;
case CK_Core2:
setFeatureEnabledImpl(Features, "ssse3", true);
setFeatureEnabledImpl(Features, "sahf", true);
LLVM_FALLTHROUGH;
case CK_Yonah:
case CK_Prescott:
@ -240,7 +239,6 @@ bool X86TargetInfo::initFeatureMap(
setFeatureEnabledImpl(Features, "ssse3", true);
setFeatureEnabledImpl(Features, "fxsr", true);
setFeatureEnabledImpl(Features, "cx16", true);
setFeatureEnabledImpl(Features, "sahf", true);
break;
case CK_KNM:
@ -271,7 +269,6 @@ bool X86TargetInfo::initFeatureMap(
setFeatureEnabledImpl(Features, "xsaveopt", true);
setFeatureEnabledImpl(Features, "xsave", true);
setFeatureEnabledImpl(Features, "movbe", true);
setFeatureEnabledImpl(Features, "sahf", true);
break;
case CK_K6_2:
@ -285,7 +282,6 @@ bool X86TargetInfo::initFeatureMap(
setFeatureEnabledImpl(Features, "sse4a", true);
setFeatureEnabledImpl(Features, "lzcnt", true);
setFeatureEnabledImpl(Features, "popcnt", true);
setFeatureEnabledImpl(Features, "sahf", true);
LLVM_FALLTHROUGH;
case CK_K8SSE3:
setFeatureEnabledImpl(Features, "sse3", true);
@ -319,7 +315,6 @@ bool X86TargetInfo::initFeatureMap(
setFeatureEnabledImpl(Features, "prfchw", true);
setFeatureEnabledImpl(Features, "cx16", true);
setFeatureEnabledImpl(Features, "fxsr", true);
setFeatureEnabledImpl(Features, "sahf", true);
break;
case CK_ZNVER1:
@ -343,7 +338,6 @@ bool X86TargetInfo::initFeatureMap(
setFeatureEnabledImpl(Features, "prfchw", true);
setFeatureEnabledImpl(Features, "rdrnd", true);
setFeatureEnabledImpl(Features, "rdseed", true);
setFeatureEnabledImpl(Features, "sahf", true);
setFeatureEnabledImpl(Features, "sha", true);
setFeatureEnabledImpl(Features, "sse4a", true);
setFeatureEnabledImpl(Features, "xsave", true);
@ -378,7 +372,6 @@ bool X86TargetInfo::initFeatureMap(
setFeatureEnabledImpl(Features, "cx16", true);
setFeatureEnabledImpl(Features, "fxsr", true);
setFeatureEnabledImpl(Features, "xsave", true);
setFeatureEnabledImpl(Features, "sahf", true);
break;
}
if (!TargetInfo::initFeatureMap(Features, Diags, CPU, FeaturesVec))
@ -775,8 +768,6 @@ bool X86TargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
HasRetpoline = true;
} else if (Feature == "+retpoline-external-thunk") {
HasRetpolineExternalThunk = true;
} else if (Feature == "+sahf") {
HasLAHFSAHF = true;
}
X86SSEEnum Level = llvm::StringSwitch<X86SSEEnum>(Feature)
@ -1249,7 +1240,6 @@ bool X86TargetInfo::isValidFeatureName(StringRef Name) const {
.Case("rdrnd", true)
.Case("rdseed", true)
.Case("rtm", true)
.Case("sahf", true)
.Case("sgx", true)
.Case("sha", true)
.Case("shstk", true)
@ -1323,7 +1313,6 @@ bool X86TargetInfo::hasFeature(StringRef Feature) const {
.Case("retpoline", HasRetpoline)
.Case("retpoline-external-thunk", HasRetpolineExternalThunk)
.Case("rtm", HasRTM)
.Case("sahf", HasLAHFSAHF)
.Case("sgx", HasSGX)
.Case("sha", HasSHA)
.Case("shstk", HasSHSTK)

View File

@ -98,7 +98,6 @@ class LLVM_LIBRARY_VISIBILITY X86TargetInfo : public TargetInfo {
bool HasPREFETCHWT1 = false;
bool HasRetpoline = false;
bool HasRetpolineExternalThunk = false;
bool HasLAHFSAHF = false;
/// \brief Enumeration of all of the X86 CPUs supported by Clang.
///

View File

@ -1,3 +1,3 @@
/* $FreeBSD$ */
#define FREEBSD_CC_VERSION 1200012
#define FREEBSD_CC_VERSION 1200013

View File

@ -1042,7 +1042,6 @@ SRCS_MIN+= Target/X86/X86FastISel.cpp
SRCS_MIN+= Target/X86/X86FixupBWInsts.cpp
SRCS_MIN+= Target/X86/X86FixupLEAs.cpp
SRCS_MIN+= Target/X86/X86FixupSetCC.cpp
SRCS_MIN+= Target/X86/X86FlagsCopyLowering.cpp
SRCS_MIN+= Target/X86/X86FloatingPoint.cpp
SRCS_MIN+= Target/X86/X86FrameLowering.cpp
SRCS_MIN+= Target/X86/X86ISelDAGToDAG.cpp