* ld80/k_expl.h:
* ld128/k_expl.h: . Split out a computational kernel,__k_expl(x, &hi, &lo, &k) from expl(x). x must be finite and not tiny or huge. The kernel returns hi and lo values for extra precision and an exponent k for a 2**k scale factor. . Define additional kernels k_hexpl() and hexpl() that include a 1/2 scaling and are used by the hyperbolic functions. * ld80/s_expl.c: * ld128/s_expl.c: . Use the __k_expl() kernel. Obtained from: bde
This commit is contained in:
parent
da67681dd3
commit
5f63fbd67f
328
lib/msun/ld128/k_expl.h
Normal file
328
lib/msun/ld128/k_expl.h
Normal file
@ -0,0 +1,328 @@
|
||||
/* from: FreeBSD: head/lib/msun/ld128/s_expl.c 251345 2013-06-03 20:09:22Z kargl */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 2009-2013 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ld128 version of k_expl.h. See ../ld80/s_expl.c for most comments.
|
||||
*
|
||||
* See ../src/e_exp.c and ../src/k_exp.h for precision-independent comments
|
||||
* about the secondary kernels.
|
||||
*/
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const double
|
||||
/*
|
||||
* ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication). L1 must
|
||||
* have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
|
||||
* bits zero so that multiplication of it by n is exact.
|
||||
*/
|
||||
INV_L = 1.8466496523378731e+2, /* 0x171547652b82fe.0p-45 */
|
||||
L2 = -1.0253670638894731e-29; /* -0x1.9ff0342542fc3p-97 */
|
||||
static const long double
|
||||
/* 0x1.62e42fefa39ef35793c768000000p-8 */
|
||||
L1 = 5.41521234812457272982212595914567508e-3L;
|
||||
|
||||
/*
|
||||
* XXX values in hex in comments have been lost (or were never present)
|
||||
* from here.
|
||||
*/
|
||||
static const long double
|
||||
/*
|
||||
* Domain [-0.002708, 0.002708], range ~[-2.4021e-38, 2.4234e-38]:
|
||||
* |exp(x) - p(x)| < 2**-124.9
|
||||
* (0.002708 is ln2/(2*INTERVALS) rounded up a little).
|
||||
*
|
||||
* XXX the coeffs aren't very carefully rounded, and I get 3.6 more bits.
|
||||
*/
|
||||
A2 = 0.5,
|
||||
A3 = 1.66666666666666666666666666651085500e-1L,
|
||||
A4 = 4.16666666666666666666666666425885320e-2L,
|
||||
A5 = 8.33333333333333333334522877160175842e-3L,
|
||||
A6 = 1.38888888888888888889971139751596836e-3L;
|
||||
|
||||
static const double
|
||||
A7 = 1.9841269841269470e-4, /* 0x1.a01a01a019f91p-13 */
|
||||
A8 = 2.4801587301585286e-5, /* 0x1.71de3ec75a967p-19 */
|
||||
A9 = 2.7557324277411235e-6, /* 0x1.71de3ec75a967p-19 */
|
||||
A10 = 2.7557333722375069e-7; /* 0x1.27e505ab56259p-22 */
|
||||
|
||||
static const struct {
|
||||
/*
|
||||
* hi must be rounded to at most 106 bits so that multiplication
|
||||
* by r1 in expm1l() is exact, but it is rounded to 88 bits due to
|
||||
* historical accidents.
|
||||
*
|
||||
* XXX it is wasteful to use long double for both hi and lo. ld128
|
||||
* exp2l() uses only float for lo (in a very differently organized
|
||||
* table; ld80 exp2l() is different again. It uses 2 doubles in a
|
||||
* table organized like this one. 1 double and 1 float would
|
||||
* suffice). There are different packing/locality/alignment/caching
|
||||
* problems with these methods.
|
||||
*
|
||||
* XXX C's bad %a format makes the bits unreadable. They happen
|
||||
* to all line up for the hi values 1 before the point and 88
|
||||
* in 22 nybbles, but for the low values the nybbles are shifted
|
||||
* randomly.
|
||||
*/
|
||||
long double hi;
|
||||
long double lo;
|
||||
} tbl[INTERVALS] = {
|
||||
0x1p0L, 0x0p0L,
|
||||
0x1.0163da9fb33356d84a66aep0L, 0x3.36dcdfa4003ec04c360be2404078p-92L,
|
||||
0x1.02c9a3e778060ee6f7cacap0L, 0x4.f7a29bde93d70a2cabc5cb89ba10p-92L,
|
||||
0x1.04315e86e7f84bd738f9a2p0L, 0xd.a47e6ed040bb4bfc05af6455e9b8p-96L,
|
||||
0x1.059b0d31585743ae7c548ep0L, 0xb.68ca417fe53e3495f7df4baf84a0p-92L,
|
||||
0x1.0706b29ddf6ddc6dc403a8p0L, 0x1.d87b27ed07cb8b092ac75e311753p-88L,
|
||||
0x1.0874518759bc808c35f25cp0L, 0x1.9427fa2b041b2d6829d8993a0d01p-88L,
|
||||
0x1.09e3ecac6f3834521e060cp0L, 0x5.84d6b74ba2e023da730e7fccb758p-92L,
|
||||
0x1.0b5586cf9890f6298b92b6p0L, 0x1.1842a98364291408b3ceb0a2a2bbp-88L,
|
||||
0x1.0cc922b7247f7407b705b8p0L, 0x9.3dc5e8aac564e6fe2ef1d431fd98p-92L,
|
||||
0x1.0e3ec32d3d1a2020742e4ep0L, 0x1.8af6a552ac4b358b1129e9f966a4p-88L,
|
||||
0x1.0fb66affed31af232091dcp0L, 0x1.8a1426514e0b627bda694a400a27p-88L,
|
||||
0x1.11301d0125b50a4ebbf1aep0L, 0xd.9318ceac5cc47ab166ee57427178p-92L,
|
||||
0x1.12abdc06c31cbfb92bad32p0L, 0x4.d68e2f7270bdf7cedf94eb1cb818p-92L,
|
||||
0x1.1429aaea92ddfb34101942p0L, 0x1.b2586d01844b389bea7aedd221d4p-88L,
|
||||
0x1.15a98c8a58e512480d573cp0L, 0x1.d5613bf92a2b618ee31b376c2689p-88L,
|
||||
0x1.172b83c7d517adcdf7c8c4p0L, 0x1.0eb14a792035509ff7d758693f24p-88L,
|
||||
0x1.18af9388c8de9bbbf70b9ap0L, 0x3.c2505c97c0102e5f1211941d2840p-92L,
|
||||
0x1.1a35beb6fcb753cb698f68p0L, 0x1.2d1c835a6c30724d5cfae31b84e5p-88L,
|
||||
0x1.1bbe084045cd39ab1e72b4p0L, 0x4.27e35f9acb57e473915519a1b448p-92L,
|
||||
0x1.1d4873168b9aa7805b8028p0L, 0x9.90f07a98b42206e46166cf051d70p-92L,
|
||||
0x1.1ed5022fcd91cb8819ff60p0L, 0x1.121d1e504d36c47474c9b7de6067p-88L,
|
||||
0x1.2063b88628cd63b8eeb028p0L, 0x1.50929d0fc487d21c2b84004264dep-88L,
|
||||
0x1.21f49917ddc962552fd292p0L, 0x9.4bdb4b61ea62477caa1dce823ba0p-92L,
|
||||
0x1.2387a6e75623866c1fadb0p0L, 0x1.c15cb593b0328566902df69e4de2p-88L,
|
||||
0x1.251ce4fb2a63f3582ab7dep0L, 0x9.e94811a9c8afdcf796934bc652d0p-92L,
|
||||
0x1.26b4565e27cdd257a67328p0L, 0x1.d3b249dce4e9186ddd5ff44e6b08p-92L,
|
||||
0x1.284dfe1f5638096cf15cf0p0L, 0x3.ca0967fdaa2e52d7c8106f2e262cp-92L,
|
||||
0x1.29e9df51fdee12c25d15f4p0L, 0x1.a24aa3bca890ac08d203fed80a07p-88L,
|
||||
0x1.2b87fd0dad98ffddea4652p0L, 0x1.8fcab88442fdc3cb6de4519165edp-88L,
|
||||
0x1.2d285a6e4030b40091d536p0L, 0xd.075384589c1cd1b3e4018a6b1348p-92L,
|
||||
0x1.2ecafa93e2f5611ca0f45cp0L, 0x1.523833af611bdcda253c554cf278p-88L,
|
||||
0x1.306fe0a31b7152de8d5a46p0L, 0x3.05c85edecbc27343629f502f1af2p-92L,
|
||||
0x1.32170fc4cd8313539cf1c2p0L, 0x1.008f86dde3220ae17a005b6412bep-88L,
|
||||
0x1.33c08b26416ff4c9c8610cp0L, 0x1.96696bf95d1593039539d94d662bp-88L,
|
||||
0x1.356c55f929ff0c94623476p0L, 0x3.73af38d6d8d6f9506c9bbc93cbc0p-92L,
|
||||
0x1.371a7373aa9caa7145502ep0L, 0x1.4547987e3e12516bf9c699be432fp-88L,
|
||||
0x1.38cae6d05d86585a9cb0d8p0L, 0x1.bed0c853bd30a02790931eb2e8f0p-88L,
|
||||
0x1.3a7db34e59ff6ea1bc9298p0L, 0x1.e0a1d336163fe2f852ceeb134067p-88L,
|
||||
0x1.3c32dc313a8e484001f228p0L, 0xb.58f3775e06ab66353001fae9fca0p-92L,
|
||||
0x1.3dea64c12342235b41223ep0L, 0x1.3d773fba2cb82b8244267c54443fp-92L,
|
||||
0x1.3fa4504ac801ba0bf701aap0L, 0x4.1832fb8c1c8dbdff2c49909e6c60p-92L,
|
||||
0x1.4160a21f72e29f84325b8ep0L, 0x1.3db61fb352f0540e6ba05634413ep-88L,
|
||||
0x1.431f5d950a896dc7044394p0L, 0x1.0ccec81e24b0caff7581ef4127f7p-92L,
|
||||
0x1.44e086061892d03136f408p0L, 0x1.df019fbd4f3b48709b78591d5cb5p-88L,
|
||||
0x1.46a41ed1d005772512f458p0L, 0x1.229d97df404ff21f39c1b594d3a8p-88L,
|
||||
0x1.486a2b5c13cd013c1a3b68p0L, 0x1.062f03c3dd75ce8757f780e6ec99p-88L,
|
||||
0x1.4a32af0d7d3de672d8bcf4p0L, 0x6.f9586461db1d878b1d148bd3ccb8p-92L,
|
||||
0x1.4bfdad5362a271d4397afep0L, 0xc.42e20e0363ba2e159c579f82e4b0p-92L,
|
||||
0x1.4dcb299fddd0d63b36ef1ap0L, 0x9.e0cc484b25a5566d0bd5f58ad238p-92L,
|
||||
0x1.4f9b2769d2ca6ad33d8b68p0L, 0x1.aa073ee55e028497a329a7333dbap-88L,
|
||||
0x1.516daa2cf6641c112f52c8p0L, 0x4.d822190e718226177d7608d20038p-92L,
|
||||
0x1.5342b569d4f81df0a83c48p0L, 0x1.d86a63f4e672a3e429805b049465p-88L,
|
||||
0x1.551a4ca5d920ec52ec6202p0L, 0x4.34ca672645dc6c124d6619a87574p-92L,
|
||||
0x1.56f4736b527da66ecb0046p0L, 0x1.64eb3c00f2f5ab3d801d7cc7272dp-88L,
|
||||
0x1.58d12d497c7fd252bc2b72p0L, 0x1.43bcf2ec936a970d9cc266f0072fp-88L,
|
||||
0x1.5ab07dd48542958c930150p0L, 0x1.91eb345d88d7c81280e069fbdb63p-88L,
|
||||
0x1.5c9268a5946b701c4b1b80p0L, 0x1.6986a203d84e6a4a92f179e71889p-88L,
|
||||
0x1.5e76f15ad21486e9be4c20p0L, 0x3.99766a06548a05829e853bdb2b52p-92L,
|
||||
0x1.605e1b976dc08b076f592ap0L, 0x4.86e3b34ead1b4769df867b9c89ccp-92L,
|
||||
0x1.6247eb03a5584b1f0fa06ep0L, 0x1.d2da42bb1ceaf9f732275b8aef30p-88L,
|
||||
0x1.6434634ccc31fc76f8714cp0L, 0x4.ed9a4e41000307103a18cf7a6e08p-92L,
|
||||
0x1.66238825522249127d9e28p0L, 0x1.b8f314a337f4dc0a3adf1787ff74p-88L,
|
||||
0x1.68155d44ca973081c57226p0L, 0x1.b9f32706bfe4e627d809a85dcc66p-88L,
|
||||
0x1.6a09e667f3bcc908b2fb12p0L, 0x1.66ea957d3e3adec17512775099dap-88L,
|
||||
0x1.6c012750bdabeed76a9980p0L, 0xf.4f33fdeb8b0ecd831106f57b3d00p-96L,
|
||||
0x1.6dfb23c651a2ef220e2cbep0L, 0x1.bbaa834b3f11577ceefbe6c1c411p-92L,
|
||||
0x1.6ff7df9519483cf87e1b4ep0L, 0x1.3e213bff9b702d5aa477c12523cep-88L,
|
||||
0x1.71f75e8ec5f73dd2370f2ep0L, 0xf.0acd6cb434b562d9e8a20adda648p-92L,
|
||||
0x1.73f9a48a58173bd5c9a4e6p0L, 0x8.ab1182ae217f3a7681759553e840p-92L,
|
||||
0x1.75feb564267c8bf6e9aa32p0L, 0x1.a48b27071805e61a17b954a2dad8p-88L,
|
||||
0x1.780694fde5d3f619ae0280p0L, 0x8.58b2bb2bdcf86cd08e35fb04c0f0p-92L,
|
||||
0x1.7a11473eb0186d7d51023ep0L, 0x1.6cda1f5ef42b66977960531e821bp-88L,
|
||||
0x1.7c1ed0130c1327c4933444p0L, 0x1.937562b2dc933d44fc828efd4c9cp-88L,
|
||||
0x1.7e2f336cf4e62105d02ba0p0L, 0x1.5797e170a1427f8fcdf5f3906108p-88L,
|
||||
0x1.80427543e1a11b60de6764p0L, 0x9.a354ea706b8e4d8b718a672bf7c8p-92L,
|
||||
0x1.82589994cce128acf88afap0L, 0xb.34a010f6ad65cbbac0f532d39be0p-92L,
|
||||
0x1.8471a4623c7acce52f6b96p0L, 0x1.c64095370f51f48817914dd78665p-88L,
|
||||
0x1.868d99b4492ec80e41d90ap0L, 0xc.251707484d73f136fb5779656b70p-92L,
|
||||
0x1.88ac7d98a669966530bcdep0L, 0x1.2d4e9d61283ef385de170ab20f96p-88L,
|
||||
0x1.8ace5422aa0db5ba7c55a0p0L, 0x1.92c9bb3e6ed61f2733304a346d8fp-88L,
|
||||
0x1.8cf3216b5448bef2aa1cd0p0L, 0x1.61c55d84a9848f8c453b3ca8c946p-88L,
|
||||
0x1.8f1ae991577362b982745cp0L, 0x7.2ed804efc9b4ae1458ae946099d4p-92L,
|
||||
0x1.9145b0b91ffc588a61b468p0L, 0x1.f6b70e01c2a90229a4c4309ea719p-88L,
|
||||
0x1.93737b0cdc5e4f4501c3f2p0L, 0x5.40a22d2fc4af581b63e8326efe9cp-92L,
|
||||
0x1.95a44cbc8520ee9b483694p0L, 0x1.a0fc6f7c7d61b2b3a22a0eab2cadp-88L,
|
||||
0x1.97d829fde4e4f8b9e920f8p0L, 0x1.1e8bd7edb9d7144b6f6818084cc7p-88L,
|
||||
0x1.9a0f170ca07b9ba3109b8cp0L, 0x4.6737beb19e1eada6825d3c557428p-92L,
|
||||
0x1.9c49182a3f0901c7c46b06p0L, 0x1.1f2be58ddade50c217186c90b457p-88L,
|
||||
0x1.9e86319e323231824ca78ep0L, 0x6.4c6e010f92c082bbadfaf605cfd4p-92L,
|
||||
0x1.a0c667b5de564b29ada8b8p0L, 0xc.ab349aa0422a8da7d4512edac548p-92L,
|
||||
0x1.a309bec4a2d3358c171f76p0L, 0x1.0daad547fa22c26d168ea762d854p-88L,
|
||||
0x1.a5503b23e255c8b424491cp0L, 0xa.f87bc8050a405381703ef7caff50p-92L,
|
||||
0x1.a799e1330b3586f2dfb2b0p0L, 0x1.58f1a98796ce8908ae852236ca94p-88L,
|
||||
0x1.a9e6b5579fdbf43eb243bcp0L, 0x1.ff4c4c58b571cf465caf07b4b9f5p-88L,
|
||||
0x1.ac36bbfd3f379c0db966a2p0L, 0x1.1265fc73e480712d20f8597a8e7bp-88L,
|
||||
0x1.ae89f995ad3ad5e8734d16p0L, 0x1.73205a7fbc3ae675ea440b162d6cp-88L,
|
||||
0x1.b0e07298db66590842acdep0L, 0x1.c6f6ca0e5dcae2aafffa7a0554cbp-88L,
|
||||
0x1.b33a2b84f15faf6bfd0e7ap0L, 0x1.d947c2575781dbb49b1237c87b6ep-88L,
|
||||
0x1.b59728de559398e3881110p0L, 0x1.64873c7171fefc410416be0a6525p-88L,
|
||||
0x1.b7f76f2fb5e46eaa7b081ap0L, 0xb.53c5354c8903c356e4b625aacc28p-92L,
|
||||
0x1.ba5b030a10649840cb3c6ap0L, 0xf.5b47f297203757e1cc6eadc8bad0p-92L,
|
||||
0x1.bcc1e904bc1d2247ba0f44p0L, 0x1.b3d08cd0b20287092bd59be4ad98p-88L,
|
||||
0x1.bf2c25bd71e088408d7024p0L, 0x1.18e3449fa073b356766dfb568ff4p-88L,
|
||||
0x1.c199bdd85529c2220cb12ap0L, 0x9.1ba6679444964a36661240043970p-96L,
|
||||
0x1.c40ab5fffd07a6d14df820p0L, 0xf.1828a5366fd387a7bdd54cdf7300p-92L,
|
||||
0x1.c67f12e57d14b4a2137fd2p0L, 0xf.2b301dd9e6b151a6d1f9d5d5f520p-96L,
|
||||
0x1.c8f6d9406e7b511acbc488p0L, 0x5.c442ddb55820171f319d9e5076a8p-96L,
|
||||
0x1.cb720dcef90691503cbd1ep0L, 0x9.49db761d9559ac0cb6dd3ed599e0p-92L,
|
||||
0x1.cdf0b555dc3f9c44f8958ep0L, 0x1.ac51be515f8c58bdfb6f5740a3a4p-88L,
|
||||
0x1.d072d4a07897b8d0f22f20p0L, 0x1.a158e18fbbfc625f09f4cca40874p-88L,
|
||||
0x1.d2f87080d89f18ade12398p0L, 0x9.ea2025b4c56553f5cdee4c924728p-92L,
|
||||
0x1.d5818dcfba48725da05aeap0L, 0x1.66e0dca9f589f559c0876ff23830p-88L,
|
||||
0x1.d80e316c98397bb84f9d04p0L, 0x8.805f84bec614de269900ddf98d28p-92L,
|
||||
0x1.da9e603db3285708c01a5ap0L, 0x1.6d4c97f6246f0ec614ec95c99392p-88L,
|
||||
0x1.dd321f301b4604b695de3cp0L, 0x6.30a393215299e30d4fb73503c348p-96L,
|
||||
0x1.dfc97337b9b5eb968cac38p0L, 0x1.ed291b7225a944efd5bb5524b927p-88L,
|
||||
0x1.e264614f5a128a12761fa0p0L, 0x1.7ada6467e77f73bf65e04c95e29dp-88L,
|
||||
0x1.e502ee78b3ff6273d13014p0L, 0x1.3991e8f49659e1693be17ae1d2f9p-88L,
|
||||
0x1.e7a51fbc74c834b548b282p0L, 0x1.23786758a84f4956354634a416cep-88L,
|
||||
0x1.ea4afa2a490d9858f73a18p0L, 0xf.5db301f86dea20610ceee13eb7b8p-92L,
|
||||
0x1.ecf482d8e67f08db0312fap0L, 0x1.949cef462010bb4bc4ce72a900dfp-88L,
|
||||
0x1.efa1bee615a27771fd21a8p0L, 0x1.2dac1f6dd5d229ff68e46f27e3dfp-88L,
|
||||
0x1.f252b376bba974e8696fc2p0L, 0x1.6390d4c6ad5476b5162f40e1d9a9p-88L,
|
||||
0x1.f50765b6e4540674f84b76p0L, 0x2.862baff99000dfc4352ba29b8908p-92L,
|
||||
0x1.f7bfdad9cbe138913b4bfep0L, 0x7.2bd95c5ce7280fa4d2344a3f5618p-92L,
|
||||
0x1.fa7c1819e90d82e90a7e74p0L, 0xb.263c1dc060c36f7650b4c0f233a8p-92L,
|
||||
0x1.fd3c22b8f71f10975ba4b2p0L, 0x1.2bcf3a5e12d269d8ad7c1a4a8875p-88L
|
||||
};
|
||||
|
||||
/*
|
||||
* Kernel for expl(x). x must be finite and not tiny or huge.
|
||||
* "tiny" is anything that would make us underflow (|A6*x^6| < ~LDBL_MIN).
|
||||
* "huge" is anything that would make fn*L1 inexact (|x| > ~2**17*ln2).
|
||||
*/
|
||||
static inline void
|
||||
__k_expl(long double x, long double *hip, long double *lop, int *kp)
|
||||
{
|
||||
long double q, r, r1, t;
|
||||
double dr, fn, r2;
|
||||
int n, n2;
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
|
||||
/* XXX assume no extra precision for the additions, as for trig fns. */
|
||||
/* XXX this set of comments is now quadruplicated. */
|
||||
/* XXX but see ../src/e_exp.c for a fix using double_t. */
|
||||
fn = (double)x * INV_L + 0x1.8p52 - 0x1.8p52;
|
||||
#if defined(HAVE_EFFICIENT_IRINT)
|
||||
n = irint(fn);
|
||||
#else
|
||||
n = (int)fn;
|
||||
#endif
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
/* Depend on the sign bit being propagated: */
|
||||
*kp = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
r = r1 + r2;
|
||||
|
||||
/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
|
||||
dr = r;
|
||||
q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
|
||||
dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
|
||||
t = tbl[n2].lo + tbl[n2].hi;
|
||||
*hip = tbl[n2].hi;
|
||||
*lop = tbl[n2].lo + t * (q + r1);
|
||||
}
|
||||
|
||||
/*
|
||||
* XXX: the rest of the functions are identical for ld80 and ld128.
|
||||
* However, we should use scalbnl() for ld128, since long double
|
||||
* multiplication is very slow on the only supported ld128 arch (sparc64).
|
||||
*/
|
||||
|
||||
static inline void
|
||||
k_hexpl(long double x, long double *hip, long double *lop)
|
||||
{
|
||||
float twopkm1;
|
||||
int k;
|
||||
|
||||
__k_expl(x, hip, lop, &k);
|
||||
SET_FLOAT_WORD(twopkm1, 0x3f800000 + ((k - 1) << 23));
|
||||
*hip *= twopkm1;
|
||||
*lop *= twopkm1;
|
||||
}
|
||||
|
||||
static inline long double
|
||||
hexpl(long double x)
|
||||
{
|
||||
long double hi, lo, twopkm2;
|
||||
int k;
|
||||
|
||||
twopkm2 = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
SET_LDBL_EXPSIGN(twopkm2, BIAS + k - 2);
|
||||
return (lo + hi) * 2 * twopkm2;
|
||||
}
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
/*
|
||||
* See ../src/k_exp.c for details.
|
||||
*/
|
||||
static inline long double complex
|
||||
__ldexp_cexpl(long double complex z, int expt)
|
||||
{
|
||||
long double exp_x, hi, lo;
|
||||
long double x, y, scale1, scale2;
|
||||
int half_expt, k;
|
||||
|
||||
x = creall(z);
|
||||
y = cimagl(z);
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
|
||||
exp_x = (lo + hi) * 0x1p16382;
|
||||
expt += k - 16382;
|
||||
|
||||
scale1 = 1;
|
||||
half_expt = expt / 2;
|
||||
SET_LDBL_EXPSIGN(scale1, BIAS + half_expt);
|
||||
scale2 = 1;
|
||||
SET_LDBL_EXPSIGN(scale1, BIAS + expt - half_expt);
|
||||
|
||||
return (cpackl(cos(y) * exp_x * scale1 * scale2,
|
||||
sinl(y) * exp_x * scale1 * scale2));
|
||||
}
|
||||
#endif /* _COMPLEX_H */
|
@ -38,16 +38,15 @@ __FBSDID("$FreeBSD$");
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "k_expl.h"
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
/* XXX Prevent compilers from erroneously constant folding these: */
|
||||
static const volatile long double
|
||||
huge = 0x1p10000L,
|
||||
tiny = 0x1p-10000L;
|
||||
|
||||
static const long double
|
||||
huge = 0x1p10000L,
|
||||
twom10000 = 0x1p-10000L;
|
||||
/* XXX Prevent gcc from erroneously constant folding this: */
|
||||
static volatile const long double tiny = 0x1p-10000L;
|
||||
|
||||
static const long double
|
||||
/* log(2**16384 - 0.5) rounded towards zero: */
|
||||
@ -56,184 +55,16 @@ o_threshold = 11356.523406294143949491931077970763428L,
|
||||
/* log(2**(-16381-64-1)) rounded towards zero: */
|
||||
u_threshold = -11433.462743336297878837243843452621503L;
|
||||
|
||||
static const double
|
||||
/*
|
||||
* ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication). L1 must
|
||||
* have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
|
||||
* bits zero so that multiplication of it by n is exact.
|
||||
*/
|
||||
INV_L = 1.8466496523378731e+2, /* 0x171547652b82fe.0p-45 */
|
||||
L2 = -1.0253670638894731e-29; /* -0x1.9ff0342542fc3p-97 */
|
||||
static const long double
|
||||
/* 0x1.62e42fefa39ef35793c768000000p-8 */
|
||||
L1 = 5.41521234812457272982212595914567508e-3L;
|
||||
|
||||
static const long double
|
||||
/*
|
||||
* Domain [-0.002708, 0.002708], range ~[-2.4021e-38, 2.4234e-38]:
|
||||
* |exp(x) - p(x)| < 2**-124.9
|
||||
* (0.002708 is ln2/(2*INTERVALS) rounded up a little).
|
||||
*/
|
||||
A2 = 0.5,
|
||||
A3 = 1.66666666666666666666666666651085500e-1L,
|
||||
A4 = 4.16666666666666666666666666425885320e-2L,
|
||||
A5 = 8.33333333333333333334522877160175842e-3L,
|
||||
A6 = 1.38888888888888888889971139751596836e-3L;
|
||||
|
||||
static const double
|
||||
A7 = 1.9841269841269471e-4,
|
||||
A8 = 2.4801587301585284e-5,
|
||||
A9 = 2.7557324277411234e-6,
|
||||
A10 = 2.7557333722375072e-7;
|
||||
|
||||
static const struct {
|
||||
/*
|
||||
* hi must be rounded to at most 106 bits so that multiplication
|
||||
* by r1 in expm1l() is exact, but it is rounded to 88 bits due to
|
||||
* historical accidents.
|
||||
*/
|
||||
long double hi;
|
||||
long double lo;
|
||||
} tbl[INTERVALS] = {
|
||||
0x1p0L, 0x0p0L,
|
||||
0x1.0163da9fb33356d84a66aep0L, 0x3.36dcdfa4003ec04c360be2404078p-92L,
|
||||
0x1.02c9a3e778060ee6f7cacap0L, 0x4.f7a29bde93d70a2cabc5cb89ba10p-92L,
|
||||
0x1.04315e86e7f84bd738f9a2p0L, 0xd.a47e6ed040bb4bfc05af6455e9b8p-96L,
|
||||
0x1.059b0d31585743ae7c548ep0L, 0xb.68ca417fe53e3495f7df4baf84a0p-92L,
|
||||
0x1.0706b29ddf6ddc6dc403a8p0L, 0x1.d87b27ed07cb8b092ac75e311753p-88L,
|
||||
0x1.0874518759bc808c35f25cp0L, 0x1.9427fa2b041b2d6829d8993a0d01p-88L,
|
||||
0x1.09e3ecac6f3834521e060cp0L, 0x5.84d6b74ba2e023da730e7fccb758p-92L,
|
||||
0x1.0b5586cf9890f6298b92b6p0L, 0x1.1842a98364291408b3ceb0a2a2bbp-88L,
|
||||
0x1.0cc922b7247f7407b705b8p0L, 0x9.3dc5e8aac564e6fe2ef1d431fd98p-92L,
|
||||
0x1.0e3ec32d3d1a2020742e4ep0L, 0x1.8af6a552ac4b358b1129e9f966a4p-88L,
|
||||
0x1.0fb66affed31af232091dcp0L, 0x1.8a1426514e0b627bda694a400a27p-88L,
|
||||
0x1.11301d0125b50a4ebbf1aep0L, 0xd.9318ceac5cc47ab166ee57427178p-92L,
|
||||
0x1.12abdc06c31cbfb92bad32p0L, 0x4.d68e2f7270bdf7cedf94eb1cb818p-92L,
|
||||
0x1.1429aaea92ddfb34101942p0L, 0x1.b2586d01844b389bea7aedd221d4p-88L,
|
||||
0x1.15a98c8a58e512480d573cp0L, 0x1.d5613bf92a2b618ee31b376c2689p-88L,
|
||||
0x1.172b83c7d517adcdf7c8c4p0L, 0x1.0eb14a792035509ff7d758693f24p-88L,
|
||||
0x1.18af9388c8de9bbbf70b9ap0L, 0x3.c2505c97c0102e5f1211941d2840p-92L,
|
||||
0x1.1a35beb6fcb753cb698f68p0L, 0x1.2d1c835a6c30724d5cfae31b84e5p-88L,
|
||||
0x1.1bbe084045cd39ab1e72b4p0L, 0x4.27e35f9acb57e473915519a1b448p-92L,
|
||||
0x1.1d4873168b9aa7805b8028p0L, 0x9.90f07a98b42206e46166cf051d70p-92L,
|
||||
0x1.1ed5022fcd91cb8819ff60p0L, 0x1.121d1e504d36c47474c9b7de6067p-88L,
|
||||
0x1.2063b88628cd63b8eeb028p0L, 0x1.50929d0fc487d21c2b84004264dep-88L,
|
||||
0x1.21f49917ddc962552fd292p0L, 0x9.4bdb4b61ea62477caa1dce823ba0p-92L,
|
||||
0x1.2387a6e75623866c1fadb0p0L, 0x1.c15cb593b0328566902df69e4de2p-88L,
|
||||
0x1.251ce4fb2a63f3582ab7dep0L, 0x9.e94811a9c8afdcf796934bc652d0p-92L,
|
||||
0x1.26b4565e27cdd257a67328p0L, 0x1.d3b249dce4e9186ddd5ff44e6b08p-92L,
|
||||
0x1.284dfe1f5638096cf15cf0p0L, 0x3.ca0967fdaa2e52d7c8106f2e262cp-92L,
|
||||
0x1.29e9df51fdee12c25d15f4p0L, 0x1.a24aa3bca890ac08d203fed80a07p-88L,
|
||||
0x1.2b87fd0dad98ffddea4652p0L, 0x1.8fcab88442fdc3cb6de4519165edp-88L,
|
||||
0x1.2d285a6e4030b40091d536p0L, 0xd.075384589c1cd1b3e4018a6b1348p-92L,
|
||||
0x1.2ecafa93e2f5611ca0f45cp0L, 0x1.523833af611bdcda253c554cf278p-88L,
|
||||
0x1.306fe0a31b7152de8d5a46p0L, 0x3.05c85edecbc27343629f502f1af2p-92L,
|
||||
0x1.32170fc4cd8313539cf1c2p0L, 0x1.008f86dde3220ae17a005b6412bep-88L,
|
||||
0x1.33c08b26416ff4c9c8610cp0L, 0x1.96696bf95d1593039539d94d662bp-88L,
|
||||
0x1.356c55f929ff0c94623476p0L, 0x3.73af38d6d8d6f9506c9bbc93cbc0p-92L,
|
||||
0x1.371a7373aa9caa7145502ep0L, 0x1.4547987e3e12516bf9c699be432fp-88L,
|
||||
0x1.38cae6d05d86585a9cb0d8p0L, 0x1.bed0c853bd30a02790931eb2e8f0p-88L,
|
||||
0x1.3a7db34e59ff6ea1bc9298p0L, 0x1.e0a1d336163fe2f852ceeb134067p-88L,
|
||||
0x1.3c32dc313a8e484001f228p0L, 0xb.58f3775e06ab66353001fae9fca0p-92L,
|
||||
0x1.3dea64c12342235b41223ep0L, 0x1.3d773fba2cb82b8244267c54443fp-92L,
|
||||
0x1.3fa4504ac801ba0bf701aap0L, 0x4.1832fb8c1c8dbdff2c49909e6c60p-92L,
|
||||
0x1.4160a21f72e29f84325b8ep0L, 0x1.3db61fb352f0540e6ba05634413ep-88L,
|
||||
0x1.431f5d950a896dc7044394p0L, 0x1.0ccec81e24b0caff7581ef4127f7p-92L,
|
||||
0x1.44e086061892d03136f408p0L, 0x1.df019fbd4f3b48709b78591d5cb5p-88L,
|
||||
0x1.46a41ed1d005772512f458p0L, 0x1.229d97df404ff21f39c1b594d3a8p-88L,
|
||||
0x1.486a2b5c13cd013c1a3b68p0L, 0x1.062f03c3dd75ce8757f780e6ec99p-88L,
|
||||
0x1.4a32af0d7d3de672d8bcf4p0L, 0x6.f9586461db1d878b1d148bd3ccb8p-92L,
|
||||
0x1.4bfdad5362a271d4397afep0L, 0xc.42e20e0363ba2e159c579f82e4b0p-92L,
|
||||
0x1.4dcb299fddd0d63b36ef1ap0L, 0x9.e0cc484b25a5566d0bd5f58ad238p-92L,
|
||||
0x1.4f9b2769d2ca6ad33d8b68p0L, 0x1.aa073ee55e028497a329a7333dbap-88L,
|
||||
0x1.516daa2cf6641c112f52c8p0L, 0x4.d822190e718226177d7608d20038p-92L,
|
||||
0x1.5342b569d4f81df0a83c48p0L, 0x1.d86a63f4e672a3e429805b049465p-88L,
|
||||
0x1.551a4ca5d920ec52ec6202p0L, 0x4.34ca672645dc6c124d6619a87574p-92L,
|
||||
0x1.56f4736b527da66ecb0046p0L, 0x1.64eb3c00f2f5ab3d801d7cc7272dp-88L,
|
||||
0x1.58d12d497c7fd252bc2b72p0L, 0x1.43bcf2ec936a970d9cc266f0072fp-88L,
|
||||
0x1.5ab07dd48542958c930150p0L, 0x1.91eb345d88d7c81280e069fbdb63p-88L,
|
||||
0x1.5c9268a5946b701c4b1b80p0L, 0x1.6986a203d84e6a4a92f179e71889p-88L,
|
||||
0x1.5e76f15ad21486e9be4c20p0L, 0x3.99766a06548a05829e853bdb2b52p-92L,
|
||||
0x1.605e1b976dc08b076f592ap0L, 0x4.86e3b34ead1b4769df867b9c89ccp-92L,
|
||||
0x1.6247eb03a5584b1f0fa06ep0L, 0x1.d2da42bb1ceaf9f732275b8aef30p-88L,
|
||||
0x1.6434634ccc31fc76f8714cp0L, 0x4.ed9a4e41000307103a18cf7a6e08p-92L,
|
||||
0x1.66238825522249127d9e28p0L, 0x1.b8f314a337f4dc0a3adf1787ff74p-88L,
|
||||
0x1.68155d44ca973081c57226p0L, 0x1.b9f32706bfe4e627d809a85dcc66p-88L,
|
||||
0x1.6a09e667f3bcc908b2fb12p0L, 0x1.66ea957d3e3adec17512775099dap-88L,
|
||||
0x1.6c012750bdabeed76a9980p0L, 0xf.4f33fdeb8b0ecd831106f57b3d00p-96L,
|
||||
0x1.6dfb23c651a2ef220e2cbep0L, 0x1.bbaa834b3f11577ceefbe6c1c411p-92L,
|
||||
0x1.6ff7df9519483cf87e1b4ep0L, 0x1.3e213bff9b702d5aa477c12523cep-88L,
|
||||
0x1.71f75e8ec5f73dd2370f2ep0L, 0xf.0acd6cb434b562d9e8a20adda648p-92L,
|
||||
0x1.73f9a48a58173bd5c9a4e6p0L, 0x8.ab1182ae217f3a7681759553e840p-92L,
|
||||
0x1.75feb564267c8bf6e9aa32p0L, 0x1.a48b27071805e61a17b954a2dad8p-88L,
|
||||
0x1.780694fde5d3f619ae0280p0L, 0x8.58b2bb2bdcf86cd08e35fb04c0f0p-92L,
|
||||
0x1.7a11473eb0186d7d51023ep0L, 0x1.6cda1f5ef42b66977960531e821bp-88L,
|
||||
0x1.7c1ed0130c1327c4933444p0L, 0x1.937562b2dc933d44fc828efd4c9cp-88L,
|
||||
0x1.7e2f336cf4e62105d02ba0p0L, 0x1.5797e170a1427f8fcdf5f3906108p-88L,
|
||||
0x1.80427543e1a11b60de6764p0L, 0x9.a354ea706b8e4d8b718a672bf7c8p-92L,
|
||||
0x1.82589994cce128acf88afap0L, 0xb.34a010f6ad65cbbac0f532d39be0p-92L,
|
||||
0x1.8471a4623c7acce52f6b96p0L, 0x1.c64095370f51f48817914dd78665p-88L,
|
||||
0x1.868d99b4492ec80e41d90ap0L, 0xc.251707484d73f136fb5779656b70p-92L,
|
||||
0x1.88ac7d98a669966530bcdep0L, 0x1.2d4e9d61283ef385de170ab20f96p-88L,
|
||||
0x1.8ace5422aa0db5ba7c55a0p0L, 0x1.92c9bb3e6ed61f2733304a346d8fp-88L,
|
||||
0x1.8cf3216b5448bef2aa1cd0p0L, 0x1.61c55d84a9848f8c453b3ca8c946p-88L,
|
||||
0x1.8f1ae991577362b982745cp0L, 0x7.2ed804efc9b4ae1458ae946099d4p-92L,
|
||||
0x1.9145b0b91ffc588a61b468p0L, 0x1.f6b70e01c2a90229a4c4309ea719p-88L,
|
||||
0x1.93737b0cdc5e4f4501c3f2p0L, 0x5.40a22d2fc4af581b63e8326efe9cp-92L,
|
||||
0x1.95a44cbc8520ee9b483694p0L, 0x1.a0fc6f7c7d61b2b3a22a0eab2cadp-88L,
|
||||
0x1.97d829fde4e4f8b9e920f8p0L, 0x1.1e8bd7edb9d7144b6f6818084cc7p-88L,
|
||||
0x1.9a0f170ca07b9ba3109b8cp0L, 0x4.6737beb19e1eada6825d3c557428p-92L,
|
||||
0x1.9c49182a3f0901c7c46b06p0L, 0x1.1f2be58ddade50c217186c90b457p-88L,
|
||||
0x1.9e86319e323231824ca78ep0L, 0x6.4c6e010f92c082bbadfaf605cfd4p-92L,
|
||||
0x1.a0c667b5de564b29ada8b8p0L, 0xc.ab349aa0422a8da7d4512edac548p-92L,
|
||||
0x1.a309bec4a2d3358c171f76p0L, 0x1.0daad547fa22c26d168ea762d854p-88L,
|
||||
0x1.a5503b23e255c8b424491cp0L, 0xa.f87bc8050a405381703ef7caff50p-92L,
|
||||
0x1.a799e1330b3586f2dfb2b0p0L, 0x1.58f1a98796ce8908ae852236ca94p-88L,
|
||||
0x1.a9e6b5579fdbf43eb243bcp0L, 0x1.ff4c4c58b571cf465caf07b4b9f5p-88L,
|
||||
0x1.ac36bbfd3f379c0db966a2p0L, 0x1.1265fc73e480712d20f8597a8e7bp-88L,
|
||||
0x1.ae89f995ad3ad5e8734d16p0L, 0x1.73205a7fbc3ae675ea440b162d6cp-88L,
|
||||
0x1.b0e07298db66590842acdep0L, 0x1.c6f6ca0e5dcae2aafffa7a0554cbp-88L,
|
||||
0x1.b33a2b84f15faf6bfd0e7ap0L, 0x1.d947c2575781dbb49b1237c87b6ep-88L,
|
||||
0x1.b59728de559398e3881110p0L, 0x1.64873c7171fefc410416be0a6525p-88L,
|
||||
0x1.b7f76f2fb5e46eaa7b081ap0L, 0xb.53c5354c8903c356e4b625aacc28p-92L,
|
||||
0x1.ba5b030a10649840cb3c6ap0L, 0xf.5b47f297203757e1cc6eadc8bad0p-92L,
|
||||
0x1.bcc1e904bc1d2247ba0f44p0L, 0x1.b3d08cd0b20287092bd59be4ad98p-88L,
|
||||
0x1.bf2c25bd71e088408d7024p0L, 0x1.18e3449fa073b356766dfb568ff4p-88L,
|
||||
0x1.c199bdd85529c2220cb12ap0L, 0x9.1ba6679444964a36661240043970p-96L,
|
||||
0x1.c40ab5fffd07a6d14df820p0L, 0xf.1828a5366fd387a7bdd54cdf7300p-92L,
|
||||
0x1.c67f12e57d14b4a2137fd2p0L, 0xf.2b301dd9e6b151a6d1f9d5d5f520p-96L,
|
||||
0x1.c8f6d9406e7b511acbc488p0L, 0x5.c442ddb55820171f319d9e5076a8p-96L,
|
||||
0x1.cb720dcef90691503cbd1ep0L, 0x9.49db761d9559ac0cb6dd3ed599e0p-92L,
|
||||
0x1.cdf0b555dc3f9c44f8958ep0L, 0x1.ac51be515f8c58bdfb6f5740a3a4p-88L,
|
||||
0x1.d072d4a07897b8d0f22f20p0L, 0x1.a158e18fbbfc625f09f4cca40874p-88L,
|
||||
0x1.d2f87080d89f18ade12398p0L, 0x9.ea2025b4c56553f5cdee4c924728p-92L,
|
||||
0x1.d5818dcfba48725da05aeap0L, 0x1.66e0dca9f589f559c0876ff23830p-88L,
|
||||
0x1.d80e316c98397bb84f9d04p0L, 0x8.805f84bec614de269900ddf98d28p-92L,
|
||||
0x1.da9e603db3285708c01a5ap0L, 0x1.6d4c97f6246f0ec614ec95c99392p-88L,
|
||||
0x1.dd321f301b4604b695de3cp0L, 0x6.30a393215299e30d4fb73503c348p-96L,
|
||||
0x1.dfc97337b9b5eb968cac38p0L, 0x1.ed291b7225a944efd5bb5524b927p-88L,
|
||||
0x1.e264614f5a128a12761fa0p0L, 0x1.7ada6467e77f73bf65e04c95e29dp-88L,
|
||||
0x1.e502ee78b3ff6273d13014p0L, 0x1.3991e8f49659e1693be17ae1d2f9p-88L,
|
||||
0x1.e7a51fbc74c834b548b282p0L, 0x1.23786758a84f4956354634a416cep-88L,
|
||||
0x1.ea4afa2a490d9858f73a18p0L, 0xf.5db301f86dea20610ceee13eb7b8p-92L,
|
||||
0x1.ecf482d8e67f08db0312fap0L, 0x1.949cef462010bb4bc4ce72a900dfp-88L,
|
||||
0x1.efa1bee615a27771fd21a8p0L, 0x1.2dac1f6dd5d229ff68e46f27e3dfp-88L,
|
||||
0x1.f252b376bba974e8696fc2p0L, 0x1.6390d4c6ad5476b5162f40e1d9a9p-88L,
|
||||
0x1.f50765b6e4540674f84b76p0L, 0x2.862baff99000dfc4352ba29b8908p-92L,
|
||||
0x1.f7bfdad9cbe138913b4bfep0L, 0x7.2bd95c5ce7280fa4d2344a3f5618p-92L,
|
||||
0x1.fa7c1819e90d82e90a7e74p0L, 0xb.263c1dc060c36f7650b4c0f233a8p-92L,
|
||||
0x1.fd3c22b8f71f10975ba4b2p0L, 0x1.2bcf3a5e12d269d8ad7c1a4a8875p-88L
|
||||
};
|
||||
|
||||
long double
|
||||
expl(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double q, r, r1, t, twopk, twopkp10000;
|
||||
double dr, fn, r2;
|
||||
int k, n, n2;
|
||||
union IEEEl2bits u;
|
||||
long double hi, lo, t, twopk;
|
||||
int k;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
@ -241,60 +72,33 @@ expl(long double x)
|
||||
if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf or -NaN */
|
||||
return (-1 / x);
|
||||
return (x + x); /* x is +Inf or +NaN */
|
||||
RETURNP(-1 / x);
|
||||
RETURNP(x + x); /* x is +Inf or +NaN */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
return (huge * huge);
|
||||
RETURNP(huge * huge);
|
||||
if (x < u_threshold)
|
||||
return (tiny * tiny);
|
||||
RETURNP(tiny * tiny);
|
||||
} else if (ix < BIAS - 114) { /* |x| < 0x1p-114 */
|
||||
return (1 + x); /* 1 with inexact iff x != 0 */
|
||||
RETURN2P(1, x); /* 1 with inexact iff x != 0 */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
|
||||
/* XXX assume no extra precision for the additions, as for trig fns. */
|
||||
/* XXX this set of comments is now quadruplicated. */
|
||||
fn = (double)x * INV_L + 0x1.8p52 - 0x1.8p52;
|
||||
#if defined(HAVE_EFFICIENT_IRINT)
|
||||
n = irint(fn);
|
||||
#else
|
||||
n = (int)fn;
|
||||
#endif
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
k = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
r = r1 + r2;
|
||||
|
||||
/* Prepare scale factors. */
|
||||
/* XXX sparc64 multiplication is so slow that scalbnl() is faster. */
|
||||
v.e = 1;
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
v.xbits.expsign = BIAS + k;
|
||||
twopk = v.e;
|
||||
} else {
|
||||
v.xbits.expsign = BIAS + k + 10000;
|
||||
twopkp10000 = v.e;
|
||||
}
|
||||
|
||||
/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
|
||||
dr = r;
|
||||
q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
|
||||
dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
|
||||
t = tbl[n2].lo + tbl[n2].hi;
|
||||
t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
|
||||
twopk = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
t = SUM2P(hi, lo);
|
||||
|
||||
/* Scale by 2**k. */
|
||||
/* XXX sparc64 multiplication is so slow that scalbnl() is faster. */
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L);
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k);
|
||||
RETURNI(t * twopk);
|
||||
} else {
|
||||
RETURNI(t * twopkp10000 * twom10000);
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
|
||||
RETURNI(t * twopk * twom10000);
|
||||
}
|
||||
}
|
||||
|
||||
@ -312,6 +116,12 @@ expl(long double x)
|
||||
* Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
|
||||
* in both subintervals, so set T3 = 2**-5, which places the condition
|
||||
* into the [T1, T3] interval.
|
||||
*
|
||||
* XXX we now do this more to (partially) balance the number of terms
|
||||
* in the C and D polys than to avoid checking the condition in both
|
||||
* intervals.
|
||||
*
|
||||
* XXX these micro-optimizations are excessive.
|
||||
*/
|
||||
static const double
|
||||
T1 = -0.1659, /* ~-30.625/128 * log(2) */
|
||||
@ -321,6 +131,12 @@ T3 = 0.03125;
|
||||
/*
|
||||
* Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
|
||||
/*
|
||||
* XXX none of the long double C or D coeffs except C10 is correctly printed.
|
||||
* If you re-print their values in %.35Le format, the result is always
|
||||
* different. For example, the last 2 digits in C3 should be 59, not 67.
|
||||
* 67 is apparently from rounding an extra-precision value to 36 decimal
|
||||
* places.
|
||||
*/
|
||||
static const long double
|
||||
C3 = 1.66666666666666666666666666666666667e-1L,
|
||||
@ -335,6 +151,13 @@ C11 = 2.50521083854417203619031960151253944e-8L,
|
||||
C12 = 2.08767569878679576457272282566520649e-9L,
|
||||
C13 = 1.60590438367252471783548748824255707e-10L;
|
||||
|
||||
/*
|
||||
* XXX this has 1 more coeff than needed.
|
||||
* XXX can start the double coeffs but not the double mults at C10.
|
||||
* With my coeffs (C10-C17 double; s = best_s):
|
||||
* Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
|
||||
*/
|
||||
static const double
|
||||
C14 = 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */
|
||||
C15 = 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */
|
||||
@ -359,6 +182,13 @@ D11 = 2.50521083855084570046480450935267433e-8L,
|
||||
D12 = 2.08767569819738524488686318024854942e-9L,
|
||||
D13 = 1.60590442297008495301927448122499313e-10L;
|
||||
|
||||
/*
|
||||
* XXX this has 1 more coeff than needed.
|
||||
* XXX can start the double coeffs but not the double mults at D11.
|
||||
* With my coeffs (D11-D16 double):
|
||||
* Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
|
||||
*/
|
||||
static const double
|
||||
D14 = 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */
|
||||
D15 = 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */
|
||||
@ -375,6 +205,8 @@ expm1l(long double x)
|
||||
int k, n, n2;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
@ -382,11 +214,11 @@ expm1l(long double x)
|
||||
if (ix >= BIAS + 7) { /* |x| >= 128 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf or -NaN */
|
||||
return (-1 / x - 1);
|
||||
return (x + x); /* x is +Inf or +NaN */
|
||||
RETURNP(-1 / x - 1);
|
||||
RETURNP(x + x); /* x is +Inf or +NaN */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
return (huge * huge);
|
||||
RETURNP(huge * huge);
|
||||
/*
|
||||
* expm1l() never underflows, but it must avoid
|
||||
* unrepresentable large negative exponents. We used a
|
||||
@ -395,7 +227,7 @@ expm1l(long double x)
|
||||
* in the same way as large ones here.
|
||||
*/
|
||||
if (hx & 0x8000) /* x <= -128 */
|
||||
return (tiny - 1); /* good for x < -114ln2 - eps */
|
||||
RETURN2P(tiny, -1); /* good for x < -114ln2 - eps */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
@ -407,7 +239,7 @@ expm1l(long double x)
|
||||
if (x < T3) {
|
||||
if (ix < BIAS - 113) { /* |x| < 0x1p-113 */
|
||||
/* x (rounded) with inexact if x != 0: */
|
||||
RETURNI(x == 0 ? x :
|
||||
RETURNPI(x == 0 ? x :
|
||||
(0x1p200 * x + fabsl(x)) * 0x1p-200);
|
||||
}
|
||||
q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
|
||||
@ -428,9 +260,9 @@ expm1l(long double x)
|
||||
hx2_hi = x_hi * x_hi / 2;
|
||||
hx2_lo = x_lo * (x + x_hi) / 2;
|
||||
if (ix >= BIAS - 7)
|
||||
RETURNI(hx2_lo + x_lo + q + (hx2_hi + x_hi));
|
||||
RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
|
||||
else
|
||||
RETURNI(hx2_lo + q + hx2_hi + x);
|
||||
RETURN2PI(x, hx2_lo + q + hx2_hi);
|
||||
}
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
@ -463,21 +295,21 @@ expm1l(long double x)
|
||||
t = tbl[n2].lo + tbl[n2].hi;
|
||||
|
||||
if (k == 0) {
|
||||
t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 +
|
||||
(tbl[n2].hi - 1);
|
||||
t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t);
|
||||
}
|
||||
if (k == -1) {
|
||||
t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 +
|
||||
(tbl[n2].hi - 2);
|
||||
t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t / 2);
|
||||
}
|
||||
if (k < -7) {
|
||||
t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk - 1);
|
||||
}
|
||||
if (k > 2 * LDBL_MANT_DIG - 1) {
|
||||
t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L - 1);
|
||||
RETURNI(t * twopk - 1);
|
||||
@ -487,8 +319,8 @@ expm1l(long double x)
|
||||
twomk = v.e;
|
||||
|
||||
if (k > LDBL_MANT_DIG - 1)
|
||||
t = tbl[n2].lo - twomk + t * (q + r1) + tbl[n2].hi;
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
|
||||
else
|
||||
t = tbl[n2].lo + t * (q + r1) + (tbl[n2].hi - twomk);
|
||||
t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk);
|
||||
}
|
||||
|
305
lib/msun/ld80/k_expl.h
Normal file
305
lib/msun/ld80/k_expl.h
Normal file
@ -0,0 +1,305 @@
|
||||
/* from: FreeBSD: head/lib/msun/ld80/s_expl.c 251343 2013-06-03 19:51:32Z kargl */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 2009-2013 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See s_expl.c for more comments about __k_expl().
|
||||
*
|
||||
* See ../src/e_exp.c and ../src/k_exp.h for precision-independent comments
|
||||
* about the secondary kernels.
|
||||
*/
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const double
|
||||
/*
|
||||
* ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication). L1 must
|
||||
* have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
|
||||
* bits zero so that multiplication of it by n is exact.
|
||||
*/
|
||||
INV_L = 1.8466496523378731e+2, /* 0x171547652b82fe.0p-45 */
|
||||
L1 = 5.4152123484527692e-3, /* 0x162e42ff000000.0p-60 */
|
||||
L2 = -3.2819649005320973e-13, /* -0x1718432a1b0e26.0p-94 */
|
||||
/*
|
||||
* Domain [-0.002708, 0.002708], range ~[-5.7136e-24, 5.7110e-24]:
|
||||
* |exp(x) - p(x)| < 2**-77.2
|
||||
* (0.002708 is ln2/(2*INTERVALS) rounded up a little).
|
||||
*/
|
||||
A2 = 0.5,
|
||||
A3 = 1.6666666666666119e-1, /* 0x15555555555490.0p-55 */
|
||||
A4 = 4.1666666666665887e-2, /* 0x155555555554e5.0p-57 */
|
||||
A5 = 8.3333354987869413e-3, /* 0x1111115b789919.0p-59 */
|
||||
A6 = 1.3888891738560272e-3; /* 0x16c16c651633ae.0p-62 */
|
||||
|
||||
/*
|
||||
* 2^(i/INTERVALS) for i in [0,INTERVALS] is represented by two values where
|
||||
* the first 53 bits of the significand are stored in hi and the next 53
|
||||
* bits are in lo. Tang's paper states that the trailing 6 bits of hi must
|
||||
* be zero for his algorithm in both single and double precision, because
|
||||
* the table is re-used in the implementation of expm1() where a floating
|
||||
* point addition involving hi must be exact. Here hi is double, so
|
||||
* converting it to long double gives 11 trailing zero bits.
|
||||
*/
|
||||
static const struct {
|
||||
double hi;
|
||||
double lo;
|
||||
} tbl[INTERVALS] = {
|
||||
0x1p+0, 0x0p+0,
|
||||
/*
|
||||
* XXX hi is rounded down, and the formatting is not quite normal.
|
||||
* But I rather like both. The 0x1.*p format is good for 4N+1
|
||||
* mantissa bits. Rounding down makes the lo terms positive,
|
||||
* so that the columnar formatting can be simpler.
|
||||
*/
|
||||
0x1.0163da9fb3335p+0, 0x1.b61299ab8cdb7p-54,
|
||||
0x1.02c9a3e778060p+0, 0x1.dcdef95949ef4p-53,
|
||||
0x1.04315e86e7f84p+0, 0x1.7ae71f3441b49p-53,
|
||||
0x1.059b0d3158574p+0, 0x1.d73e2a475b465p-55,
|
||||
0x1.0706b29ddf6ddp+0, 0x1.8db880753b0f6p-53,
|
||||
0x1.0874518759bc8p+0, 0x1.186be4bb284ffp-57,
|
||||
0x1.09e3ecac6f383p+0, 0x1.1487818316136p-54,
|
||||
0x1.0b5586cf9890fp+0, 0x1.8a62e4adc610bp-54,
|
||||
0x1.0cc922b7247f7p+0, 0x1.01edc16e24f71p-54,
|
||||
0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c57b53p-59,
|
||||
0x1.0fb66affed31ap+0, 0x1.e464123bb1428p-53,
|
||||
0x1.11301d0125b50p+0, 0x1.49d77e35db263p-53,
|
||||
0x1.12abdc06c31cbp+0, 0x1.f72575a649ad2p-53,
|
||||
0x1.1429aaea92ddfp+0, 0x1.66820328764b1p-53,
|
||||
0x1.15a98c8a58e51p+0, 0x1.2406ab9eeab0ap-55,
|
||||
0x1.172b83c7d517ap+0, 0x1.b9bef918a1d63p-53,
|
||||
0x1.18af9388c8de9p+0, 0x1.777ee1734784ap-53,
|
||||
0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4968e4p-55,
|
||||
0x1.1bbe084045cd3p+0, 0x1.3563ce56884fcp-53,
|
||||
0x1.1d4873168b9aap+0, 0x1.e016e00a2643cp-54,
|
||||
0x1.1ed5022fcd91cp+0, 0x1.71033fec2243ap-53,
|
||||
0x1.2063b88628cd6p+0, 0x1.dc775814a8495p-55,
|
||||
0x1.21f49917ddc96p+0, 0x1.2a97e9494a5eep-55,
|
||||
0x1.2387a6e756238p+0, 0x1.9b07eb6c70573p-54,
|
||||
0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f4a4p-55,
|
||||
0x1.26b4565e27cddp+0, 0x1.2bd339940e9d9p-55,
|
||||
0x1.284dfe1f56380p+0, 0x1.2d9e2b9e07941p-53,
|
||||
0x1.29e9df51fdee1p+0, 0x1.612e8afad1255p-55,
|
||||
0x1.2b87fd0dad98fp+0, 0x1.fbbd48ca71f95p-53,
|
||||
0x1.2d285a6e4030bp+0, 0x1.0024754db41d5p-54,
|
||||
0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d52383p-56,
|
||||
0x1.306fe0a31b715p+0, 0x1.6f46ad23182e4p-55,
|
||||
0x1.32170fc4cd831p+0, 0x1.a9ce78e18047cp-55,
|
||||
0x1.33c08b26416ffp+0, 0x1.32721843659a6p-54,
|
||||
0x1.356c55f929ff0p+0, 0x1.928c468ec6e76p-53,
|
||||
0x1.371a7373aa9cap+0, 0x1.4e28aa05e8a8fp-53,
|
||||
0x1.38cae6d05d865p+0, 0x1.0b53961b37da2p-53,
|
||||
0x1.3a7db34e59ff6p+0, 0x1.d43792533c144p-53,
|
||||
0x1.3c32dc313a8e4p+0, 0x1.08003e4516b1ep-53,
|
||||
0x1.3dea64c123422p+0, 0x1.ada0911f09ebcp-55,
|
||||
0x1.3fa4504ac801bp+0, 0x1.417ee03548306p-53,
|
||||
0x1.4160a21f72e29p+0, 0x1.f0864b71e7b6cp-53,
|
||||
0x1.431f5d950a896p+0, 0x1.b8e088728219ap-53,
|
||||
0x1.44e086061892dp+0, 0x1.89b7a04ef80d0p-59,
|
||||
0x1.46a41ed1d0057p+0, 0x1.c944bd1648a76p-54,
|
||||
0x1.486a2b5c13cd0p+0, 0x1.3c1a3b69062f0p-56,
|
||||
0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be56p-54,
|
||||
0x1.4bfdad5362a27p+0, 0x1.d4397afec42e2p-56,
|
||||
0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a7833p-54,
|
||||
0x1.4f9b2769d2ca6p+0, 0x1.5a67b16d3540ep-53,
|
||||
0x1.516daa2cf6641p+0, 0x1.8225ea5909b04p-53,
|
||||
0x1.5342b569d4f81p+0, 0x1.be1507893b0d5p-53,
|
||||
0x1.551a4ca5d920ep+0, 0x1.8a5d8c4048699p-53,
|
||||
0x1.56f4736b527dap+0, 0x1.9bb2c011d93adp-54,
|
||||
0x1.58d12d497c7fdp+0, 0x1.295e15b9a1de8p-55,
|
||||
0x1.5ab07dd485429p+0, 0x1.6324c054647adp-54,
|
||||
0x1.5c9268a5946b7p+0, 0x1.c4b1b816986a2p-60,
|
||||
0x1.5e76f15ad2148p+0, 0x1.ba6f93080e65ep-54,
|
||||
0x1.605e1b976dc08p+0, 0x1.60edeb25490dcp-53,
|
||||
0x1.6247eb03a5584p+0, 0x1.63e1f40dfa5b5p-53,
|
||||
0x1.6434634ccc31fp+0, 0x1.8edf0e2989db3p-53,
|
||||
0x1.6623882552224p+0, 0x1.224fb3c5371e6p-53,
|
||||
0x1.68155d44ca973p+0, 0x1.038ae44f73e65p-57,
|
||||
0x1.6a09e667f3bccp+0, 0x1.21165f626cdd5p-53,
|
||||
0x1.6c012750bdabep+0, 0x1.daed533001e9ep-53,
|
||||
0x1.6dfb23c651a2ep+0, 0x1.e441c597c3775p-53,
|
||||
0x1.6ff7df9519483p+0, 0x1.9f0fc369e7c42p-53,
|
||||
0x1.71f75e8ec5f73p+0, 0x1.ba46e1e5de15ap-53,
|
||||
0x1.73f9a48a58173p+0, 0x1.7ab9349cd1562p-53,
|
||||
0x1.75feb564267c8p+0, 0x1.7edd354674916p-53,
|
||||
0x1.780694fde5d3fp+0, 0x1.866b80a02162dp-54,
|
||||
0x1.7a11473eb0186p+0, 0x1.afaa2047ed9b4p-53,
|
||||
0x1.7c1ed0130c132p+0, 0x1.f124cd1164dd6p-54,
|
||||
0x1.7e2f336cf4e62p+0, 0x1.05d02ba15797ep-56,
|
||||
0x1.80427543e1a11p+0, 0x1.6c1bccec9346bp-53,
|
||||
0x1.82589994cce12p+0, 0x1.159f115f56694p-53,
|
||||
0x1.8471a4623c7acp+0, 0x1.9ca5ed72f8c81p-53,
|
||||
0x1.868d99b4492ecp+0, 0x1.01c83b21584a3p-53,
|
||||
0x1.88ac7d98a6699p+0, 0x1.994c2f37cb53ap-54,
|
||||
0x1.8ace5422aa0dbp+0, 0x1.6e9f156864b27p-54,
|
||||
0x1.8cf3216b5448bp+0, 0x1.de55439a2c38bp-53,
|
||||
0x1.8f1ae99157736p+0, 0x1.5cc13a2e3976cp-55,
|
||||
0x1.9145b0b91ffc5p+0, 0x1.114c368d3ed6ep-53,
|
||||
0x1.93737b0cdc5e4p+0, 0x1.e8a0387e4a814p-53,
|
||||
0x1.95a44cbc8520ep+0, 0x1.d36906d2b41f9p-53,
|
||||
0x1.97d829fde4e4fp+0, 0x1.173d241f23d18p-53,
|
||||
0x1.9a0f170ca07b9p+0, 0x1.7462137188ce7p-53,
|
||||
0x1.9c49182a3f090p+0, 0x1.c7c46b071f2bep-56,
|
||||
0x1.9e86319e32323p+0, 0x1.824ca78e64c6ep-56,
|
||||
0x1.a0c667b5de564p+0, 0x1.6535b51719567p-53,
|
||||
0x1.a309bec4a2d33p+0, 0x1.6305c7ddc36abp-54,
|
||||
0x1.a5503b23e255cp+0, 0x1.1684892395f0fp-53,
|
||||
0x1.a799e1330b358p+0, 0x1.bcb7ecac563c7p-54,
|
||||
0x1.a9e6b5579fdbfp+0, 0x1.0fac90ef7fd31p-54,
|
||||
0x1.ac36bbfd3f379p+0, 0x1.81b72cd4624ccp-53,
|
||||
0x1.ae89f995ad3adp+0, 0x1.7a1cd345dcc81p-54,
|
||||
0x1.b0e07298db665p+0, 0x1.2108559bf8deep-53,
|
||||
0x1.b33a2b84f15fap+0, 0x1.ed7fa1cf7b290p-53,
|
||||
0x1.b59728de55939p+0, 0x1.1c7102222c90ep-53,
|
||||
0x1.b7f76f2fb5e46p+0, 0x1.d54f610356a79p-53,
|
||||
0x1.ba5b030a10649p+0, 0x1.0819678d5eb69p-53,
|
||||
0x1.bcc1e904bc1d2p+0, 0x1.23dd07a2d9e84p-55,
|
||||
0x1.bf2c25bd71e08p+0, 0x1.0811ae04a31c7p-53,
|
||||
0x1.c199bdd85529cp+0, 0x1.11065895048ddp-55,
|
||||
0x1.c40ab5fffd07ap+0, 0x1.b4537e083c60ap-54,
|
||||
0x1.c67f12e57d14bp+0, 0x1.2884dff483cadp-54,
|
||||
0x1.c8f6d9406e7b5p+0, 0x1.1acbc48805c44p-56,
|
||||
0x1.cb720dcef9069p+0, 0x1.503cbd1e949dbp-56,
|
||||
0x1.cdf0b555dc3f9p+0, 0x1.889f12b1f58a3p-53,
|
||||
0x1.d072d4a07897bp+0, 0x1.1a1e45e4342b2p-53,
|
||||
0x1.d2f87080d89f1p+0, 0x1.15bc247313d44p-53,
|
||||
0x1.d5818dcfba487p+0, 0x1.2ed02d75b3707p-55,
|
||||
0x1.d80e316c98397p+0, 0x1.7709f3a09100cp-53,
|
||||
0x1.da9e603db3285p+0, 0x1.c2300696db532p-54,
|
||||
0x1.dd321f301b460p+0, 0x1.2da5778f018c3p-54,
|
||||
0x1.dfc97337b9b5ep+0, 0x1.72d195873da52p-53,
|
||||
0x1.e264614f5a128p+0, 0x1.424ec3f42f5b5p-53,
|
||||
0x1.e502ee78b3ff6p+0, 0x1.39e8980a9cc8fp-55,
|
||||
0x1.e7a51fbc74c83p+0, 0x1.2d522ca0c8de2p-54,
|
||||
0x1.ea4afa2a490d9p+0, 0x1.0b1ee7431ebb6p-53,
|
||||
0x1.ecf482d8e67f0p+0, 0x1.1b60625f7293ap-53,
|
||||
0x1.efa1bee615a27p+0, 0x1.dc7f486a4b6b0p-54,
|
||||
0x1.f252b376bba97p+0, 0x1.3a1a5bf0d8e43p-54,
|
||||
0x1.f50765b6e4540p+0, 0x1.9d3e12dd8a18bp-54,
|
||||
0x1.f7bfdad9cbe13p+0, 0x1.1227697fce57bp-53,
|
||||
0x1.fa7c1819e90d8p+0, 0x1.74853f3a5931ep-55,
|
||||
0x1.fd3c22b8f71f1p+0, 0x1.2eb74966579e7p-57
|
||||
};
|
||||
|
||||
/*
|
||||
* Kernel for expl(x). x must be finite and not tiny or huge.
|
||||
* "tiny" is anything that would make us underflow (|A6*x^6| < ~LDBL_MIN).
|
||||
* "huge" is anything that would make fn*L1 inexact (|x| > ~2**17*ln2).
|
||||
*/
|
||||
static inline void
|
||||
__k_expl(long double x, long double *hip, long double *lop, int *kp)
|
||||
{
|
||||
long double fn, q, r, r1, r2, t, z;
|
||||
int n, n2;
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
|
||||
fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
|
||||
r = x - fn * L1 - fn * L2; /* r = r1 + r2 done independently. */
|
||||
#if defined(HAVE_EFFICIENT_IRINTL)
|
||||
n = irintl(fn);
|
||||
#elif defined(HAVE_EFFICIENT_IRINT)
|
||||
n = irint(fn);
|
||||
#else
|
||||
n = (int)fn;
|
||||
#endif
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
/* Depend on the sign bit being propagated: */
|
||||
*kp = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
|
||||
/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
|
||||
z = r * r;
|
||||
#if 0
|
||||
q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
|
||||
#else
|
||||
q = r2 + z * A2 + z * r * (A3 + r * A4 + z * (A5 + r * A6));
|
||||
#endif
|
||||
t = (long double)tbl[n2].lo + tbl[n2].hi;
|
||||
*hip = tbl[n2].hi;
|
||||
*lop = tbl[n2].lo + t * (q + r1);
|
||||
}
|
||||
|
||||
static inline void
|
||||
k_hexpl(long double x, long double *hip, long double *lop)
|
||||
{
|
||||
float twopkm1;
|
||||
int k;
|
||||
|
||||
__k_expl(x, hip, lop, &k);
|
||||
SET_FLOAT_WORD(twopkm1, 0x3f800000 + ((k - 1) << 23));
|
||||
*hip *= twopkm1;
|
||||
*lop *= twopkm1;
|
||||
}
|
||||
|
||||
static inline long double
|
||||
hexpl(long double x)
|
||||
{
|
||||
long double hi, lo, twopkm2;
|
||||
int k;
|
||||
|
||||
twopkm2 = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
SET_LDBL_EXPSIGN(twopkm2, BIAS + k - 2);
|
||||
return (lo + hi) * 2 * twopkm2;
|
||||
}
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
/*
|
||||
* See ../src/k_exp.c for details.
|
||||
*/
|
||||
static inline long double complex
|
||||
__ldexp_cexpl(long double complex z, int expt)
|
||||
{
|
||||
long double exp_x, hi, lo;
|
||||
long double x, y, scale1, scale2;
|
||||
int half_expt, k;
|
||||
|
||||
x = creall(z);
|
||||
y = cimagl(z);
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
|
||||
exp_x = (lo + hi) * 0x1p16382;
|
||||
expt += k - 16382;
|
||||
|
||||
scale1 = 1;
|
||||
half_expt = expt / 2;
|
||||
SET_LDBL_EXPSIGN(scale1, BIAS + half_expt);
|
||||
scale2 = 1;
|
||||
SET_LDBL_EXPSIGN(scale1, BIAS + expt - half_expt);
|
||||
|
||||
return (cpackl(cos(y) * exp_x * scale1 * scale2,
|
||||
sinl(y) * exp_x * scale1 * scale2));
|
||||
}
|
||||
#endif /* _COMPLEX_H */
|
@ -48,16 +48,15 @@ __FBSDID("$FreeBSD$");
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "k_expl.h"
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
/* XXX Prevent compilers from erroneously constant folding these: */
|
||||
static const volatile long double
|
||||
huge = 0x1p10000L,
|
||||
tiny = 0x1p-10000L;
|
||||
|
||||
static const long double
|
||||
huge = 0x1p10000L,
|
||||
twom10000 = 0x1p-10000L;
|
||||
/* XXX Prevent gcc from erroneously constant folding this: */
|
||||
static volatile const long double tiny = 0x1p-10000L;
|
||||
|
||||
static const union IEEEl2bits
|
||||
/* log(2**16384 - 0.5) rounded towards zero: */
|
||||
@ -68,178 +67,16 @@ o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
|
||||
u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
|
||||
#define u_threshold (u_thresholdu.e)
|
||||
|
||||
static const double
|
||||
/*
|
||||
* ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication). L1 must
|
||||
* have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
|
||||
* bits zero so that multiplication of it by n is exact.
|
||||
*/
|
||||
INV_L = 1.8466496523378731e+2, /* 0x171547652b82fe.0p-45 */
|
||||
L1 = 5.4152123484527692e-3, /* 0x162e42ff000000.0p-60 */
|
||||
L2 = -3.2819649005320973e-13, /* -0x1718432a1b0e26.0p-94 */
|
||||
/*
|
||||
* Domain [-0.002708, 0.002708], range ~[-5.7136e-24, 5.7110e-24]:
|
||||
* |exp(x) - p(x)| < 2**-77.2
|
||||
* (0.002708 is ln2/(2*INTERVALS) rounded up a little).
|
||||
*/
|
||||
A2 = 0.5,
|
||||
A3 = 1.6666666666666119e-1, /* 0x15555555555490.0p-55 */
|
||||
A4 = 4.1666666666665887e-2, /* 0x155555555554e5.0p-57 */
|
||||
A5 = 8.3333354987869413e-3, /* 0x1111115b789919.0p-59 */
|
||||
A6 = 1.3888891738560272e-3; /* 0x16c16c651633ae.0p-62 */
|
||||
|
||||
/*
|
||||
* 2^(i/INTERVALS) for i in [0,INTERVALS] is represented by two values where
|
||||
* the first 53 bits of the significand are stored in hi and the next 53
|
||||
* bits are in lo. Tang's paper states that the trailing 6 bits of hi must
|
||||
* be zero for his algorithm in both single and double precision, because
|
||||
* the table is re-used in the implementation of expm1() where a floating
|
||||
* point addition involving hi must be exact. Here hi is double, so
|
||||
* converting it to long double gives 11 trailing zero bits.
|
||||
*/
|
||||
static const struct {
|
||||
double hi;
|
||||
double lo;
|
||||
} tbl[INTERVALS] = {
|
||||
0x1p+0, 0x0p+0,
|
||||
0x1.0163da9fb3335p+0, 0x1.b61299ab8cdb7p-54,
|
||||
0x1.02c9a3e778060p+0, 0x1.dcdef95949ef4p-53,
|
||||
0x1.04315e86e7f84p+0, 0x1.7ae71f3441b49p-53,
|
||||
0x1.059b0d3158574p+0, 0x1.d73e2a475b465p-55,
|
||||
0x1.0706b29ddf6ddp+0, 0x1.8db880753b0f6p-53,
|
||||
0x1.0874518759bc8p+0, 0x1.186be4bb284ffp-57,
|
||||
0x1.09e3ecac6f383p+0, 0x1.1487818316136p-54,
|
||||
0x1.0b5586cf9890fp+0, 0x1.8a62e4adc610bp-54,
|
||||
0x1.0cc922b7247f7p+0, 0x1.01edc16e24f71p-54,
|
||||
0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c57b53p-59,
|
||||
0x1.0fb66affed31ap+0, 0x1.e464123bb1428p-53,
|
||||
0x1.11301d0125b50p+0, 0x1.49d77e35db263p-53,
|
||||
0x1.12abdc06c31cbp+0, 0x1.f72575a649ad2p-53,
|
||||
0x1.1429aaea92ddfp+0, 0x1.66820328764b1p-53,
|
||||
0x1.15a98c8a58e51p+0, 0x1.2406ab9eeab0ap-55,
|
||||
0x1.172b83c7d517ap+0, 0x1.b9bef918a1d63p-53,
|
||||
0x1.18af9388c8de9p+0, 0x1.777ee1734784ap-53,
|
||||
0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4968e4p-55,
|
||||
0x1.1bbe084045cd3p+0, 0x1.3563ce56884fcp-53,
|
||||
0x1.1d4873168b9aap+0, 0x1.e016e00a2643cp-54,
|
||||
0x1.1ed5022fcd91cp+0, 0x1.71033fec2243ap-53,
|
||||
0x1.2063b88628cd6p+0, 0x1.dc775814a8495p-55,
|
||||
0x1.21f49917ddc96p+0, 0x1.2a97e9494a5eep-55,
|
||||
0x1.2387a6e756238p+0, 0x1.9b07eb6c70573p-54,
|
||||
0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f4a4p-55,
|
||||
0x1.26b4565e27cddp+0, 0x1.2bd339940e9d9p-55,
|
||||
0x1.284dfe1f56380p+0, 0x1.2d9e2b9e07941p-53,
|
||||
0x1.29e9df51fdee1p+0, 0x1.612e8afad1255p-55,
|
||||
0x1.2b87fd0dad98fp+0, 0x1.fbbd48ca71f95p-53,
|
||||
0x1.2d285a6e4030bp+0, 0x1.0024754db41d5p-54,
|
||||
0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d52383p-56,
|
||||
0x1.306fe0a31b715p+0, 0x1.6f46ad23182e4p-55,
|
||||
0x1.32170fc4cd831p+0, 0x1.a9ce78e18047cp-55,
|
||||
0x1.33c08b26416ffp+0, 0x1.32721843659a6p-54,
|
||||
0x1.356c55f929ff0p+0, 0x1.928c468ec6e76p-53,
|
||||
0x1.371a7373aa9cap+0, 0x1.4e28aa05e8a8fp-53,
|
||||
0x1.38cae6d05d865p+0, 0x1.0b53961b37da2p-53,
|
||||
0x1.3a7db34e59ff6p+0, 0x1.d43792533c144p-53,
|
||||
0x1.3c32dc313a8e4p+0, 0x1.08003e4516b1ep-53,
|
||||
0x1.3dea64c123422p+0, 0x1.ada0911f09ebcp-55,
|
||||
0x1.3fa4504ac801bp+0, 0x1.417ee03548306p-53,
|
||||
0x1.4160a21f72e29p+0, 0x1.f0864b71e7b6cp-53,
|
||||
0x1.431f5d950a896p+0, 0x1.b8e088728219ap-53,
|
||||
0x1.44e086061892dp+0, 0x1.89b7a04ef80d0p-59,
|
||||
0x1.46a41ed1d0057p+0, 0x1.c944bd1648a76p-54,
|
||||
0x1.486a2b5c13cd0p+0, 0x1.3c1a3b69062f0p-56,
|
||||
0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be56p-54,
|
||||
0x1.4bfdad5362a27p+0, 0x1.d4397afec42e2p-56,
|
||||
0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a7833p-54,
|
||||
0x1.4f9b2769d2ca6p+0, 0x1.5a67b16d3540ep-53,
|
||||
0x1.516daa2cf6641p+0, 0x1.8225ea5909b04p-53,
|
||||
0x1.5342b569d4f81p+0, 0x1.be1507893b0d5p-53,
|
||||
0x1.551a4ca5d920ep+0, 0x1.8a5d8c4048699p-53,
|
||||
0x1.56f4736b527dap+0, 0x1.9bb2c011d93adp-54,
|
||||
0x1.58d12d497c7fdp+0, 0x1.295e15b9a1de8p-55,
|
||||
0x1.5ab07dd485429p+0, 0x1.6324c054647adp-54,
|
||||
0x1.5c9268a5946b7p+0, 0x1.c4b1b816986a2p-60,
|
||||
0x1.5e76f15ad2148p+0, 0x1.ba6f93080e65ep-54,
|
||||
0x1.605e1b976dc08p+0, 0x1.60edeb25490dcp-53,
|
||||
0x1.6247eb03a5584p+0, 0x1.63e1f40dfa5b5p-53,
|
||||
0x1.6434634ccc31fp+0, 0x1.8edf0e2989db3p-53,
|
||||
0x1.6623882552224p+0, 0x1.224fb3c5371e6p-53,
|
||||
0x1.68155d44ca973p+0, 0x1.038ae44f73e65p-57,
|
||||
0x1.6a09e667f3bccp+0, 0x1.21165f626cdd5p-53,
|
||||
0x1.6c012750bdabep+0, 0x1.daed533001e9ep-53,
|
||||
0x1.6dfb23c651a2ep+0, 0x1.e441c597c3775p-53,
|
||||
0x1.6ff7df9519483p+0, 0x1.9f0fc369e7c42p-53,
|
||||
0x1.71f75e8ec5f73p+0, 0x1.ba46e1e5de15ap-53,
|
||||
0x1.73f9a48a58173p+0, 0x1.7ab9349cd1562p-53,
|
||||
0x1.75feb564267c8p+0, 0x1.7edd354674916p-53,
|
||||
0x1.780694fde5d3fp+0, 0x1.866b80a02162dp-54,
|
||||
0x1.7a11473eb0186p+0, 0x1.afaa2047ed9b4p-53,
|
||||
0x1.7c1ed0130c132p+0, 0x1.f124cd1164dd6p-54,
|
||||
0x1.7e2f336cf4e62p+0, 0x1.05d02ba15797ep-56,
|
||||
0x1.80427543e1a11p+0, 0x1.6c1bccec9346bp-53,
|
||||
0x1.82589994cce12p+0, 0x1.159f115f56694p-53,
|
||||
0x1.8471a4623c7acp+0, 0x1.9ca5ed72f8c81p-53,
|
||||
0x1.868d99b4492ecp+0, 0x1.01c83b21584a3p-53,
|
||||
0x1.88ac7d98a6699p+0, 0x1.994c2f37cb53ap-54,
|
||||
0x1.8ace5422aa0dbp+0, 0x1.6e9f156864b27p-54,
|
||||
0x1.8cf3216b5448bp+0, 0x1.de55439a2c38bp-53,
|
||||
0x1.8f1ae99157736p+0, 0x1.5cc13a2e3976cp-55,
|
||||
0x1.9145b0b91ffc5p+0, 0x1.114c368d3ed6ep-53,
|
||||
0x1.93737b0cdc5e4p+0, 0x1.e8a0387e4a814p-53,
|
||||
0x1.95a44cbc8520ep+0, 0x1.d36906d2b41f9p-53,
|
||||
0x1.97d829fde4e4fp+0, 0x1.173d241f23d18p-53,
|
||||
0x1.9a0f170ca07b9p+0, 0x1.7462137188ce7p-53,
|
||||
0x1.9c49182a3f090p+0, 0x1.c7c46b071f2bep-56,
|
||||
0x1.9e86319e32323p+0, 0x1.824ca78e64c6ep-56,
|
||||
0x1.a0c667b5de564p+0, 0x1.6535b51719567p-53,
|
||||
0x1.a309bec4a2d33p+0, 0x1.6305c7ddc36abp-54,
|
||||
0x1.a5503b23e255cp+0, 0x1.1684892395f0fp-53,
|
||||
0x1.a799e1330b358p+0, 0x1.bcb7ecac563c7p-54,
|
||||
0x1.a9e6b5579fdbfp+0, 0x1.0fac90ef7fd31p-54,
|
||||
0x1.ac36bbfd3f379p+0, 0x1.81b72cd4624ccp-53,
|
||||
0x1.ae89f995ad3adp+0, 0x1.7a1cd345dcc81p-54,
|
||||
0x1.b0e07298db665p+0, 0x1.2108559bf8deep-53,
|
||||
0x1.b33a2b84f15fap+0, 0x1.ed7fa1cf7b290p-53,
|
||||
0x1.b59728de55939p+0, 0x1.1c7102222c90ep-53,
|
||||
0x1.b7f76f2fb5e46p+0, 0x1.d54f610356a79p-53,
|
||||
0x1.ba5b030a10649p+0, 0x1.0819678d5eb69p-53,
|
||||
0x1.bcc1e904bc1d2p+0, 0x1.23dd07a2d9e84p-55,
|
||||
0x1.bf2c25bd71e08p+0, 0x1.0811ae04a31c7p-53,
|
||||
0x1.c199bdd85529cp+0, 0x1.11065895048ddp-55,
|
||||
0x1.c40ab5fffd07ap+0, 0x1.b4537e083c60ap-54,
|
||||
0x1.c67f12e57d14bp+0, 0x1.2884dff483cadp-54,
|
||||
0x1.c8f6d9406e7b5p+0, 0x1.1acbc48805c44p-56,
|
||||
0x1.cb720dcef9069p+0, 0x1.503cbd1e949dbp-56,
|
||||
0x1.cdf0b555dc3f9p+0, 0x1.889f12b1f58a3p-53,
|
||||
0x1.d072d4a07897bp+0, 0x1.1a1e45e4342b2p-53,
|
||||
0x1.d2f87080d89f1p+0, 0x1.15bc247313d44p-53,
|
||||
0x1.d5818dcfba487p+0, 0x1.2ed02d75b3707p-55,
|
||||
0x1.d80e316c98397p+0, 0x1.7709f3a09100cp-53,
|
||||
0x1.da9e603db3285p+0, 0x1.c2300696db532p-54,
|
||||
0x1.dd321f301b460p+0, 0x1.2da5778f018c3p-54,
|
||||
0x1.dfc97337b9b5ep+0, 0x1.72d195873da52p-53,
|
||||
0x1.e264614f5a128p+0, 0x1.424ec3f42f5b5p-53,
|
||||
0x1.e502ee78b3ff6p+0, 0x1.39e8980a9cc8fp-55,
|
||||
0x1.e7a51fbc74c83p+0, 0x1.2d522ca0c8de2p-54,
|
||||
0x1.ea4afa2a490d9p+0, 0x1.0b1ee7431ebb6p-53,
|
||||
0x1.ecf482d8e67f0p+0, 0x1.1b60625f7293ap-53,
|
||||
0x1.efa1bee615a27p+0, 0x1.dc7f486a4b6b0p-54,
|
||||
0x1.f252b376bba97p+0, 0x1.3a1a5bf0d8e43p-54,
|
||||
0x1.f50765b6e4540p+0, 0x1.9d3e12dd8a18bp-54,
|
||||
0x1.f7bfdad9cbe13p+0, 0x1.1227697fce57bp-53,
|
||||
0x1.fa7c1819e90d8p+0, 0x1.74853f3a5931ep-55,
|
||||
0x1.fd3c22b8f71f1p+0, 0x1.2eb74966579e7p-57
|
||||
};
|
||||
|
||||
long double
|
||||
expl(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double fn, q, r, r1, r2, t, twopk, twopkp10000;
|
||||
long double z;
|
||||
int k, n, n2;
|
||||
union IEEEl2bits u;
|
||||
long double hi, lo, t, twopk;
|
||||
int k;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
@ -247,59 +84,32 @@ expl(long double x)
|
||||
if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
||||
return (-1 / x);
|
||||
return (x + x); /* x is +Inf, +NaN or unsupported */
|
||||
RETURNP(-1 / x);
|
||||
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
return (huge * huge);
|
||||
RETURNP(huge * huge);
|
||||
if (x < u_threshold)
|
||||
return (tiny * tiny);
|
||||
} else if (ix < BIAS - 65) { /* |x| < 0x1p-65 (includes pseudos) */
|
||||
return (1 + x); /* 1 with inexact iff x != 0 */
|
||||
RETURNP(tiny * tiny);
|
||||
} else if (ix < BIAS - 75) { /* |x| < 0x1p-75 (includes pseudos) */
|
||||
RETURN2P(1, x); /* 1 with inexact iff x != 0 */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
|
||||
fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
|
||||
r = x - fn * L1 - fn * L2; /* r = r1 + r2 done independently. */
|
||||
#if defined(HAVE_EFFICIENT_IRINTL)
|
||||
n = irintl(fn);
|
||||
#elif defined(HAVE_EFFICIENT_IRINT)
|
||||
n = irint(fn);
|
||||
#else
|
||||
n = (int)fn;
|
||||
#endif
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
/* Depend on the sign bit being propagated: */
|
||||
k = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
|
||||
/* Prepare scale factors. */
|
||||
v.e = 1;
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
v.xbits.expsign = BIAS + k;
|
||||
twopk = v.e;
|
||||
} else {
|
||||
v.xbits.expsign = BIAS + k + 10000;
|
||||
twopkp10000 = v.e;
|
||||
}
|
||||
|
||||
/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
|
||||
z = r * r;
|
||||
q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
|
||||
t = (long double)tbl[n2].lo + tbl[n2].hi;
|
||||
t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
|
||||
twopk = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
t = SUM2P(hi, lo);
|
||||
|
||||
/* Scale by 2**k. */
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L);
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k);
|
||||
RETURNI(t * twopk);
|
||||
} else {
|
||||
RETURNI(t * twopkp10000 * twom10000);
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
|
||||
RETURNI(t * twopk * twom10000);
|
||||
}
|
||||
}
|
||||
|
||||
@ -326,8 +136,11 @@ T1 = -0.1659, /* ~-30.625/128 * log(2) */
|
||||
T2 = 0.1659; /* ~30.625/128 * log(2) */
|
||||
|
||||
/*
|
||||
* Domain [-0.1659, 0.1659], range ~[-1.2027e-22, 3.4417e-22]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.2
|
||||
* Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
|
||||
*
|
||||
* XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
|
||||
* but unlike for ld128 we can't drop any terms.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
B3 = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
|
||||
@ -353,6 +166,8 @@ expm1l(long double x)
|
||||
int k, n, n2;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
@ -360,11 +175,11 @@ expm1l(long double x)
|
||||
if (ix >= BIAS + 6) { /* |x| >= 64 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
||||
return (-1 / x - 1);
|
||||
return (x + x); /* x is +Inf, +NaN or unsupported */
|
||||
RETURNP(-1 / x - 1);
|
||||
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
return (huge * huge);
|
||||
RETURNP(huge * huge);
|
||||
/*
|
||||
* expm1l() never underflows, but it must avoid
|
||||
* unrepresentable large negative exponents. We used a
|
||||
@ -373,15 +188,15 @@ expm1l(long double x)
|
||||
* in the same way as large ones here.
|
||||
*/
|
||||
if (hx & 0x8000) /* x <= -64 */
|
||||
return (tiny - 1); /* good for x < -65ln2 - eps */
|
||||
RETURN2P(tiny, -1); /* good for x < -65ln2 - eps */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
if (T1 < x && x < T2) {
|
||||
if (ix < BIAS - 64) { /* |x| < 0x1p-64 (includes pseudos) */
|
||||
if (ix < BIAS - 74) { /* |x| < 0x1p-74 (includes pseudos) */
|
||||
/* x (rounded) with inexact if x != 0: */
|
||||
RETURNI(x == 0 ? x :
|
||||
RETURNPI(x == 0 ? x :
|
||||
(0x1p100 * x + fabsl(x)) * 0x1p-100);
|
||||
}
|
||||
|
||||
@ -402,9 +217,9 @@ expm1l(long double x)
|
||||
hx2_hi = x_hi * x_hi / 2;
|
||||
hx2_lo = x_lo * (x + x_hi) / 2;
|
||||
if (ix >= BIAS - 7)
|
||||
RETURNI(hx2_lo + x_lo + q + (hx2_hi + x_hi));
|
||||
RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
|
||||
else
|
||||
RETURNI(hx2_lo + q + hx2_hi + x);
|
||||
RETURN2PI(x, hx2_lo + q + hx2_hi);
|
||||
}
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
@ -438,21 +253,21 @@ expm1l(long double x)
|
||||
t = (long double)tbl[n2].lo + tbl[n2].hi;
|
||||
|
||||
if (k == 0) {
|
||||
t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 +
|
||||
(tbl[n2].hi - 1);
|
||||
t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t);
|
||||
}
|
||||
if (k == -1) {
|
||||
t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 +
|
||||
(tbl[n2].hi - 2);
|
||||
t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t / 2);
|
||||
}
|
||||
if (k < -7) {
|
||||
t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk - 1);
|
||||
}
|
||||
if (k > 2 * LDBL_MANT_DIG - 1) {
|
||||
t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L - 1);
|
||||
RETURNI(t * twopk - 1);
|
||||
@ -462,8 +277,8 @@ expm1l(long double x)
|
||||
twomk = v.e;
|
||||
|
||||
if (k > LDBL_MANT_DIG - 1)
|
||||
t = tbl[n2].lo - twomk + t * (q + r1) + tbl[n2].hi;
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
|
||||
else
|
||||
t = tbl[n2].lo + t * (q + r1) + (tbl[n2].hi - twomk);
|
||||
t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user