Import LLVM r73340.

This commit is contained in:
Ed Schouten 2009-06-14 09:23:33 +00:00
parent 93338c1971
commit 600c6fa13d
115 changed files with 3938 additions and 1122 deletions

View File

@ -26,6 +26,7 @@ set(LLVM_MAIN_INCLUDE_DIR ${LLVM_MAIN_SRC_DIR}/include)
set(LLVM_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
set(LLVM_TOOLS_BINARY_DIR ${LLVM_BINARY_DIR}/bin)
set(LLVM_EXAMPLES_BINARY_DIR ${LLVM_BINARY_DIR}/examples)
set(LLVM_LIBDIR_SUFFIX "" CACHE STRING "Define suffix of library directory name (32/64)" )
set(LLVM_ALL_TARGETS
Alpha
@ -186,11 +187,26 @@ if( CMAKE_SIZEOF_VOID_P EQUAL 8 AND NOT WIN32 )
endif( CMAKE_SIZEOF_VOID_P EQUAL 8 AND NOT WIN32 )
if( MSVC )
# List of valid CRTs for MSVC
set(MSVC_CRT
MD
MDd)
set(LLVM_USE_CRT "" CACHE STRING "Specify VC++ CRT to use for debug/release configurations.")
add_llvm_definitions( -D_CRT_SECURE_NO_DEPRECATE -D_CRT_SECURE_NO_WARNINGS )
add_llvm_definitions( -D_SCL_SECURE_NO_WARNINGS -DCRT_NONSTDC_NO_WARNINGS )
add_llvm_definitions( -D_SCL_SECURE_NO_DEPRECATE )
add_llvm_definitions( -wd4146 -wd4503 -wd4996 -wd4800 -wd4244 -wd4624 )
add_llvm_definitions( -wd4355 -wd4715 -wd4180 -wd4345 -wd4224 )
if (NOT ${LLVM_USE_CRT} STREQUAL "")
list(FIND MSVC_CRT ${LLVM_USE_CRT} idx)
if (idx LESS 0)
message(FATAL_ERROR "Invalid value for LLVM_USE_CRT: ${LLVM_USE_CRT}. Valid options are one of: ${MSVC_CRT}")
endif (idx LESS 0)
add_llvm_definitions("/${LLVM_USE_CRT}")
message(STATUS "Using VC++ CRT: ${LLVM_USE_CRT}")
endif (NOT ${LLVM_USE_CRT} STREQUAL "")
endif( MSVC )
include_directories( ${LLVM_BINARY_DIR}/include ${LLVM_MAIN_INCLUDE_DIR})
@ -207,6 +223,8 @@ set(LLVM_COMMON_DEPENDS ${LLVM_COMMON_DEPENDS} ${LLVM_LIBS} )
set(LLVM_TABLEGEN "tblgen" CACHE
STRING "Native TableGen executable. Saves building one when cross-compiling.")
# Effective tblgen executable to be used:
set(LLVM_TABLEGEN_EXE ${LLVM_TABLEGEN})
add_subdirectory(utils/TableGen)

View File

@ -3,7 +3,7 @@ project. If you have contributed a patch or made some other contribution to
LLVM, please submit a patch to this file to add yourself, and it will be
done!
The list is sorted by name and formatted to allow easy grepping and
The list is sorted by surname and formatted to allow easy grepping and
beautification by scripts. The fields are: name (N), email (E), web-address
(W), PGP key ID and fingerprint (P), description (D), and snail-mail address
(S).
@ -148,10 +148,6 @@ N: Patrick Jenkins
E: patjenk@wam.umd.edu
D: Nightly Tester
N: Brad Jones
E: kungfoomaster@nondot.org
D: Support for packed types
N: Dale Johannesen
E: dalej@apple.com
D: ARM constant islands improvements
@ -160,6 +156,10 @@ D: Rewrite X87 back end
D: Use APFloat for floating point constants widely throughout compiler
D: Implement X87 long double
N: Brad Jones
E: kungfoomaster@nondot.org
D: Support for packed types
N: Eric Kidd
W: http://randomhacks.net/
D: llvm-config script
@ -231,6 +231,13 @@ N: Scott Michel
E: scottm@aero.org
D: Added STI Cell SPU backend.
N: Edward O'Callaghan
E: eocallaghan@auroraux.org
W: http://www.auroraux.org
D: Add Clang support with various other improvements to utils/NewNightlyTest.pl
D: Fix and maintain Solaris & AuroraUX support for llvm, various build warnings
D: and error clean ups.
N: Morten Ofstad
E: morten@hue.no
D: Visual C++ compatibility fixes
@ -266,6 +273,10 @@ N: Arnold Schwaighofer
E: arnold.schwaighofer@gmail.com
D: Tail call optimization for the x86 backend
N: Shantonu Sen
E: ssen@apple.com
D: Miscellaneous bug fixes
N: Anand Shukla
E: ashukla@cs.uiuc.edu
D: The `paths' pass
@ -290,8 +301,4 @@ D: Thread Local Storage implementation
N: Bill Wendling
E: isanbard@gmail.com
D: Machine LICM
D: Darwin exception handling
D: MMX & SSSE3 instructions
D: SPEC2006 support
D: Bunches of stuff

View File

@ -10,8 +10,8 @@ macro(add_llvm_library name)
add_dependencies( ${name} ${LLVM_COMMON_DEPENDS} )
endif( LLVM_COMMON_DEPENDS )
install(TARGETS ${name}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib)
LIBRARY DESTINATION lib${LLVM_LIBDIR_SUFFIX}
ARCHIVE DESTINATION lib${LLVM_LIBDIR_SUFFIX})
endmacro(add_llvm_library name)

View File

@ -38,5 +38,5 @@ macro(add_partially_linked_object lib)
set( llvm_lib_targets ${llvm_lib_targets} ${tnplo} PARENT_SCOPE )
endif( )
install(FILES ${pll}
DESTINATION lib)
DESTINATION lib${LLVM_LIBDIR_SUFFIX})
endmacro(add_partially_linked_object lib)

View File

@ -1,7 +1,7 @@
if( ${LLVM_TABLEGEN} STREQUAL "tblgen" )
set(CX_NATIVE_TG_DIR "${CMAKE_BINARY_DIR}/native")
set(LLVM_TABLEGEN "${CX_NATIVE_TG_DIR}/bin/tblgen")
set(LLVM_TABLEGEN_EXE "${CX_NATIVE_TG_DIR}/bin/tblgen")
add_custom_command(OUTPUT ${CX_NATIVE_TG_DIR}
COMMAND ${CMAKE_COMMAND} -E make_directory ${CX_NATIVE_TG_DIR}
@ -13,12 +13,12 @@ if( ${LLVM_TABLEGEN} STREQUAL "tblgen" )
DEPENDS ${CX_NATIVE_TG_DIR}
COMMENT "Configuring native TableGen...")
add_custom_command(OUTPUT ${LLVM_TABLEGEN}
add_custom_command(OUTPUT ${LLVM_TABLEGEN_EXE}
COMMAND ${CMAKE_BUILD_TOOL}
DEPENDS ${CX_NATIVE_TG_DIR}/CMakeCache.txt
WORKING_DIRECTORY ${CX_NATIVE_TG_DIR}/utils/TableGen
COMMENT "Building native TableGen...")
add_custom_target(NativeTableGen DEPENDS ${LLVM_TABLEGEN})
add_custom_target(NativeTableGen DEPENDS ${LLVM_TABLEGEN_EXE})
add_dependencies(tblgen NativeTableGen)

View File

@ -6,11 +6,11 @@ macro(tablegen ofn)
file(GLOB all_tds "*.td")
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/${ofn}.tmp
COMMAND ${LLVM_TABLEGEN} ${ARGN} -I ${CMAKE_CURRENT_SOURCE_DIR}
COMMAND ${LLVM_TABLEGEN_EXE} ${ARGN} -I ${CMAKE_CURRENT_SOURCE_DIR}
-I ${LLVM_MAIN_SRC_DIR}/lib/Target -I ${LLVM_MAIN_INCLUDE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/${LLVM_TARGET_DEFINITIONS}
-o ${CMAKE_CURRENT_BINARY_DIR}/${ofn}.tmp
DEPENDS ${LLVM_TABLEGEN} ${all_tds}
DEPENDS tblgen ${all_tds}
COMMENT "Building ${ofn}.tmp..."
)
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/${ofn}

View File

@ -217,6 +217,11 @@
<dd>Path where LLVM will be installed if "make install" is invoked
or the "INSTALL" target is built.</dd>
<dt><b>LLVM_LIBDIR_SUFFIX</b>:STRING</dt>
<dd>Extra suffix to append to the directory where libraries are to
be installed. On a 64-bit architecture, one could use
-DLLVM_LIBDIR_SUFFIX=64 to install libraries to /usr/lib64.</dd>
<dt><b>CMAKE_C_FLAGS</b>:STRING</dt>
<dd>Extra flags to use when compiling C source files.</dd>
@ -296,7 +301,13 @@
<div class="doc_text">
<p>TODO</p>
<p>See <a href="http://www.vtk.org/Wiki/CMake_Cross_Compiling">this
wiki page</a> for generic instructions on how to cross-compile
with CMake. It goes into detailed explanations and may seem
daunting, but it is not. On the wiki page there are several
examples including toolchain files. Go directly to
<a href="http://www.vtk.org/Wiki/CMake_Cross_Compiling#Information_how_to_set_up_various_cross_compiling_toolchains">this
section</a> for a quick solution.</p>
</div>

View File

@ -1091,19 +1091,27 @@ stack before the local variables that's checked upon return from the function to
see if it has been overwritten. A heuristic is used to determine if a function
needs stack protectors or not.
<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
have an <tt>ssp</tt> attribute.</p></dd>
have an <tt>ssp</tt> attribute.</dd>
<dt><tt>sspreq</tt></dt>
<dd>This attribute indicates that the function should <em>always</em> emit a
stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
function attribute.
<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
If a function that has an <tt>sspreq</tt> attribute is inlined into a
function that doesn't have an <tt>sspreq</tt> attribute or which has
an <tt>ssp</tt> attribute, then the resulting function will have
an <tt>sspreq</tt> attribute.</p></dd>
an <tt>sspreq</tt> attribute.</dd>
<dt><tt>noredzone</tt></dt>
<dd>This attribute indicates that the code generator should not enforce red zone
mandated by target specific ABI.</dd>
<dt><tt>noimplicitfloat</tt></dt>
<dd>This attributes disables implicit floating point instructions.</dd>
</dl>
</div>
@ -1177,6 +1185,9 @@ aspect of the data layout. The specifications accepted are as follows: </p>
<dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for an aggregate type of a given bit
<i>size</i>.</dd>
<dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for a stack object of a given bit
<i>size</i>.</dd>
</dl>
<p>When constructing the data layout for a given target, LLVM starts with a
default set of specifications which are then (possibly) overriden by the
@ -1196,6 +1207,7 @@ are given in this list:</p>
<li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
<li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
<li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
<li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
</ul>
<p>When LLVM is determining the alignment for a given type, it uses the
following rules:</p>
@ -7209,7 +7221,7 @@ declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date: 2009-06-05 00:49:04 +0200 (Fri, 05 Jun 2009) $
Last modified: $Date: 2009-06-12 21:45:19 +0200 (Fri, 12 Jun 2009) $
</address>
</body>

View File

@ -371,8 +371,11 @@ supported include:</p>
<dd>string value</dd>
<dt><tt>[{ ... }]</tt></dt>
<dd>code fragment</dd>
<dt><tt>[ X, Y, Z ]</tt></dt>
<dd>list value.</dd>
<dt><tt>[ X, Y, Z ]<type></tt></dt>
<dd>list value. <type> is the type of the list
element and is usually optional. In rare cases,
TableGen is unable to deduce the element type in
which case the user must specify it explicitly.</dd>
<dt><tt>{ a, b, c }</tt></dt>
<dd>initializer for a "bits&lt;3&gt;" value</dd>
<dt><tt>value</tt></dt>
@ -778,7 +781,7 @@ This should highlight the APIs in <tt>TableGen/Record.h</tt>.</p>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org">LLVM Compiler Infrastructure</a><br>
Last modified: $Date: 2009-05-19 00:14:45 +0200 (Tue, 19 May 2009) $
Last modified: $Date: 2009-06-09 20:31:17 +0200 (Tue, 09 Jun 2009) $
</address>
</body>

View File

@ -393,6 +393,7 @@ namespace llvm {
SCEVHandle getTruncateExpr(const SCEVHandle &Op, const Type *Ty);
SCEVHandle getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty);
SCEVHandle getSignExtendExpr(const SCEVHandle &Op, const Type *Ty);
SCEVHandle getAnyExtendExpr(const SCEVHandle &Op, const Type *Ty);
SCEVHandle getAddExpr(std::vector<SCEVHandle> &Ops);
SCEVHandle getAddExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
std::vector<SCEVHandle> Ops;
@ -465,6 +466,12 @@ namespace llvm {
/// it is sign extended. The conversion must not be narrowing.
SCEVHandle getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty);
/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
/// the input value to the specified type. If the type must be extended,
/// it is extended with unspecified bits. The conversion must not be
/// narrowing.
SCEVHandle getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty);
/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. The conversion must not be
/// widening.

View File

@ -61,7 +61,8 @@ const Attributes NoImplicitFloat = 1<<23; /// disable implicit floating point
/// @brief Attributes that only apply to function parameters.
const Attributes ParameterOnly = ByVal | Nest | StructRet | NoCapture;
/// @brief Attributes that only apply to function.
/// @brief Attributes that may be applied to the function itself. These cannot
/// be used on return values or function parameters.
const Attributes FunctionOnly = NoReturn | NoUnwind | ReadNone | ReadOnly |
NoInline | AlwaysInline | OptimizeForSize | StackProtect | StackProtectReq |
NoRedZone | NoImplicitFloat;
@ -186,7 +187,7 @@ public:
/// getFnAttributes - The function attributes are returned.
Attributes getFnAttributes() const {
return getAttributes(~0);
return getAttributes(~0U);
}
/// paramHasAttr - Return true if the specified parameter index has the

View File

@ -0,0 +1,325 @@
//===-- llvm/CodeGen/BinaryObject.h - Binary Object. -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a Binary Object Aka. "blob" for holding data from code
// generators, ready for data to the object module code writters.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_BINARYOBJECT_H
#define LLVM_CODEGEN_BINARYOBJECT_H
#include <string>
#include <vector>
namespace llvm {
class MachineRelocation;
typedef std::vector<uint8_t> BinaryData;
class BinaryObject {
protected:
std::string Name;
bool IsLittleEndian;
bool Is64Bit;
BinaryData Data;
std::vector<MachineRelocation> Relocations;
public:
/// Constructors and destructor
BinaryObject() {}
BinaryObject(bool isLittleEndian, bool is64Bit)
: IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
BinaryObject(const std::string &name, bool isLittleEndian, bool is64Bit)
: Name(name), IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
~BinaryObject() {}
/// getName - get name of BinaryObject
inline std::string getName() const { return Name; }
/// get size of binary data
size_t size() const {
return Data.size();
}
/// get binary data
BinaryData& getData() {
return Data;
}
/// get machine relocations
const std::vector<MachineRelocation>& getRelocations() const {
return Relocations;
}
/// emitByte - This callback is invoked when a byte needs to be
/// written to the data stream.
inline void emitByte(uint8_t B) {
Data.push_back(B);
}
/// emitWord16 - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16(uint16_t W) {
if (IsLittleEndian)
emitWord16LE(W);
else
emitWord16BE(W);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16LE(uint16_t W) {
Data.push_back((W >> 0) & 255);
Data.push_back((W >> 8) & 255);
}
/// emitWord16BE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16BE(uint16_t W) {
Data.push_back((W >> 8) & 255);
Data.push_back((W >> 0) & 255);
}
/// emitWord - This callback is invoked when a word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord(uint64_t W) {
if (!Is64Bit)
emitWord32(W);
else
emitWord64(W);
}
/// emitWord32 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord32(uint32_t W) {
if (IsLittleEndian)
emitWordLE(W);
else
emitWordBE(W);
}
/// emitWord64 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord64(uint64_t W) {
if (IsLittleEndian)
emitDWordLE(W);
else
emitDWordBE(W);
}
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitWordLE(uint32_t W) {
Data.push_back((W >> 0) & 255);
Data.push_back((W >> 8) & 255);
Data.push_back((W >> 16) & 255);
Data.push_back((W >> 24) & 255);
}
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in big-endian format.
///
inline void emitWordBE(uint32_t W) {
Data.push_back((W >> 24) & 255);
Data.push_back((W >> 16) & 255);
Data.push_back((W >> 8) & 255);
Data.push_back((W >> 0) & 255);
}
/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitDWordLE(uint64_t W) {
Data.push_back(unsigned(W >> 0) & 255);
Data.push_back(unsigned(W >> 8) & 255);
Data.push_back(unsigned(W >> 16) & 255);
Data.push_back(unsigned(W >> 24) & 255);
Data.push_back(unsigned(W >> 32) & 255);
Data.push_back(unsigned(W >> 40) & 255);
Data.push_back(unsigned(W >> 48) & 255);
Data.push_back(unsigned(W >> 56) & 255);
}
/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in big-endian format.
inline void emitDWordBE(uint64_t W) {
Data.push_back(unsigned(W >> 56) & 255);
Data.push_back(unsigned(W >> 48) & 255);
Data.push_back(unsigned(W >> 40) & 255);
Data.push_back(unsigned(W >> 32) & 255);
Data.push_back(unsigned(W >> 24) & 255);
Data.push_back(unsigned(W >> 16) & 255);
Data.push_back(unsigned(W >> 8) & 255);
Data.push_back(unsigned(W >> 0) & 255);
}
/// fixByte - This callback is invoked when a byte needs to be
/// fixup the buffer.
inline void fixByte(uint8_t B, uint32_t offset) {
Data[offset] = B;
}
/// fixWord16 - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in correct endian format.
inline void fixWord16(uint16_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord16LE(W, offset);
else
fixWord16BE(W, offset);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in little endian format.
inline void fixWord16LE(uint16_t W, uint32_t offset) {
Data[offset++] = W & 255;
Data[offset] = (W >> 8) & 255;
}
/// fixWord16BE - This callback is invoked when a 16-bit word needs to
/// fixup data stream in big endian format.
inline void fixWord16BE(uint16_t W, uint32_t offset) {
Data[offset++] = (W >> 8) & 255;
Data[offset] = W & 255;
}
/// emitWord - This callback is invoked when a word needs to
/// fixup the data in correct endian format and correct size.
inline void fixWord(uint64_t W, uint32_t offset) {
if (!Is64Bit)
fixWord32(W, offset);
else
fixWord64(W, offset);
}
/// fixWord32 - This callback is invoked when a 32-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord32(uint32_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord32LE(W, offset);
else
fixWord32BE(W, offset);
}
/// fixWord32LE - This callback is invoked when a 32-bit word needs to
/// fixup the data in little endian format.
inline void fixWord32LE(uint32_t W, uint32_t offset) {
Data[offset++] = W & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset] = (W >> 24) & 255;
}
/// fixWord32BE - This callback is invoked when a 32-bit word needs to
/// fixup the data in big endian format.
inline void fixWord32BE(uint32_t W, uint32_t offset) {
Data[offset++] = (W >> 24) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset] = W & 255;
}
/// fixWord64 - This callback is invoked when a 64-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord64(uint64_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord64LE(W, offset);
else
fixWord64BE(W, offset);
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in little endian format.
inline void fixWord64LE(uint64_t W, uint32_t offset) {
Data[offset++] = W & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset++] = (W >> 24) & 255;
Data[offset++] = (W >> 32) & 255;
Data[offset++] = (W >> 40) & 255;
Data[offset++] = (W >> 48) & 255;
Data[offset] = (W >> 56) & 255;
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in big endian format.
inline void fixWord64BE(uint64_t W, uint32_t offset) {
Data[offset++] = (W >> 56) & 255;
Data[offset++] = (W >> 48) & 255;
Data[offset++] = (W >> 40) & 255;
Data[offset++] = (W >> 32) & 255;
Data[offset++] = (W >> 24) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset] = W & 255;
}
/// emitAlignment - Pad the data to the specified alignment.
void emitAlignment(unsigned Alignment) {
if (Alignment <= 1) return;
unsigned PadSize = -Data.size() & (Alignment-1);
for (unsigned i = 0; i<PadSize; ++i)
Data.push_back(0);
}
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the data stream.
void emitULEB128Bytes(uint64_t Value) {
do {
unsigned char Byte = Value & 0x7f;
Value >>= 7;
if (Value) Byte |= 0x80;
emitByte(Byte);
} while (Value);
}
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the data stream.
void emitSLEB128Bytes(int64_t Value) {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {
unsigned char Byte = Value & 0x7f;
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
emitByte(Byte);
} while (IsMore);
}
/// emitString - This callback is invoked when a String needs to be
/// written to the data stream.
void emitString(const std::string &String) {
for (unsigned i = 0, N = static_cast<unsigned>(String.size()); i<N; ++i) {
unsigned char C = String[i];
emitByte(C);
}
emitByte(0);
}
/// getCurrentPCOffset - Return the offset from the start of the emitted
/// buffer that we are currently writing to.
uintptr_t getCurrentPCOffset() const {
return Data.size();
}
/// addRelocation - Whenever a relocatable address is needed, it should be
/// noted with this interface.
void addRelocation(const MachineRelocation& relocation) {
Relocations.push_back(relocation);
}
};
} // end namespace llvm
#endif

View File

@ -97,7 +97,7 @@ public:
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the output stream in little-endian format.
///
void emitWordLE(unsigned W) {
void emitWordLE(uint32_t W) {
if (4 <= BufferEnd-CurBufferPtr) {
*CurBufferPtr++ = (uint8_t)(W >> 0);
*CurBufferPtr++ = (uint8_t)(W >> 8);
@ -111,7 +111,7 @@ public:
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the output stream in big-endian format.
///
void emitWordBE(unsigned W) {
void emitWordBE(uint32_t W) {
if (4 <= BufferEnd-CurBufferPtr) {
*CurBufferPtr++ = (uint8_t)(W >> 24);
*CurBufferPtr++ = (uint8_t)(W >> 16);
@ -176,7 +176,7 @@ public:
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the output stream.
void emitULEB128Bytes(unsigned Value) {
void emitULEB128Bytes(uint64_t Value) {
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
@ -187,7 +187,7 @@ public:
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the output stream.
void emitSLEB128Bytes(int32_t Value) {
void emitSLEB128Bytes(int64_t Value) {
int32_t Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
@ -212,7 +212,7 @@ public:
}
/// emitInt32 - Emit a int32 directive.
void emitInt32(int32_t Value) {
void emitInt32(uint32_t Value) {
if (4 <= BufferEnd-CurBufferPtr) {
*((uint32_t*)CurBufferPtr) = Value;
CurBufferPtr += 4;

View File

@ -0,0 +1,63 @@
//===- LazyLiveness.h - Lazy, CFG-invariant liveness information ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a lazy liveness analysis as per "Fast Liveness Checking
// for SSA-form Programs," by Boissinot, et al.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LAZYLIVENESS_H
#define LLVM_CODEGEN_LAZYLIVENESS_H
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SparseBitVector.h"
#include <vector>
namespace llvm {
class MachineRegisterInfo;
class LazyLiveness : public MachineFunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
LazyLiveness() : MachineFunctionPass(&ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineDominatorTree>();
}
bool runOnMachineFunction(MachineFunction &mf);
bool vregLiveIntoMBB(unsigned vreg, MachineBasicBlock* MBB);
private:
void computeBackedgeChain(MachineFunction& mf, MachineBasicBlock* MBB);
typedef std::pair<MachineBasicBlock*, MachineBasicBlock*> edge_t;
MachineRegisterInfo* MRI;
DenseMap<MachineBasicBlock*, unsigned> preorder;
std::vector<MachineBasicBlock*> rev_preorder;
DenseMap<MachineBasicBlock*, SparseBitVector<128> > rv;
DenseMap<MachineBasicBlock*, SparseBitVector<128> > tv;
DenseSet<edge_t> backedges;
SparseBitVector<128> backedge_source;
SparseBitVector<128> backedge_target;
SparseBitVector<128> calculated;
};
}
#endif

View File

@ -104,7 +104,7 @@ public:
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the output stream in little-endian format.
///
void emitWordLE(unsigned W) {
void emitWordLE(uint32_t W) {
if (4 <= BufferEnd-CurBufferPtr) {
*CurBufferPtr++ = (uint8_t)(W >> 0);
*CurBufferPtr++ = (uint8_t)(W >> 8);
@ -118,7 +118,7 @@ public:
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the output stream in big-endian format.
///
void emitWordBE(unsigned W) {
void emitWordBE(uint32_t W) {
if (4 <= BufferEnd-CurBufferPtr) {
*CurBufferPtr++ = (uint8_t)(W >> 24);
*CurBufferPtr++ = (uint8_t)(W >> 16);
@ -183,7 +183,7 @@ public:
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the output stream.
void emitULEB128Bytes(unsigned Value) {
void emitULEB128Bytes(uint64_t Value) {
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
@ -194,8 +194,8 @@ public:
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the output stream.
void emitSLEB128Bytes(int32_t Value) {
int32_t Sign = Value >> (8 * sizeof(Value) - 1);
void emitSLEB128Bytes(uint64_t Value) {
uint64_t Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {

View File

@ -243,7 +243,7 @@ public:
}
// The JIT overrides a version that actually does this.
virtual void runJITOnFunction(Function *F, MachineCodeInfo *MCI = 0) { }
virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
/// at the specified address.

View File

@ -395,6 +395,10 @@ public:
/// including any contained basic blocks.
///
void dropAllReferences();
/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it.
bool hasAddressTaken() const;
};
inline ValueSymbolTable *

View File

@ -127,6 +127,7 @@ namespace {
(void) llvm::createPrintModulePass(0);
(void) llvm::createPrintFunctionPass("", 0);
(void) llvm::createDbgInfoPrinterPass();
(void) llvm::createPartialInliningPass();
(void)new llvm::IntervalPartition();
(void)new llvm::FindUsedTypes();

View File

@ -15,15 +15,21 @@
#define LLVM_TARGET_TARGETELFWRITERINFO_H
namespace llvm {
class Function;
class TargetData;
class TargetMachine;
//===--------------------------------------------------------------------===//
// TargetELFWriterInfo
//===--------------------------------------------------------------------===//
class TargetELFWriterInfo {
protected:
// EMachine - This field is the target specific value to emit as the
// e_machine member of the ELF header.
unsigned short EMachine;
TargetMachine &TM;
bool is64Bit, isLittleEndian;
public:
// Machine architectures
@ -44,10 +50,39 @@ namespace llvm {
EM_X86_64 = 62 // AMD64
};
explicit TargetELFWriterInfo(MachineType machine) : EMachine(machine) {}
virtual ~TargetELFWriterInfo() {}
// ELF File classes
enum {
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
// ELF Endianess
enum {
ELFDATA2LSB = 1, // Little-endian object file
ELFDATA2MSB = 2 // Big-endian object file
};
explicit TargetELFWriterInfo(TargetMachine &tm);
virtual ~TargetELFWriterInfo();
unsigned short getEMachine() const { return EMachine; }
unsigned getEFlags() const { return 0; }
unsigned getEIClass() const { return is64Bit ? ELFCLASS64 : ELFCLASS32; }
unsigned getEIData() const {
return isLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
}
/// ELF Header and ELF Section Header Info
unsigned getHdrSize() const { return is64Bit ? 64 : 52; }
unsigned getSHdrSize() const { return is64Bit ? 64 : 40; }
/// Symbol Table Info
unsigned getSymTabEntrySize() const { return is64Bit ? 24 : 16; }
unsigned getSymTabAlignment() const { return is64Bit ? 8 : 4; }
/// getFunctionAlignment - Returns the alignment for function 'F', targets
/// with different alignment constraints should overload this method
virtual unsigned getFunctionAlignment(const Function *F) const;
};
} // end llvm namespace

View File

@ -350,7 +350,7 @@ public:
LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
if (VT.isExtended()) return Expand;
assert(Op < array_lengthof(OpActions) &&
(unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
(unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*8 &&
"Table isn't big enough!");
return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
}
@ -417,11 +417,10 @@ public:
/// for it.
LegalizeAction
getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
(unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
((unsigned)VT.getSimpleVT()) < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
(2*VT.getSimpleVT())) & 3);
return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode]));
}
/// isIndexedLoadLegal - Return true if the specified indexed load is legal
@ -438,11 +437,10 @@ public:
/// for it.
LegalizeAction
getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
(unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
(unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
(2*VT.getSimpleVT())) & 3);
return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode]));
}
/// isIndexedStoreLegal - Return true if the specified indexed load is legal
@ -942,7 +940,7 @@ protected:
/// with the specified type and indicate what to do about it.
void setOperationAction(unsigned Op, MVT VT,
LegalizeAction Action) {
assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*8 &&
Op < array_lengthof(OpActions) && "Table isn't big enough!");
OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
@ -978,11 +976,10 @@ protected:
/// TargetLowering.cpp
void setIndexedLoadAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
IdxMode < array_lengthof(IndexedModeActions[0]) &&
assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
"Table isn't big enough!");
IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode] = (uint8_t)Action;
}
/// setIndexedStoreAction - Indicate that the specified indexed store does or
@ -991,11 +988,10 @@ protected:
/// TargetLowering.cpp
void setIndexedStoreAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
IdxMode < array_lengthof(IndexedModeActions[1]) &&
assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
"Table isn't big enough!");
IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode] = (uint8_t)Action;
}
/// setConvertAction - Indicate that the specified conversion does or does
@ -1581,10 +1577,13 @@ private:
/// indicates how instruction selection should deal with the store.
uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
/// IndexedModeActions - For each indexed mode and each value type, keep a
/// pair of LegalizeAction that indicates how instruction selection should
/// deal with the load / store.
uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
/// IndexedModeActions - For each indexed mode and each value type,
/// keep a pair of LegalizeAction that indicates how instruction
/// selection should deal with the load / store. The first
/// dimension is now the value_type for the reference. The second
/// dimension is the load [0] vs. store[1]. The third dimension
/// represents the various modes for load store.
uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
/// ConvertActions - For each conversion from source type to destination type,
/// keep a LegalizeAction that indicates how instruction selection should

View File

@ -78,6 +78,14 @@ namespace CodeGenOpt {
};
}
namespace FloatABI {
enum ABIType {
Default,
Soft,
Hard
};
}
//===----------------------------------------------------------------------===//
///
/// TargetMachine - Primary interface to the complete machine description for
@ -88,7 +96,7 @@ class TargetMachine {
TargetMachine(const TargetMachine &); // DO NOT IMPLEMENT
void operator=(const TargetMachine &); // DO NOT IMPLEMENT
protected: // Can only create subclasses.
TargetMachine() : AsmInfo(0) { }
TargetMachine();
/// getSubtargetImpl - virtual method implemented by subclasses that returns
/// a reference to that target's TargetSubtarget-derived member variable.

View File

@ -73,6 +73,14 @@ namespace llvm {
/// target FP instructions.
extern bool UseSoftFloat;
/// FloatABIType - This setting is set by -float-abi=xxx option is specfied
/// on the command line. This setting may either be Default, Soft, or Hard.
/// Default selects the target's default behavior. Soft selects the ABI for
/// UseSoftFloat, but does not inidcate that FP hardware may not be used.
/// Such a combination is unfortunately popular (e.g. arm-apple-darwin).
/// Hard presumes that the normal FP ABI is used.
extern FloatABI::ABIType FloatABIType;
/// NoZerosInBSS - By default some codegens place zero-initialized data to
/// .bss section. This flag disables such behaviour (necessary, e.g. for
/// crt*.o compiling).

View File

@ -228,6 +228,7 @@ class SDNode<string opcode, SDTypeProfile typeprof,
SDTypeProfile TypeProfile = typeprof;
}
// Special TableGen-recognized dag nodes
def set;
def implicit;
def parallel;

View File

@ -214,6 +214,11 @@ Pass *createFunctionAttrsPass();
///
ModulePass *createMergeFunctionsPass();
//===----------------------------------------------------------------------===//
/// createPartialInliningPass - This pass inlines parts of functions.
///
ModulePass *createPartialInliningPass();
} // End llvm namespace
#endif

View File

@ -937,6 +937,48 @@ SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
return Result;
}
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
/// unspecified bits out to the given type.
///
SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
// Sign-extend negative constants.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
if (SC->getValue()->getValue().isNegative())
return getSignExtendExpr(Op, Ty);
// Peel off a truncate cast.
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
SCEVHandle NewOp = T->getOperand();
if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
return getAnyExtendExpr(NewOp, Ty);
return getTruncateOrNoop(NewOp, Ty);
}
// Next try a zext cast. If the cast is folded, use it.
SCEVHandle ZExt = getZeroExtendExpr(Op, Ty);
if (!isa<SCEVZeroExtendExpr>(ZExt))
return ZExt;
// Next try a sext cast. If the cast is folded, use it.
SCEVHandle SExt = getSignExtendExpr(Op, Ty);
if (!isa<SCEVSignExtendExpr>(SExt))
return SExt;
// If the expression is obviously signed, use the sext cast value.
if (isa<SCEVSMaxExpr>(Op))
return SExt;
// Absent any other information, use the zext cast value.
return ZExt;
}
/// getAddExpr - Get a canonical add expression, or something simpler if
/// possible.
SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
@ -1903,6 +1945,23 @@ ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
return getSignExtendExpr(V, Ty);
}
/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
/// the input value to the specified type. If the type must be extended,
/// it is extended with unspecified bits. The conversion must not be
/// narrowing.
SCEVHandle
ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) {
const Type *SrcTy = V->getType();
assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
(Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
"Cannot noop or any extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
return getAnyExtendExpr(V, Ty);
}
/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. The conversion must not be widening.
SCEVHandle

View File

@ -16,6 +16,7 @@
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
/// InsertCastOfTo - Insert a cast of V to the specified type, doing what
@ -319,8 +320,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEVHandle *op_begin,
if (!AnyNonZeroIndices) {
V = InsertNoopCastOfTo(V,
Type::Int8Ty->getPointerTo(PTy->getAddressSpace()));
Value *Idx = expand(SE.getAddExpr(Ops));
Idx = InsertNoopCastOfTo(Idx, Ty);
Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
// Fold a GEP with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(V))
@ -374,8 +374,7 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
// Emit a bunch of add instructions
for (int i = S->getNumOperands()-2; i >= 0; --i) {
Value *W = expand(S->getOperand(i));
W = InsertNoopCastOfTo(W, Ty);
Value *W = expandCodeFor(S->getOperand(i), Ty);
V = InsertBinop(Instruction::Add, V, W, InsertPt);
}
return V;
@ -389,13 +388,11 @@ Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
FirstOp = 1;
int i = S->getNumOperands()-2;
Value *V = expand(S->getOperand(i+1));
V = InsertNoopCastOfTo(V, Ty);
Value *V = expandCodeFor(S->getOperand(i+1), Ty);
// Emit a bunch of multiply instructions
for (; i >= FirstOp; --i) {
Value *W = expand(S->getOperand(i));
W = InsertNoopCastOfTo(W, Ty);
Value *W = expandCodeFor(S->getOperand(i), Ty);
V = InsertBinop(Instruction::Mul, V, W, InsertPt);
}
@ -408,8 +405,7 @@ Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *LHS = expand(S->getLHS());
LHS = InsertNoopCastOfTo(LHS, Ty);
Value *LHS = expandCodeFor(S->getLHS(), Ty);
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
const APInt &RHS = SC->getValue()->getValue();
if (RHS.isPowerOf2())
@ -418,8 +414,7 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
InsertPt);
}
Value *RHS = expand(S->getRHS());
RHS = InsertNoopCastOfTo(RHS, Ty);
Value *RHS = expandCodeFor(S->getRHS(), Ty);
return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
}
@ -448,6 +443,34 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
const Loop *L = S->getLoop();
// First check for an existing canonical IV in a suitable type.
PHINode *CanonicalIV = 0;
if (PHINode *PN = L->getCanonicalInductionVariable())
if (SE.isSCEVable(PN->getType()) &&
isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
CanonicalIV = PN;
// Rewrite an AddRec in terms of the canonical induction variable, if
// its type is more narrow.
if (CanonicalIV &&
SE.getTypeSizeInBits(CanonicalIV->getType()) >
SE.getTypeSizeInBits(Ty)) {
SCEVHandle Start = SE.getAnyExtendExpr(S->getStart(),
CanonicalIV->getType());
SCEVHandle Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
CanonicalIV->getType());
Value *V = expand(SE.getAddRecExpr(Start, Step, S->getLoop()));
BasicBlock::iterator SaveInsertPt = getInsertionPoint();
BasicBlock::iterator NewInsertPt =
next(BasicBlock::iterator(cast<Instruction>(V)));
while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
NewInsertPt);
setInsertionPoint(SaveInsertPt);
return V;
}
// {X,+,F} --> X + {0,+,F}
if (!S->getStart()->isZero()) {
std::vector<SCEVHandle> NewOps(S->getOperands());
@ -481,6 +504,14 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// {0,+,1} --> Insert a canonical induction variable into the loop!
if (S->isAffine() &&
S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
// If there's a canonical IV, just use it.
if (CanonicalIV) {
assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
"IVs with types different from the canonical IV should "
"already have been handled!");
return CanonicalIV;
}
// Create and insert the PHI node for the induction variable in the
// specified loop.
BasicBlock *Header = L->getHeader();
@ -508,19 +539,16 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
return PN;
}
// {0,+,F} --> {0,+,1} * F
// Get the canonical induction variable I for this loop.
Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
Value *I = CanonicalIV ?
CanonicalIV :
getOrInsertCanonicalInductionVariable(L, Ty);
// If this is a simple linear addrec, emit it now as a special case.
if (S->isAffine()) { // {0,+,F} --> i*F
Value *F = expand(S->getOperand(1));
F = InsertNoopCastOfTo(F, Ty);
// IF the step is by one, just return the inserted IV.
if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
if (CI->getValue() == 1)
return I;
Value *F = expandCodeFor(S->getOperand(1), Ty);
// If the insert point is directly inside of the loop, emit the multiply at
// the insert point. Otherwise, L is a loop that is a parent of the insert
// point loop. If we can, move the multiply to the outer most loop that it
@ -555,16 +583,24 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// into this folder.
SCEVHandle IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
SCEVHandle V = S->evaluateAtIteration(IH, SE);
// Promote S up to the canonical IV type, if the cast is foldable.
SCEVHandle NewS = S;
SCEVHandle Ext = SE.getNoopOrAnyExtend(S, I->getType());
if (isa<SCEVAddRecExpr>(Ext))
NewS = Ext;
SCEVHandle V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
//cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
// Truncate the result down to the original type, if needed.
SCEVHandle T = SE.getTruncateOrNoop(V, Ty);
return expand(V);
}
Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expand(S->getOperand());
V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Instruction *I = new TruncInst(V, Ty, "tmp.", InsertPt);
InsertedValues.insert(I);
return I;
@ -572,8 +608,8 @@ Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expand(S->getOperand());
V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Instruction *I = new ZExtInst(V, Ty, "tmp.", InsertPt);
InsertedValues.insert(I);
return I;
@ -581,8 +617,8 @@ Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expand(S->getOperand());
V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Instruction *I = new SExtInst(V, Ty, "tmp.", InsertPt);
InsertedValues.insert(I);
return I;
@ -590,11 +626,9 @@ Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *LHS = expand(S->getOperand(0));
LHS = InsertNoopCastOfTo(LHS, Ty);
Value *LHS = expandCodeFor(S->getOperand(0), Ty);
for (unsigned i = 1; i < S->getNumOperands(); ++i) {
Value *RHS = expand(S->getOperand(i));
RHS = InsertNoopCastOfTo(RHS, Ty);
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Instruction *ICmp =
new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS, "tmp", InsertPt);
InsertedValues.insert(ICmp);
@ -607,11 +641,9 @@ Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *LHS = expand(S->getOperand(0));
LHS = InsertNoopCastOfTo(LHS, Ty);
Value *LHS = expandCodeFor(S->getOperand(0), Ty);
for (unsigned i = 1; i < S->getNumOperands(); ++i) {
Value *RHS = expand(S->getOperand(i));
RHS = InsertNoopCastOfTo(RHS, Ty);
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Instruction *ICmp =
new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS, "tmp", InsertPt);
InsertedValues.insert(ICmp);

View File

@ -167,10 +167,11 @@ Archive::addFileBefore(const sys::Path& filePath, iterator where,
mbr->data = 0;
mbr->path = filePath;
const sys::FileStatus *FSInfo = mbr->path.getFileStatus(false, ErrMsg);
if (FSInfo)
mbr->info = *FSInfo;
else
if (!FSInfo) {
delete mbr;
return true;
}
mbr->info = *FSInfo;
unsigned flags = 0;
bool hasSlash = filePath.toString().find('/') != std::string::npos;

View File

@ -1308,16 +1308,6 @@ static void WriteModule(const Module *M, BitstreamWriter &Stream) {
// Emit constants.
WriteModuleConstants(VE, Stream);
// If we have any aggregate values in the value table, purge them - these can
// only be used to initialize global variables. Doing so makes the value
// namespace smaller for code in functions.
int NumNonAggregates = VE.PurgeAggregateValues();
if (NumNonAggregates != -1) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(NumNonAggregates);
Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
}
// Emit function bodies.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration())

View File

@ -277,22 +277,6 @@ void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
}
/// PurgeAggregateValues - If there are any aggregate values at the end of the
/// value list, remove them and return the count of the remaining values. If
/// there are none, return -1.
int ValueEnumerator::PurgeAggregateValues() {
// If there are no aggregate values at the end of the list, return -1.
if (Values.empty() || Values.back().first->getType()->isSingleValueType())
return -1;
// Otherwise, remove aggregate values...
while (!Values.empty() && !Values.back().first->getType()->isSingleValueType())
Values.pop_back();
// ... and return the new size.
return Values.size();
}
void ValueEnumerator::incorporateFunction(const Function &F) {
NumModuleValues = Values.size();

View File

@ -99,11 +99,6 @@ public:
return Attributes;
}
/// PurgeAggregateValues - If there are any aggregate values at the end of the
/// value list, remove them and return the count of the remaining values. If
/// there are none, return -1.
int PurgeAggregateValues();
/// incorporateFunction/purgeFunction - If you'd like to deal with a function,
/// use these two methods to get its data into the ValueEnumerator!
///

View File

@ -1581,6 +1581,7 @@ void DwarfDebug::EndFunction(MachineFunction *MF) {
FunctionDbgScope = NULL;
LexicalScopeStack.clear();
AbstractInstanceRootList.clear();
AbstractInstanceRootMap.clear();
}
Lines.clear();
@ -1669,7 +1670,11 @@ unsigned DwarfDebug::RecordRegionEnd(GlobalVariable *V) {
DbgScope *Scope = getOrCreateScope(V);
unsigned ID = MMI->NextLabelID();
Scope->setEndLabelID(ID);
if (LexicalScopeStack.size() != 0)
// FIXME : region.end() may not be in the last basic block.
// For now, do not pop last lexical scope because next basic
// block may start new inlined function's body.
unsigned LSSize = LexicalScopeStack.size();
if (LSSize != 0 && LSSize != 1)
LexicalScopeStack.pop_back();
if (TimePassesIsEnabled)

View File

@ -12,6 +12,7 @@ add_llvm_library(LLVMCodeGen
IntrinsicLowering.cpp
LLVMTargetMachine.cpp
LatencyPriorityQueue.cpp
LazyLiveness.cpp
LiveInterval.cpp
LiveIntervalAnalysis.cpp
LiveStackAnalysis.cpp

View File

@ -10,23 +10,24 @@
// This header contains common, non-processor-specific data structures and
// constants for the ELF file format.
//
// The details of the ELF32 bits in this file are largely based on
// the Tool Interface Standard (TIS) Executable and Linking Format
// (ELF) Specification Version 1.2, May 1995. The ELF64 stuff is not
// standardized, as far as I can tell. It was largely based on information
// I found in OpenBSD header files.
// The details of the ELF32 bits in this file are largely based on the Tool
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
// Version 1.2, May 1995. The ELF64 is based on HP/Intel definition of the
// ELF-64 object file format document, Version 1.5 Draft 2 May 27, 1998
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_ELF_H
#define CODEGEN_ELF_H
#include "llvm/GlobalVariable.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/Support/DataTypes.h"
#include <cstring>
namespace llvm {
class GlobalVariable;
class BinaryObject;
// Identification Indexes
enum {
@ -47,71 +48,28 @@ namespace llvm {
ET_HIPROC = 0xffff // Processor-specific
};
// Object file classes.
enum {
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
// Object file byte orderings.
enum {
ELFDATA2LSB = 1, // Little-endian object file
ELFDATA2MSB = 2 // Big-endian object file
};
// Versioning
enum {
EV_NONE = 0,
EV_CURRENT = 1
};
struct ELFHeader {
// e_machine - This field is the target specific value to emit as the
// e_machine member of the ELF header.
unsigned short e_machine;
// e_flags - The machine flags for the target. This defaults to zero.
unsigned e_flags;
// e_size - Holds the ELF header's size in bytes
unsigned e_ehsize;
// Endianess and ELF Class (64 or 32 bits)
unsigned ByteOrder;
unsigned ElfClass;
unsigned getByteOrder() const { return ByteOrder; }
unsigned getElfClass() const { return ElfClass; }
unsigned getSize() const { return e_ehsize; }
unsigned getMachine() const { return e_machine; }
unsigned getFlags() const { return e_flags; }
ELFHeader(unsigned short machine, unsigned flags,
bool is64Bit, bool isLittleEndian)
: e_machine(machine), e_flags(flags) {
ElfClass = is64Bit ? ELFCLASS64 : ELFCLASS32;
ByteOrder = isLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
e_ehsize = is64Bit ? 64 : 52;
}
};
/// ELFSection - This struct contains information about each section that is
/// emitted to the file. This is eventually turned into the section header
/// table at the end of the file.
struct ELFSection {
class ELFSection : public BinaryObject {
public:
// ELF specific fields
std::string Name; // Name of the section.
unsigned NameIdx; // Index in .shstrtab of name, once emitted.
unsigned Type;
unsigned Flags;
uint64_t Addr;
unsigned Offset;
unsigned Size;
unsigned Link;
unsigned Info;
unsigned Align;
unsigned EntSize;
unsigned NameIdx; // sh_name - .shstrtab idx of name, once emitted.
unsigned Type; // sh_type - Section contents & semantics
unsigned Flags; // sh_flags - Section flags.
uint64_t Addr; // sh_addr - The mem addr this section is in.
unsigned Offset; // sh_offset - Offset from the file start
unsigned Size; // sh_size - The section size.
unsigned Link; // sh_link - Section header table index link.
unsigned Info; // sh_info - Auxillary information.
unsigned Align; // sh_addralign - Alignment of section.
unsigned EntSize; // sh_entsize - Size of entries in the section e
// Section Header Flags
enum {
@ -141,8 +99,8 @@ namespace llvm {
SHT_REL = 9, // Relocation entries; no explicit addends.
SHT_SHLIB = 10, // Reserved.
SHT_DYNSYM = 11, // Symbol table.
SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type.
SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type.
SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
};
@ -161,22 +119,9 @@ namespace llvm {
/// SectionIdx - The number of the section in the Section Table.
unsigned short SectionIdx;
/// SectionData - The actual data for this section which we are building
/// up for emission to the file.
std::vector<unsigned char> SectionData;
/// Relocations - The relocations that we have encountered so far in this
/// section that we will need to convert to Elf relocation entries when
/// the file is written.
std::vector<MachineRelocation> Relocations;
/// Section Header Size
static unsigned getSectionHdrSize(bool is64Bit)
{ return is64Bit ? 64 : 40; }
ELFSection(const std::string &name)
: Name(name), Type(0), Flags(0), Addr(0), Offset(0), Size(0),
Link(0), Info(0), Align(0), EntSize(0) {}
ELFSection(const std::string &name, bool isLittleEndian, bool is64Bit)
: BinaryObject(name, isLittleEndian, is64Bit), Type(0), Flags(0), Addr(0),
Offset(0), Size(0), Link(0), Info(0), Align(0), EntSize(0) {}
};
/// ELFSym - This struct contains information about each symbol that is
@ -207,9 +152,33 @@ namespace llvm {
STT_FILE = 4
};
enum {
STV_DEFAULT = 0, // Visibility is specified by binding type
STV_INTERNAL = 1, // Defined by processor supplements
STV_HIDDEN = 2, // Not visible to other components
STV_PROTECTED = 3 // Visible in other components but not preemptable
};
ELFSym(const GlobalValue *gv) : GV(gv), NameIdx(0), Value(0),
Size(0), Info(0), Other(0),
SectionIdx(ELFSection::SHN_UNDEF) {}
SectionIdx(ELFSection::SHN_UNDEF) {
if (!GV)
return;
switch (GV->getVisibility()) {
default:
assert(0 && "unknown visibility type");
case GlobalValue::DefaultVisibility:
Other = STV_DEFAULT;
break;
case GlobalValue::HiddenVisibility:
Other = STV_HIDDEN;
break;
case GlobalValue::ProtectedVisibility:
Other = STV_PROTECTED;
break;
}
}
void SetBind(unsigned X) {
assert(X == (X & 0xF) && "Bind value out of range!");

View File

@ -13,9 +13,9 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
@ -28,27 +28,22 @@ namespace llvm {
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
void ELFCodeEmitter::startFunction(MachineFunction &MF) {
const TargetData *TD = TM.getTargetData();
const Function *F = MF.getFunction();
// Align the output buffer to the appropriate alignment, power of 2.
unsigned FnAlign = F->getAlignment();
unsigned TDAlign = TD->getPrefTypeAlignment(F->getType());
unsigned Align = std::max(FnAlign, TDAlign);
assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
// Get the ELF Section that this function belongs in.
ES = &EW.getTextSection();
DOUT << "processing function: " << MF.getFunction()->getName() << "\n";
// FIXME: better memory management, this will be replaced by BinaryObjects
ES->SectionData.reserve(4096);
BufferBegin = &ES->SectionData[0];
BufferEnd = BufferBegin + ES->SectionData.capacity();
BinaryData &BD = ES->getData();
BD.reserve(4096);
BufferBegin = &BD[0];
BufferEnd = BufferBegin + BD.capacity();
// Upgrade the section alignment if required.
// Align the output buffer with function alignment, and
// upgrade the section alignment if required
unsigned Align =
TM.getELFWriterInfo()->getFunctionAlignment(MF.getFunction());
if (ES->Align < Align) ES->Align = Align;
// Round the size up to the correct alignment for starting the new function.
ES->Size = (ES->Size + (Align-1)) & (-Align);
// Snaity check on allocated space for text section
@ -107,7 +102,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
FnSym.Value = FnStartPtr-BufferBegin;
// Finally, add it to the symtab.
EW.SymbolTable.push_back(FnSym);
EW.SymbolList.push_back(FnSym);
// Relocations
// -----------
@ -128,7 +123,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
} else {
assert(0 && "Unhandled relocation type");
}
ES->Relocations.push_back(MR);
ES->addRelocation(MR);
}
Relocations.clear();

View File

@ -26,9 +26,6 @@
// ...
// #N. ".shstrtab" entry - String table for the section names.
//
// NOTE: This code should eventually be extended to support 64-bit ELF (this
// won't be hard), but we haven't done so yet!
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "elfwriter"
@ -36,18 +33,18 @@
#include "ELFWriter.h"
#include "ELFCodeEmitter.h"
#include "ELF.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/FileWriters.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetELFWriterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/OutputBuffer.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
@ -70,21 +67,23 @@ MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
//===----------------------------------------------------------------------===//
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
: MachineFunctionPass(&ID), O(o), TM(tm), ElfHdr() {
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
: MachineFunctionPass(&ID), O(o), TM(tm),
is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
isLittleEndian(TM.getTargetData()->isLittleEndian()),
ElfHdr(isLittleEndian, is64Bit) {
ElfHdr = new ELFHeader(TM.getELFWriterInfo()->getEMachine(), 0,
is64Bit, isLittleEndian);
TAI = TM.getTargetAsmInfo();
TEW = TM.getELFWriterInfo();
// Create the machine code emitter object for this target.
MCE = new ELFCodeEmitter(*this);
// Inital number of sections
NumSections = 0;
}
ELFWriter::~ELFWriter() {
delete MCE;
delete ElfHdr;
}
// doInitialization - Emit the file header and all of the global variables for
@ -92,10 +91,6 @@ ELFWriter::~ELFWriter() {
bool ELFWriter::doInitialization(Module &M) {
Mang = new Mangler(M);
// Local alias to shortenify coming code.
std::vector<unsigned char> &FH = FileHeader;
OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
// ELF Header
// ----------
// Fields e_shnum e_shstrndx are only known after all section have
@ -104,54 +99,58 @@ bool ELFWriter::doInitialization(Module &M) {
//
// Note
// ----
// FHOut.outaddr method behaves differently for ELF32 and ELF64 writing
// emitWord method behaves differently for ELF32 and ELF64, writing
// 4 bytes in the former and 8 in the last for *_off and *_addr elf types
FHOut.outbyte(0x7f); // e_ident[EI_MAG0]
FHOut.outbyte('E'); // e_ident[EI_MAG1]
FHOut.outbyte('L'); // e_ident[EI_MAG2]
FHOut.outbyte('F'); // e_ident[EI_MAG3]
ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
FHOut.outbyte(ElfHdr->getElfClass()); // e_ident[EI_CLASS]
FHOut.outbyte(ElfHdr->getByteOrder()); // e_ident[EI_DATA]
FHOut.outbyte(EV_CURRENT); // e_ident[EI_VERSION]
ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
FH.resize(16); // e_ident[EI_NIDENT-EI_PAD]
FHOut.outhalf(ET_REL); // e_type
FHOut.outhalf(ElfHdr->getMachine()); // e_machine = target
FHOut.outword(EV_CURRENT); // e_version
FHOut.outaddr(0); // e_entry = 0, no entry point in .o file
FHOut.outaddr(0); // e_phoff = 0, no program header for .o
ELFHdr_e_shoff_Offset = FH.size();
FHOut.outaddr(0); // e_shoff = sec hdr table off in bytes
FHOut.outword(ElfHdr->getFlags()); // e_flags = whatever the target wants
FHOut.outhalf(ElfHdr->getSize()); // e_ehsize = ELF header size
FHOut.outhalf(0); // e_phentsize = prog header entry size
FHOut.outhalf(0); // e_phnum = # prog header entries = 0
ElfHdr.emitWord16(ET_REL); // e_type
ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
ElfHdr.emitWord32(EV_CURRENT); // e_version
ElfHdr.emitWord(0); // e_entry, no entry point in .o file
ElfHdr.emitWord(0); // e_phoff, no program header for .o
ELFHdr_e_shoff_Offset = ElfHdr.size();
ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
// e_shentsize = Section header entry size
FHOut.outhalf(ELFSection::getSectionHdrSize(is64Bit));
ElfHdr.emitWord16(TEW->getSHdrSize());
// e_shnum = # of section header ents
ELFHdr_e_shnum_Offset = FH.size();
FHOut.outhalf(0);
ELFHdr_e_shnum_Offset = ElfHdr.size();
ElfHdr.emitWord16(0); // Placeholder
// e_shstrndx = Section # of '.shstrtab'
ELFHdr_e_shstrndx_Offset = FH.size();
FHOut.outhalf(0);
ELFHdr_e_shstrndx_Offset = ElfHdr.size();
ElfHdr.emitWord16(0); // Placeholder
// Add the null section, which is required to be first in the file.
getSection("", ELFSection::SHT_NULL, 0);
// Start up the symbol table. The first entry in the symtab is the null
// Start up the symbol table. The first entry in the symtab is the null
// entry.
SymbolTable.push_back(ELFSym(0));
SymbolList.push_back(ELFSym(0));
return false;
}
void ELFWriter::EmitGlobal(GlobalVariable *GV) {
// XXX: put local symbols *before* global ones!
const Section *S = TAI->SectionForGlobal(GV);
DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n";
// If this is an external global, emit it now. TODO: Note that it would be
// better to ignore the symbol here and only add it to the symbol table if
// referenced.
@ -160,17 +159,17 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
ExternalSym.SetType(ELFSym::STT_NOTYPE);
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
SymbolTable.push_back(ExternalSym);
SymbolList.push_back(ExternalSym);
return;
}
unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);
unsigned Size =
TM.getTargetData()->getTypeAllocSize(GV->getType()->getElementType());
const TargetData *TD = TM.getTargetData();
unsigned Align = TD->getPreferredAlignment(GV);
Constant *CV = GV->getInitializer();
unsigned Size = TD->getTypeAllocSize(CV->getType());
// If this global has a zero initializer, it is part of the .bss or common
// section.
if (GV->getInitializer()->isNullValue()) {
// If this global has a zero initializer, go to .bss or common section.
if (CV->isNullValue() || isa<UndefValue>(CV)) {
// If this global is part of the common block, add it now. Variables are
// part of the common block if they are zero initialized and allowed to be
// merged with other symbols.
@ -182,14 +181,14 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
CommonSym.Size = Size;
CommonSym.SetBind(ELFSym::STB_GLOBAL);
CommonSym.SetType(ELFSym::STT_OBJECT);
// TODO SOMEDAY: add ELF visibility.
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
SymbolTable.push_back(CommonSym);
SymbolList.push_back(CommonSym);
getSection(S->getName(), ELFSection::SHT_NOBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 1);
return;
}
// Otherwise, this symbol is part of the .bss section. Emit it now.
// Handle alignment. Ensure section is aligned at least as much as required
// by this symbol.
ELFSection &BSSSection = getBSSSection();
@ -220,18 +219,128 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
// Set the idx of the .bss section
BSSSym.SectionIdx = BSSSection.SectionIdx;
if (!GV->hasPrivateLinkage())
SymbolTable.push_back(BSSSym);
SymbolList.push_back(BSSSym);
// Reserve space in the .bss section for this symbol.
BSSSection.Size += Size;
return;
}
// FIXME: handle .rodata
//assert(!GV->isConstant() && "unimp");
/// Emit the Global symbol to the right ELF section
ELFSym GblSym(GV);
GblSym.Size = Size;
GblSym.SetType(ELFSym::STT_OBJECT);
GblSym.SetBind(ELFSym::STB_GLOBAL);
unsigned Flags = S->getFlags();
unsigned SectType = ELFSection::SHT_PROGBITS;
unsigned SHdrFlags = ELFSection::SHF_ALLOC;
// FIXME: handle .data
//assert(0 && "unimp");
if (Flags & SectionFlags::Code)
SHdrFlags |= ELFSection::SHF_EXECINSTR;
if (Flags & SectionFlags::Writeable)
SHdrFlags |= ELFSection::SHF_WRITE;
if (Flags & SectionFlags::Mergeable)
SHdrFlags |= ELFSection::SHF_MERGE;
if (Flags & SectionFlags::TLS)
SHdrFlags |= ELFSection::SHF_TLS;
if (Flags & SectionFlags::Strings)
SHdrFlags |= ELFSection::SHF_STRINGS;
// Remove tab from section name prefix
std::string SectionName(S->getName());
size_t Pos = SectionName.find("\t");
if (Pos != std::string::npos)
SectionName.erase(Pos, 1);
// The section alignment should be bound to the element with
// the largest alignment
ELFSection &ElfS = getSection(SectionName, SectType, SHdrFlags);
GblSym.SectionIdx = ElfS.SectionIdx;
if (Align > ElfS.Align)
ElfS.Align = Align;
// S.Value should contain the symbol index inside the section,
// and all symbols should start on their required alignment boundary
GblSym.Value = (ElfS.size() + (Align-1)) & (-Align);
ElfS.emitAlignment(Align);
// Emit the constant symbol to its section
EmitGlobalConstant(CV, ElfS);
SymbolList.push_back(GblSym);
}
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
ELFSection &GblS) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CVS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value.
EmitGlobalConstant(field, GblS);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
for (unsigned p=0; p < padSize; p++)
GblS.emitByte(0);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CV->getType());
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (CVA->isString()) {
std::string GblStr = CVA->getAsString();
GblS.emitString(GblStr);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i), GblS);
}
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
EmitGlobalConstantStruct(CVS, GblS);
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (CFP->getType() == Type::DoubleTy)
GblS.emitWord64(Val);
else if (CFP->getType() == Type::FloatTy)
GblS.emitWord32(Val);
else if (CFP->getType() == Type::X86_FP80Ty) {
assert(0 && "X86_FP80Ty global emission not implemented");
} else if (CFP->getType() == Type::PPC_FP128Ty)
assert(0 && "PPC_FP128Ty global emission not implemented");
return;
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (Size == 4)
GblS.emitWord32(CI->getZExtValue());
else if (Size == 8)
GblS.emitWord64(CI->getZExtValue());
else
assert(0 && "LargeInt global emission not implemented");
return;
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I), GblS);
return;
}
assert(0 && "unknown global constant");
}
@ -243,22 +352,41 @@ bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
// Okay, the ELF header and .text sections have been completed, build the
// .data, .bss, and "common" sections next.
/// FIXME: This should be removed when moving to ObjectCodeEmiter. Since the
/// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.Data
/// vector size for .text sections, so this is a quick dirty fix
ELFSection &TS = getTextSection();
if (TS.Size) {
BinaryData &BD = TS.getData();
for (unsigned e=0; e<TS.Size; ++e)
BD.push_back(BD[e]);
}
// Emit .data section placeholder
getDataSection();
// Emit .bss section placeholder
getBSSSection();
// Build and emit data, bss and "common" sections.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
// Emit non-executable stack note
if (TAI->getNonexecutableStackDirective())
getNonExecStackSection();
// Emit the symbol table now, if non-empty.
EmitSymbolTable();
// Emit the relocation sections.
EmitRelocations();
// Emit the string table for the sections in the ELF file.
// Emit the sections string table.
EmitSectionTableStringTable();
// Emit the sections to the .o file, and emit the section table for the file.
// Dump the sections and section table to the .o file.
OutputSectionsAndSectionTable();
// We are done with the abstract symbols.
@ -274,78 +402,97 @@ bool ELFWriter::doFinalization(Module &M) {
void ELFWriter::EmitRelocations() {
}
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
if (is64Bit) {
SymbolTable.emitWord32(Sym.NameIdx);
SymbolTable.emitByte(Sym.Info);
SymbolTable.emitByte(Sym.Other);
SymbolTable.emitWord16(Sym.SectionIdx);
SymbolTable.emitWord64(Sym.Value);
SymbolTable.emitWord64(Sym.Size);
} else {
SymbolTable.emitWord32(Sym.NameIdx);
SymbolTable.emitWord32(Sym.Value);
SymbolTable.emitWord32(Sym.Size);
SymbolTable.emitByte(Sym.Info);
SymbolTable.emitByte(Sym.Other);
SymbolTable.emitWord16(Sym.SectionIdx);
}
}
/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
/// Section Header Table
void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
const ELFSection &SHdr) {
SHdrTab.emitWord32(SHdr.NameIdx);
SHdrTab.emitWord32(SHdr.Type);
if (is64Bit) {
SHdrTab.emitWord64(SHdr.Flags);
SHdrTab.emitWord(SHdr.Addr);
SHdrTab.emitWord(SHdr.Offset);
SHdrTab.emitWord64(SHdr.Size);
SHdrTab.emitWord32(SHdr.Link);
SHdrTab.emitWord32(SHdr.Info);
SHdrTab.emitWord64(SHdr.Align);
SHdrTab.emitWord64(SHdr.EntSize);
} else {
SHdrTab.emitWord32(SHdr.Flags);
SHdrTab.emitWord(SHdr.Addr);
SHdrTab.emitWord(SHdr.Offset);
SHdrTab.emitWord32(SHdr.Size);
SHdrTab.emitWord32(SHdr.Link);
SHdrTab.emitWord32(SHdr.Info);
SHdrTab.emitWord32(SHdr.Align);
SHdrTab.emitWord32(SHdr.EntSize);
}
}
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
/// table for it and then the symbol table itself.
void ELFWriter::EmitSymbolTable() {
if (SymbolTable.size() == 1) return; // Only the null entry.
if (SymbolList.size() == 1) return; // Only the null entry.
// FIXME: compact all local symbols to the start of the symtab.
unsigned FirstNonLocalSymbol = 1;
ELFSection &StrTab = getSection(".strtab", ELFSection::SHT_STRTAB, 0);
StrTab.Align = 1;
DataBuffer &StrTabBuf = StrTab.SectionData;
OutputBuffer StrTabOut(StrTabBuf, is64Bit, isLittleEndian);
ELFSection &StrTab = getStringTableSection();
// Set the zero'th symbol to a null byte, as required.
StrTabOut.outbyte(0);
StrTab.emitByte(0);
unsigned Index = 1;
for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
for (unsigned i = 1, e = SymbolList.size(); i != e; ++i) {
// Use the name mangler to uniquify the LLVM symbol.
std::string Name = Mang->getValueName(SymbolTable[i].GV);
std::string Name = Mang->getValueName(SymbolList[i].GV);
if (Name.empty()) {
SymbolTable[i].NameIdx = 0;
SymbolList[i].NameIdx = 0;
} else {
SymbolTable[i].NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
StrTabBuf.insert(StrTabBuf.end(), Name.begin(), Name.end());
// Add a null terminator.
StrTabBuf.push_back(0);
SymbolList[i].NameIdx = Index;
StrTab.emitString(Name);
// Keep track of the number of bytes emitted to this section.
Index += Name.size()+1;
}
}
assert(Index == StrTabBuf.size());
assert(Index == StrTab.size());
StrTab.Size = Index;
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
ELFSection &SymTab = getSection(".symtab", ELFSection::SHT_SYMTAB, 0);
SymTab.Align = is64Bit ? 8 : 4;
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
SymTab.EntSize = is64Bit ? 24 : 16; // Size of each symtab entry.
DataBuffer &SymTabBuf = SymTab.SectionData;
OutputBuffer SymTabOut(SymTabBuf, is64Bit, isLittleEndian);
ELFSection &SymTab = getSymbolTableSection();
SymTab.Align = TEW->getSymTabAlignment();
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
if (!is64Bit) { // 32-bit and 64-bit formats are shuffled a bit.
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) {
ELFSym &Sym = SymbolTable[i];
SymTabOut.outword(Sym.NameIdx);
SymTabOut.outaddr32(Sym.Value);
SymTabOut.outword(Sym.Size);
SymTabOut.outbyte(Sym.Info);
SymTabOut.outbyte(Sym.Other);
SymTabOut.outhalf(Sym.SectionIdx);
}
} else {
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) {
ELFSym &Sym = SymbolTable[i];
SymTabOut.outword(Sym.NameIdx);
SymTabOut.outbyte(Sym.Info);
SymTabOut.outbyte(Sym.Other);
SymTabOut.outhalf(Sym.SectionIdx);
SymTabOut.outaddr64(Sym.Value);
SymTabOut.outxword(Sym.Size);
}
}
// Size of each symtab entry.
SymTab.EntSize = TEW->getSymTabEntrySize();
SymTab.Size = SymTabBuf.size();
for (unsigned i = 0, e = SymbolList.size(); i != e; ++i)
EmitSymbol(SymTab, SymbolList[i]);
SymTab.Size = SymTab.size();
}
/// EmitSectionTableStringTable - This method adds and emits a section for the
@ -357,32 +504,25 @@ void ELFWriter::EmitSectionTableStringTable() {
// Now that we know which section number is the .shstrtab section, update the
// e_shstrndx entry in the ELF header.
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
FHOut.fixhalf(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
// Set the NameIdx of each section in the string table and emit the bytes for
// the string table.
unsigned Index = 0;
DataBuffer &Buf = SHStrTab.SectionData;
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
// Set the index into the table. Note if we have lots of entries with
// common suffixes, we could memoize them here if we cared.
I->NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
Buf.insert(Buf.end(), I->Name.begin(), I->Name.end());
// Add a null terminator.
Buf.push_back(0);
SHStrTab.emitString(I->getName());
// Keep track of the number of bytes emitted to this section.
Index += I->Name.size()+1;
Index += I->getName().size()+1;
}
// Set the size of .shstrtab now that we know what it is.
assert(Index == Buf.size());
assert(Index == SHStrTab.size());
SHStrTab.Size = Index;
}
@ -391,9 +531,9 @@ void ELFWriter::EmitSectionTableStringTable() {
/// SectionTable.
void ELFWriter::OutputSectionsAndSectionTable() {
// Pass #1: Compute the file offset for each section.
size_t FileOff = FileHeader.size(); // File header first.
size_t FileOff = ElfHdr.size(); // File header first.
// Emit all of the section data in order.
// Adjust alignment of all section if needed.
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
@ -401,9 +541,14 @@ void ELFWriter::OutputSectionsAndSectionTable() {
if (!I->SectionIdx)
continue;
if (!I->size()) {
I->Offset = FileOff;
continue;
}
// Update Section size
if (!I->Size)
I->Size = I->SectionData.size();
I->Size = I->size();
// Align FileOff to whatever the alignment restrictions of the section are.
if (I->Align)
@ -419,49 +564,40 @@ void ELFWriter::OutputSectionsAndSectionTable() {
// Now that we know where all of the sections will be emitted, set the e_shnum
// entry in the ELF header.
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
FHOut.fixhalf(NumSections, ELFHdr_e_shnum_Offset);
ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
// Now that we know the offset in the file of the section table, update the
// e_shoff address in the ELF header.
FHOut.fixaddr(FileOff, ELFHdr_e_shoff_Offset);
ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
// Now that we know all of the data in the file header, emit it and all of the
// sections!
O.write((char*)&FileHeader[0], FileHeader.size());
FileOff = FileHeader.size();
DataBuffer().swap(FileHeader);
O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
FileOff = ElfHdr.size();
DataBuffer Table;
OutputBuffer TableOut(Table, is64Bit, isLittleEndian);
// Section Header Table blob
BinaryObject SHdrTable(isLittleEndian, is64Bit);
// Emit all of the section data and build the section table itself.
// Emit all of sections to the file and build the section header table.
while (!SectionList.empty()) {
const ELFSection &S = *SectionList.begin();
ELFSection &S = *SectionList.begin();
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
<< ", Size: " << S.Size << ", Offset: " << S.Offset
<< ", SectionData Size: " << S.size() << "\n";
// Align FileOff to whatever the alignment restrictions of the section are.
if (S.Align)
if (S.Align) {
for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
FileOff != NewFileOff; ++FileOff)
FileOff != NewFileOff; ++FileOff)
O << (char)0xAB;
O.write((char*)&S.SectionData[0], S.Size);
}
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.Name
<< ", Size: " << S.Size << ", Offset: " << S.Offset << "\n";
FileOff += S.Size;
TableOut.outword(S.NameIdx); // sh_name - Symbol table name idx
TableOut.outword(S.Type); // sh_type - Section contents & semantics
TableOut.outaddr(S.Flags); // sh_flags - Section flags.
TableOut.outaddr(S.Addr); // sh_addr - The mem addr this section is in.
TableOut.outaddr(S.Offset); // sh_offset - Offset from the file start.
TableOut.outaddr(S.Size); // sh_size - The section size.
TableOut.outword(S.Link); // sh_link - Section header table index link.
TableOut.outword(S.Info); // sh_info - Auxillary information.
TableOut.outaddr(S.Align); // sh_addralign - Alignment of section.
TableOut.outaddr(S.EntSize); // sh_entsize - Size of entries in the section
if (S.size()) {
O.write((char *)&S.getData()[0], S.Size);
FileOff += S.Size;
}
EmitSectionHeader(SHdrTable, S);
SectionList.pop_front();
}
@ -471,5 +607,5 @@ void ELFWriter::OutputSectionsAndSectionTable() {
O << (char)0xAB;
// Emit the section table itself.
O.write((char*)&Table[0], Table.size());
O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
}

View File

@ -16,15 +16,20 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/OutputBuffer.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetELFWriterInfo.h"
#include "ELF.h"
#include <list>
#include <map>
namespace llvm {
class BinaryObject;
class ConstantStruct;
class ELFCodeEmitter;
class GlobalVariable;
class Mangler;
class MachineCodeEmitter;
class ELFCodeEmitter;
class raw_ostream;
/// ELFWriter - This class implements the common target-independent code for
@ -52,6 +57,9 @@ namespace llvm {
/// Target machine description.
TargetMachine &TM;
/// Target Elf Writer description.
const TargetELFWriterInfo *TEW;
/// Mang - The object used to perform name mangling for this module.
Mangler *Mang;
@ -59,6 +67,10 @@ namespace llvm {
/// code for functions to the .o file.
ELFCodeEmitter *MCE;
/// TAI - Target Asm Info, provide information about section names for
/// globals and other target specific stuff.
const TargetAsmInfo *TAI;
//===------------------------------------------------------------------===//
// Properties inferred automatically from the target machine.
//===------------------------------------------------------------------===//
@ -77,13 +89,8 @@ namespace llvm {
bool doFinalization(Module &M);
private:
// The buffer we accumulate the file header into. Note that this should be
// changed into something much more efficient later (and the bitcode writer
// as well!).
DataBuffer FileHeader;
/// ElfHdr - Hold information about the ELF Header
ELFHeader *ElfHdr;
// Blob containing the Elf header
BinaryObject ElfHdr;
/// SectionList - This is the list of sections that we have emitted to the
/// file. Once the file has been completely built, the section header table
@ -97,17 +104,18 @@ namespace llvm {
/// getSection - Return the section with the specified name, creating a new
/// section if one does not already exist.
ELFSection &getSection(const std::string &Name,
unsigned Type, unsigned Flags = 0) {
ELFSection &getSection(const std::string &Name, unsigned Type,
unsigned Flags = 0, unsigned Align = 0) {
ELFSection *&SN = SectionLookup[Name];
if (SN) return *SN;
SectionList.push_back(Name);
SectionList.push_back(ELFSection(Name, isLittleEndian, is64Bit));
SN = &SectionList.back();
SN->SectionIdx = NumSections++;
SN->Type = Type;
SN->Flags = Flags;
SN->Link = ELFSection::SHN_UNDEF;
SN->Align = Align;
return *SN;
}
@ -116,23 +124,36 @@ namespace llvm {
ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC);
}
ELFSection &getNonExecStackSection() {
return getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
}
ELFSection &getSymbolTableSection() {
return getSection(".symtab", ELFSection::SHT_SYMTAB, 0);
}
ELFSection &getStringTableSection() {
return getSection(".strtab", ELFSection::SHT_STRTAB, 0, 1);
}
ELFSection &getDataSection() {
return getSection(".data", ELFSection::SHT_PROGBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC);
}
ELFSection &getBSSSection() {
return getSection(".bss", ELFSection::SHT_NOBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC);
}
/// SymbolTable - This is the list of symbols we have emitted to the file.
/// SymbolList - This is the list of symbols we have emitted to the file.
/// This actually gets rearranged before emission to the file (to put the
/// local symbols first in the list).
std::vector<ELFSym> SymbolTable;
std::vector<ELFSym> SymbolList;
/// PendingSyms - This is a list of externally defined symbols that we have
/// been asked to emit, but have not seen a reference to. When a reference
/// is seen, the symbol will move from this list to the SymbolTable.
/// PendingGlobals - List of externally defined symbols that we have been
/// asked to emit, but have not seen a reference to. When a reference
/// is seen, the symbol will move from this list to the SymbolList.
SetVector<GlobalValue*> PendingGlobals;
// As we complete the ELF file, we need to update fields in the ELF header
@ -142,11 +163,17 @@ namespace llvm {
unsigned ELFHdr_e_shoff_Offset; // e_shoff in ELF header.
unsigned ELFHdr_e_shstrndx_Offset; // e_shstrndx in ELF header.
unsigned ELFHdr_e_shnum_Offset; // e_shnum in ELF header.
private:
void EmitGlobal(GlobalVariable *GV);
void EmitSymbolTable();
void EmitGlobalConstant(const Constant *C, ELFSection &GblS);
void EmitGlobalConstantStruct(const ConstantStruct *CVS,
ELFSection &GblS);
void EmitRelocations();
void EmitSectionHeader(BinaryObject &SHdrTab, const ELFSection &SHdr);
void EmitSectionTableStringTable();
void EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym);
void EmitSymbolTable();
void OutputSectionsAndSectionTable();
};
}

View File

@ -240,7 +240,7 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
if (OptLevel != CodeGenOpt::None) {
PM.add(createMachineLICMPass());
PM.add(createMachineSinkingPass());
printAndVerify(PM, /* allowDoubleDefs= */ true);
printAndVerify(PM, /* allowDoubleDefs= */ false);
}
// Run pre-ra passes.

View File

@ -0,0 +1,158 @@
//===- LazyLiveness.cpp - Lazy, CFG-invariant liveness information --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a lazy liveness analysis as per "Fast Liveness Checking
// for SSA-form Programs," by Boissinot, et al.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lazyliveness"
#include "llvm/CodeGen/LazyLiveness.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
using namespace llvm;
char LazyLiveness::ID = 0;
static RegisterPass<LazyLiveness> X("lazy-liveness", "Lazy Liveness Analysis");
void LazyLiveness::computeBackedgeChain(MachineFunction& mf,
MachineBasicBlock* MBB) {
SparseBitVector<128> tmp = rv[MBB];
tmp.set(preorder[MBB]);
tmp &= backedge_source;
calculated.set(preorder[MBB]);
for (SparseBitVector<128>::iterator I = tmp.begin(); I != tmp.end(); ++I) {
MachineBasicBlock* SrcMBB = rev_preorder[*I];
for (MachineBasicBlock::succ_iterator SI = SrcMBB->succ_begin();
SI != SrcMBB->succ_end(); ++SI) {
MachineBasicBlock* TgtMBB = *SI;
if (backedges.count(std::make_pair(SrcMBB, TgtMBB)) &&
!rv[MBB].test(preorder[TgtMBB])) {
if (!calculated.test(preorder[TgtMBB]))
computeBackedgeChain(mf, TgtMBB);
tv[MBB].set(preorder[TgtMBB]);
tv[MBB] |= tv[TgtMBB];
}
}
tv[MBB].reset(preorder[MBB]);
}
}
bool LazyLiveness::runOnMachineFunction(MachineFunction &mf) {
rv.clear();
tv.clear();
backedges.clear();
backedge_source.clear();
backedge_target.clear();
calculated.clear();
preorder.clear();
MRI = &mf.getRegInfo();
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
// Step 0: Compute preorder numbering for all MBBs.
unsigned num = 0;
for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT.getRootNode()),
DE = df_end(MDT.getRootNode()); DI != DE; ++DI) {
preorder[(*DI)->getBlock()] = num++;
rev_preorder.push_back((*DI)->getBlock());
}
// Step 1: Compute the transitive closure of the CFG, ignoring backedges.
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
POE = po_end(&*mf.begin()); POI != POE; ++POI) {
MachineBasicBlock* MBB = *POI;
SparseBitVector<128>& entry = rv[MBB];
entry.set(preorder[MBB]);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI) {
DenseMap<MachineBasicBlock*, SparseBitVector<128> >::iterator SII =
rv.find(*SI);
// Because we're iterating in postorder, any successor that does not yet
// have an rv entry must be on a backedge.
if (SII != rv.end()) {
entry |= SII->second;
} else {
backedges.insert(std::make_pair(MBB, *SI));
backedge_source.set(preorder[MBB]);
backedge_target.set(preorder[*SI]);
}
}
}
for (SparseBitVector<128>::iterator I = backedge_source.begin();
I != backedge_source.end(); ++I)
computeBackedgeChain(mf, rev_preorder[*I]);
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
POE = po_end(&*mf.begin()); POI != POE; ++POI)
if (!backedge_target.test(preorder[*POI]))
for (MachineBasicBlock::succ_iterator SI = (*POI)->succ_begin(),
SE = (*POI)->succ_end(); SI != SE; ++SI)
if (!backedges.count(std::make_pair(*POI, *SI)) && tv.count(*SI)) {
SparseBitVector<128>& PBV = tv[*POI];
PBV = tv[*SI];
}
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
POE = po_end(&*mf.begin()); POI != POE; ++POI)
tv[*POI].set(preorder[*POI]);
return false;
}
bool LazyLiveness::vregLiveIntoMBB(unsigned vreg, MachineBasicBlock* MBB) {
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
MachineBasicBlock* DefMBB = MRI->def_begin(vreg)->getParent();
unsigned def = preorder[DefMBB];
unsigned max_dom = 0;
for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT[DefMBB]),
DE = df_end(MDT[DefMBB]); DI != DE; ++DI) {
if (preorder[DI->getBlock()] > max_dom) {
max_dom = preorder[(*DI)->getBlock()];
}
}
if (preorder[MBB] <= def || max_dom < preorder[MBB])
return false;
SparseBitVector<128>::iterator I = tv[MBB].begin();
while (I != tv[MBB].end() && *I <= def) ++I;
while (I != tv[MBB].end() && *I < max_dom) {
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(vreg),
UE = MachineRegisterInfo::use_end(); UI != UE; ++UI) {
MachineBasicBlock* UseMBB = UI->getParent();
if (rv[rev_preorder[*I]].test(preorder[UseMBB]))
return true;
unsigned t_dom = 0;
for (df_iterator<MachineDomTreeNode*> DI =
df_begin(MDT[rev_preorder[*I]]), DE = df_end(MDT[rev_preorder[*I]]);
DI != DE; ++DI)
if (preorder[DI->getBlock()] > t_dom) {
max_dom = preorder[(*DI)->getBlock()];
}
I = tv[MBB].begin();
while (I != tv[MBB].end() && *I < t_dom) ++I;
}
}
return false;
}

View File

@ -214,26 +214,33 @@ void RegScavenger::forward() {
}
// Process uses first.
BitVector UseRegs(NumPhysRegs);
BitVector KillRegs(NumPhysRegs);
for (unsigned i = 0, e = UseMOs.size(); i != e; ++i) {
const MachineOperand MO = *UseMOs[i].first;
unsigned Reg = MO.getReg();
assert(isUsed(Reg) && "Using an undefined register!");
if (MO.isKill() && !isReserved(Reg)) {
UseRegs.set(Reg);
// Kill of implicit_def defined registers are ignored. e.g.
// entry: 0x2029ab8, LLVM BB @0x1b06080, ID#0:
// Live Ins: %R0
// %R0<def> = IMPLICIT_DEF
// %R0<def> = IMPLICIT_DEF
// STR %R0<kill>, %R0, %reg0, 0, 14, %reg0, Mem:ST(4,4) [0x1b06510 + 0]
// %R1<def> = LDR %R0, %reg0, 24, 14, %reg0, Mem:LD(4,4) [0x1b065bc + 0]
if (MO.isKill() && !isReserved(Reg) && !isImplicitlyDefined(Reg)) {
KillRegs.set(Reg);
// Mark sub-registers as used.
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs)
UseRegs.set(SubReg);
KillRegs.set(SubReg);
}
}
// Change states of all registers after all the uses are processed to guard
// against multiple uses.
setUnused(UseRegs);
setUnused(KillRegs);
// Process early clobber defs then process defs. We can have a early clobber
// that is dead, it should not conflict with a def that happens one "slot"

View File

@ -563,6 +563,11 @@ void *JIT::getPointerToFunction(Function *F) {
return Addr; // Check if function already code gen'd
MutexGuard locked(lock);
// Now that this thread owns the lock, check if another thread has already
// code gen'd the function.
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr;
// Make sure we read in the function if it exists in this Module.
if (F->hasNotBeenReadFromBitcode()) {

View File

@ -98,12 +98,12 @@ FunctionPass *createARMCodePrinterPass(raw_ostream &O,
FunctionPass *createARMCodeEmitterPass(ARMTargetMachine &TM,
MachineCodeEmitter &MCE);
FunctionPass *createARMCodeEmitterPass( ARMTargetMachine &TM,
MachineCodeEmitter &MCE);
FunctionPass *createARMJITCodeEmitterPass( ARMTargetMachine &TM,
JITCodeEmitter &JCE);
FunctionPass *createARMCodeEmitterPass(ARMTargetMachine &TM,
MachineCodeEmitter &MCE);
FunctionPass *createARMJITCodeEmitterPass(ARMTargetMachine &TM,
JITCodeEmitter &JCE);
FunctionPass *createARMLoadStoreOptimizationPass();
FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false);
FunctionPass *createARMConstantIslandPass();
} // end namespace llvm;

View File

@ -28,6 +28,8 @@ def ArchV5TE : SubtargetFeature<"v5te", "ARMArchVersion", "V5TE",
"ARM v5TE, v5TEj, v5TExp">;
def ArchV6 : SubtargetFeature<"v6", "ARMArchVersion", "V6",
"ARM v6">;
def ArchV6T2 : SubtargetFeature<"v6t2", "ARMArchVersion", "V6T2",
"ARM v6t2">;
def ArchV7A : SubtargetFeature<"v7a", "ARMArchVersion", "V7A",
"ARM v7A">;
def FeatureVFP2 : SubtargetFeature<"vfp2", "ARMFPUType", "VFPv2",
@ -92,9 +94,11 @@ def : Proc<"arm1176jzf-s", [ArchV6, FeatureVFP2]>;
def : Proc<"mpcorenovfp", [ArchV6]>;
def : Proc<"mpcore", [ArchV6, FeatureVFP2]>;
def : Proc<"arm1156t2-s", [ArchV6, FeatureThumb2]>;
def : Proc<"arm1156t2f-s", [ArchV6, FeatureThumb2, FeatureVFP2]>;
// V6T2 Processors.
def : Proc<"arm1156t2-s", [ArchV6T2, FeatureThumb2]>;
def : Proc<"arm1156t2f-s", [ArchV6T2, FeatureThumb2, FeatureVFP2]>;
// V7 Processors.
def : Proc<"cortex-a8", [ArchV7A, FeatureThumb2, FeatureNEON]>;
def : Proc<"cortex-a9", [ArchV7A, FeatureThumb2, FeatureNEON]>;

View File

@ -17,6 +17,11 @@ class CCIfSubtarget<string F, CCAction A>:
class CCIfAlign<string Align, CCAction A>:
CCIf<!strconcat("ArgFlags.getOrigAlign() == ", Align), A>;
/// CCIfFloatABI - Match of the float ABI and the arg. ABIType may be "Hard" or
/// "Soft".
class CCIfFloatABI<string ABIType, CCAction A>:
CCIf<!strconcat("llvm::FloatABIType == llvm::FloatABI::", ABIType), A>;
//===----------------------------------------------------------------------===//
// ARM APCS Calling Convention
//===----------------------------------------------------------------------===//
@ -43,9 +48,10 @@ def RetCC_ARM_APCS : CallingConv<[
]>;
//===----------------------------------------------------------------------===//
// ARM AAPCS (EABI) Calling Convention
// ARM AAPCS (EABI) Calling Convention, common parts
//===----------------------------------------------------------------------===//
def CC_ARM_AAPCS : CallingConv<[
def CC_ARM_AAPCS_Common : CallingConv<[
CCIfType<[i8, i16], CCPromoteToType<i32>>,
@ -53,35 +59,71 @@ def CC_ARM_AAPCS : CallingConv<[
// i64 is 8-aligned i32 here, so we may need to eat R1 as a pad register
// (and the same is true for f64 if VFP is not enabled)
CCIfType<[i32], CCIfAlign<"8", CCAssignToRegWithShadow<[R0, R2], [R0, R1]>>>,
CCIfType<[f64], CCCustom<"CC_ARM_AAPCS_Custom_f64">>,
CCIfType<[f32], CCBitConvertToType<i32>>,
CCIfType<[i32], CCIf<"State.getNextStackOffset() == 0 &&"
"ArgFlags.getOrigAlign() != 8",
CCAssignToReg<[R0, R1, R2, R3]>>>,
CCIfType<[i32], CCAssignToStack<4, 4>>,
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[f64], CCAssignToStack<8, 8>>
]>;
def RetCC_ARM_AAPCS : CallingConv<[
CCIfType<[f32], CCBitConvertToType<i32>>,
CCIfType<[f64], CCCustom<"RetCC_ARM_AAPCS_Custom_f64">>,
def RetCC_ARM_AAPCS_Common : CallingConv<[
CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[R0, R2], [R1, R3]>>
]>;
//===----------------------------------------------------------------------===//
// ARM AAPCS (EABI) Calling Convention
//===----------------------------------------------------------------------===//
def CC_ARM_AAPCS : CallingConv<[
CCIfType<[f64], CCCustom<"CC_ARM_AAPCS_Custom_f64">>,
CCIfType<[f32], CCBitConvertToType<i32>>,
CCDelegateTo<CC_ARM_AAPCS_Common>
]>;
def RetCC_ARM_AAPCS : CallingConv<[
CCIfType<[f64], CCCustom<"RetCC_ARM_AAPCS_Custom_f64">>,
CCIfType<[f32], CCBitConvertToType<i32>>,
CCDelegateTo<RetCC_ARM_AAPCS_Common>
]>;
//===----------------------------------------------------------------------===//
// ARM AAPCS-VFP (EABI) Calling Convention
//===----------------------------------------------------------------------===//
def CC_ARM_AAPCS_VFP : CallingConv<[
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
CCDelegateTo<CC_ARM_AAPCS_Common>
]>;
def RetCC_ARM_AAPCS_VFP : CallingConv<[
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
CCDelegateTo<RetCC_ARM_AAPCS_Common>
]>;
//===----------------------------------------------------------------------===//
// ARM Calling Convention Dispatch
//===----------------------------------------------------------------------===//
def CC_ARM : CallingConv<[
CCIfSubtarget<"isAAPCS_ABI()",
CCIfSubtarget<"hasVFP2()",
CCIfFloatABI<"Hard",
CCDelegateTo<CC_ARM_AAPCS_VFP>>>>,
CCIfSubtarget<"isAAPCS_ABI()", CCDelegateTo<CC_ARM_AAPCS>>,
CCDelegateTo<CC_ARM_APCS>
]>;
def RetCC_ARM : CallingConv<[
CCIfSubtarget<"isAAPCS_ABI()",
CCIfSubtarget<"hasVFP2()",
CCIfFloatABI<"Hard",
CCDelegateTo<RetCC_ARM_AAPCS_VFP>>>>,
CCIfSubtarget<"isAAPCS_ABI()", CCDelegateTo<RetCC_ARM_AAPCS>>,
CCDelegateTo<RetCC_ARM_APCS>
]>;

View File

@ -1101,7 +1101,12 @@ ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
else
RC = ARM::GPRRegisterClass;
if (RegVT == MVT::f64) {
if (FloatABIType == FloatABI::Hard) {
if (RegVT == MVT::f32)
RC = ARM::SPRRegisterClass;
else if (RegVT == MVT::f64)
RC = ARM::DPRRegisterClass;
} else if (RegVT == MVT::f64) {
// f64 is passed in pairs of GPRs and must be combined.
RegVT = MVT::i32;
} else if (!((RegVT == MVT::i32) || (RegVT == MVT::f32)))

View File

@ -451,7 +451,7 @@ multiclass AsXI1_bin_c_irs<bits<4> opcod, string opc, PatFrag opnode> {
/// the function. The first operand is the ID# for this instruction, the second
/// is the index into the MachineConstantPool that this is, the third is the
/// size in bytes of this constant pool entry.
let isNotDuplicable = 1 in
let neverHasSideEffects = 1, isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size),
@ -771,6 +771,7 @@ def STM : AXI4st<(outs),
// Move Instructions.
//
let neverHasSideEffects = 1 in
def MOVr : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm,
"mov", " $dst, $src", []>, UnaryDP;
def MOVs : AsI1<0b1101, (outs GPR:$dst), (ins so_reg:$src), DPSoRegFrm,
@ -946,6 +947,7 @@ def MLA : AsMul1I<0b0000001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
[(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>;
// Extra precision multiplies with low / high results
let neverHasSideEffects = 1 in {
def SMULL : AsMul1I<0b0000110, (outs GPR:$ldst, GPR:$hdst),
(ins GPR:$a, GPR:$b),
"smull", " $ldst, $hdst, $a, $b", []>;
@ -967,6 +969,7 @@ def UMAAL : AMul1I <0b0000010, (outs GPR:$ldst, GPR:$hdst),
(ins GPR:$a, GPR:$b),
"umaal", " $ldst, $hdst, $a, $b", []>,
Requires<[IsARM, HasV6]>;
} // neverHasSideEffects
// Most significant word multiply
def SMMUL : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b),

View File

@ -298,6 +298,7 @@ def tADDrr : TI<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"add $dst, $lhs, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, tGPR:$rhs))]>;
let neverHasSideEffects = 1 in
def tADDhirr : TIt<(outs tGPR:$dst), (ins GPR:$lhs, GPR:$rhs),
"add $dst, $rhs @ addhirr", []>;
@ -387,6 +388,7 @@ def tMOVi8 : TI<(outs tGPR:$dst), (ins i32imm:$src),
// Note: MOV(2) of two low regs updates the flags, so we emit this as 'cpy',
// which is MOV(3). This also supports high registers.
let neverHasSideEffects = 1 in {
def tMOVr : TI<(outs tGPR:$dst), (ins tGPR:$src),
"cpy $dst, $src", []>;
def tMOVhir2lor : TI<(outs tGPR:$dst), (ins GPR:$src),
@ -395,6 +397,7 @@ def tMOVlor2hir : TI<(outs GPR:$dst), (ins tGPR:$src),
"cpy $dst, $src\t@ lor2hir", []>;
def tMOVhir2hir : TI<(outs GPR:$dst), (ins GPR:$src),
"cpy $dst, $src\t@ hir2hir", []>;
} // neverHasSideEffects
def tMUL : TIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"mul $dst, $rhs",

View File

@ -192,11 +192,13 @@ def FCVTSD : AI<(outs SPR:$dst), (ins DPR:$a), VFPUnaryFrm,
let Inst{7-4} = 0b1100;
}
let neverHasSideEffects = 1 in {
def FCPYD : ADuI<0b11101011, 0b0000, 0b0100, (outs DPR:$dst), (ins DPR:$a),
"fcpyd", " $dst, $a", []>;
def FCPYS : ASuI<0b11101011, 0b0000, 0b0100, (outs SPR:$dst), (ins SPR:$a),
"fcpys", " $dst, $a", []>;
} // neverHasSideEffects
def FNEGD : ADuI<0b11101011, 0b0001, 0b0100, (outs DPR:$dst), (ins DPR:$a),
"fnegd", " $dst, $a",

View File

@ -17,24 +17,31 @@
#include "ARMAddressingModes.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumLDMGened , "Number of ldm instructions generated");
STATISTIC(NumSTMGened , "Number of stm instructions generated");
STATISTIC(NumFLDMGened, "Number of fldm instructions generated");
STATISTIC(NumFSTMGened, "Number of fstm instructions generated");
STATISTIC(NumLdStMoved, "Number of load / store instructions moved");
/// ARMAllocLoadStoreOpt - Post- register allocation pass the combine
/// load / store instructions to form ldm / stm instructions.
namespace {
struct VISIBILITY_HIDDEN ARMLoadStoreOpt : public MachineFunctionPass {
@ -81,12 +88,6 @@ namespace {
char ARMLoadStoreOpt::ID = 0;
}
/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
/// optimization pass.
FunctionPass *llvm::createARMLoadStoreOptimizationPass() {
return new ARMLoadStoreOpt();
}
static int getLoadStoreMultipleOpcode(int Opcode) {
switch (Opcode) {
case ARM::LDR:
@ -582,6 +583,23 @@ void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) {
RS->forward(prior(Loc));
}
static int getMemoryOpOffset(const MachineInstr *MI) {
int Opcode = MI->getOpcode();
bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR;
unsigned NumOperands = MI->getDesc().getNumOperands();
unsigned OffField = MI->getOperand(NumOperands-3).getImm();
int Offset = isAM2
? ARM_AM::getAM2Offset(OffField) : ARM_AM::getAM5Offset(OffField) * 4;
if (isAM2) {
if (ARM_AM::getAM2Op(OffField) == ARM_AM::sub)
Offset = -Offset;
} else {
if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub)
Offset = -Offset;
}
return Offset;
}
/// LoadStoreMultipleOpti - An optimization pass to turn multiple LDR / STR
/// ops of the same base and incrementing offset into LDM / STM ops.
bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
@ -606,22 +624,11 @@ bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
bool isMemOp = isMemoryOp(MBBI);
if (isMemOp) {
int Opcode = MBBI->getOpcode();
bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR;
unsigned Size = getLSMultipleTransferSize(MBBI);
unsigned Base = MBBI->getOperand(1).getReg();
unsigned PredReg = 0;
ARMCC::CondCodes Pred = getInstrPredicate(MBBI, PredReg);
unsigned NumOperands = MBBI->getDesc().getNumOperands();
unsigned OffField = MBBI->getOperand(NumOperands-3).getImm();
int Offset = isAM2
? ARM_AM::getAM2Offset(OffField) : ARM_AM::getAM5Offset(OffField) * 4;
if (isAM2) {
if (ARM_AM::getAM2Op(OffField) == ARM_AM::sub)
Offset = -Offset;
} else {
if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub)
Offset = -Offset;
}
int Offset = getMemoryOpOffset(MBBI);
// Watch out for:
// r4 := ldr [r5]
// r5 := ldr [r5, #4]
@ -744,6 +751,17 @@ bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
return NumMerges > 0;
}
namespace {
struct OffsetCompare {
bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
int LOffset = getMemoryOpOffset(LHS);
int ROffset = getMemoryOpOffset(RHS);
assert(LHS == RHS || LOffset != ROffset);
return LOffset > ROffset;
}
};
}
/// MergeReturnIntoLDM - If this is a exit BB, try merging the return op
/// (bx lr) into the preceeding stack restore so it directly restore the value
/// of LR into pc.
@ -788,3 +806,277 @@ bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
delete RS;
return Modified;
}
/// ARMPreAllocLoadStoreOpt - Pre- register allocation pass that move
/// load / stores from consecutive locations close to make it more
/// likely they will be combined later.
namespace {
struct VISIBILITY_HIDDEN ARMPreAllocLoadStoreOpt : public MachineFunctionPass{
static char ID;
ARMPreAllocLoadStoreOpt() : MachineFunctionPass(&ID) {}
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "ARM pre- register allocation load / store optimization pass";
}
private:
bool RescheduleOps(MachineBasicBlock *MBB,
SmallVector<MachineInstr*, 4> &Ops,
unsigned Base, bool isLd,
DenseMap<MachineInstr*, unsigned> &MI2LocMap);
bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB);
};
char ARMPreAllocLoadStoreOpt::ID = 0;
}
bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
TII = Fn.getTarget().getInstrInfo();
TRI = Fn.getTarget().getRegisterInfo();
MRI = &Fn.getRegInfo();
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI)
Modified |= RescheduleLoadStoreInstrs(MFI);
return Modified;
}
static bool IsSafeToMove(bool isLd, unsigned Base,
MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E,
SmallPtrSet<MachineInstr*, 4> MoveOps,
const TargetRegisterInfo *TRI) {
// Are there stores / loads / calls between them?
// FIXME: This is overly conservative. We should make use of alias information
// some day.
while (++I != E) {
const TargetInstrDesc &TID = I->getDesc();
if (TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects())
return false;
if (isLd && TID.mayStore())
return false;
if (!isLd) {
if (TID.mayLoad())
return false;
// It's not safe to move the first 'str' down.
// str r1, [r0]
// strh r5, [r0]
// str r4, [r0, #+4]
if (TID.mayStore() && !MoveOps.count(&*I))
return false;
}
for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) {
MachineOperand &MO = I->getOperand(j);
if (MO.isReg() && MO.isDef() && TRI->regsOverlap(MO.getReg(), Base))
return false;
}
}
return true;
}
bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB,
SmallVector<MachineInstr*, 4> &Ops,
unsigned Base, bool isLd,
DenseMap<MachineInstr*, unsigned> &MI2LocMap) {
bool RetVal = false;
// Sort by offset (in reverse order).
std::sort(Ops.begin(), Ops.end(), OffsetCompare());
// The loads / stores of the same base are in order. Scan them from first to
// last and check for the followins:
// 1. Any def of base.
// 2. Any gaps.
while (Ops.size() > 1) {
unsigned FirstLoc = ~0U;
unsigned LastLoc = 0;
MachineInstr *FirstOp = 0;
MachineInstr *LastOp = 0;
int LastOffset = 0;
unsigned LastBytes = 0;
unsigned NumMove = 0;
for (int i = Ops.size() - 1; i >= 0; --i) {
MachineInstr *Op = Ops[i];
unsigned Loc = MI2LocMap[Op];
if (Loc <= FirstLoc) {
FirstLoc = Loc;
FirstOp = Op;
}
if (Loc >= LastLoc) {
LastLoc = Loc;
LastOp = Op;
}
int Offset = getMemoryOpOffset(Op);
unsigned Bytes = getLSMultipleTransferSize(Op);
if (LastBytes) {
if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes))
break;
}
LastOffset = Offset;
LastBytes = Bytes;
if (++NumMove == 4)
break;
}
if (NumMove <= 1)
Ops.pop_back();
else {
SmallPtrSet<MachineInstr*, 4> MoveOps;
for (int i = NumMove-1; i >= 0; --i)
MoveOps.insert(Ops[i]);
// Be conservative, if the instructions are too far apart, don't
// move them. We want to limit the increase of register pressure.
bool DoMove = (LastLoc - FirstLoc) < NumMove*4;
if (DoMove)
DoMove = IsSafeToMove(isLd, Base, FirstOp, LastOp, MoveOps, TRI);
if (!DoMove) {
for (unsigned i = 0; i != NumMove; ++i)
Ops.pop_back();
} else {
// This is the new location for the loads / stores.
MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp;
while (InsertPos != MBB->end() && MoveOps.count(InsertPos))
++InsertPos;
for (unsigned i = 0; i != NumMove; ++i) {
MachineInstr *Op = Ops.back();
Ops.pop_back();
MBB->splice(InsertPos, MBB, Op);
}
NumLdStMoved += NumMove;
RetVal = true;
}
}
}
return RetVal;
}
bool
ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
bool RetVal = false;
DenseMap<MachineInstr*, unsigned> MI2LocMap;
DenseMap<unsigned, SmallVector<MachineInstr*, 4> > Base2LdsMap;
DenseMap<unsigned, SmallVector<MachineInstr*, 4> > Base2StsMap;
SmallVector<unsigned, 4> LdBases;
SmallVector<unsigned, 4> StBases;
unsigned Loc = 0;
MachineBasicBlock::iterator MBBI = MBB->begin();
MachineBasicBlock::iterator E = MBB->end();
while (MBBI != E) {
for (; MBBI != E; ++MBBI) {
MachineInstr *MI = MBBI;
const TargetInstrDesc &TID = MI->getDesc();
if (TID.isCall() || TID.isTerminator()) {
// Stop at barriers.
++MBBI;
break;
}
MI2LocMap[MI] = Loc++;
if (!isMemoryOp(MI))
continue;
unsigned PredReg = 0;
if (getInstrPredicate(MI, PredReg) != ARMCC::AL)
continue;
int Opcode = MI->getOpcode();
bool isLd = Opcode == ARM::LDR ||
Opcode == ARM::FLDS || Opcode == ARM::FLDD;
unsigned Base = MI->getOperand(1).getReg();
int Offset = getMemoryOpOffset(MI);
bool StopHere = false;
if (isLd) {
DenseMap<unsigned, SmallVector<MachineInstr*, 4> >::iterator BI =
Base2LdsMap.find(Base);
if (BI != Base2LdsMap.end()) {
for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
if (Offset == getMemoryOpOffset(BI->second[i])) {
StopHere = true;
break;
}
}
if (!StopHere)
BI->second.push_back(MI);
} else {
SmallVector<MachineInstr*, 4> MIs;
MIs.push_back(MI);
Base2LdsMap[Base] = MIs;
LdBases.push_back(Base);
}
} else {
DenseMap<unsigned, SmallVector<MachineInstr*, 4> >::iterator BI =
Base2StsMap.find(Base);
if (BI != Base2StsMap.end()) {
for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
if (Offset == getMemoryOpOffset(BI->second[i])) {
StopHere = true;
break;
}
}
if (!StopHere)
BI->second.push_back(MI);
} else {
SmallVector<MachineInstr*, 4> MIs;
MIs.push_back(MI);
Base2StsMap[Base] = MIs;
StBases.push_back(Base);
}
}
if (StopHere) {
// Found a duplicate (a base+offset combination that's seen earlier). Backtrack.
--Loc;
break;
}
}
// Re-schedule loads.
for (unsigned i = 0, e = LdBases.size(); i != e; ++i) {
unsigned Base = LdBases[i];
SmallVector<MachineInstr*, 4> &Lds = Base2LdsMap[Base];
if (Lds.size() > 1)
RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap);
}
// Re-schedule stores.
for (unsigned i = 0, e = StBases.size(); i != e; ++i) {
unsigned Base = StBases[i];
SmallVector<MachineInstr*, 4> &Sts = Base2StsMap[Base];
if (Sts.size() > 1)
RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap);
}
if (MBBI != E) {
Base2LdsMap.clear();
Base2StsMap.clear();
LdBases.clear();
StBases.clear();
}
}
return RetVal;
}
/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
/// optimization pass.
FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) {
if (PreAlloc)
return new ARMPreAllocLoadStoreOpt();
return new ARMLoadStoreOpt();
}

View File

@ -219,3 +219,18 @@ def DPR : RegisterClass<"ARM", [f64], 64, [D0, D1, D2, D3, D4, D5, D6, D7, D8,
// Condition code registers.
def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;
//===----------------------------------------------------------------------===//
// Subregister Set Definitions... now that we have all of the pieces, define the
// sub registers for each register.
//
def : SubRegSet<1, [D0, D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, D12, D13, D14, D15],
[S0, S2, S4, S6, S8, S10, S12, S14,
S16, S18, S20, S22, S24, S26, S28, S30]>;
def : SubRegSet<2, [D0, D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, D12, D13, D14, D15],
[S1, S3, S5, S7, S9, S11, S13, S15,
S17, S19, S21, S23, S25, S27, S29, S31]>;

View File

@ -14,6 +14,8 @@
#include "ARMSubtarget.h"
#include "ARMGenSubtarget.inc"
#include "llvm/Module.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
ARMSubtarget::ARMSubtarget(const Module &M, const std::string &FS,
@ -28,6 +30,10 @@ ARMSubtarget::ARMSubtarget(const Module &M, const std::string &FS,
, CPUString("generic")
, TargetType(isELF) // Default to ELF unless otherwise specified.
, TargetABI(ARM_ABI_APCS) {
// default to soft float ABI
if (FloatABIType == FloatABI::Default)
FloatABIType = FloatABI::Soft;
// Determine default and user specified characteristics
// Parse features string.

View File

@ -23,7 +23,7 @@ class Module;
class ARMSubtarget : public TargetSubtarget {
protected:
enum ARMArchEnum {
V4T, V5T, V5TE, V6, V7A
V4T, V5T, V5TE, V6, V6T2, V7A
};
enum ARMFPEnum {
@ -92,6 +92,7 @@ protected:
bool hasV5TOps() const { return ARMArchVersion >= V5T; }
bool hasV5TEOps() const { return ARMArchVersion >= V5TE; }
bool hasV6Ops() const { return ARMArchVersion >= V6; }
bool hasV6T2Ops() const { return ARMArchVersion >= V6T2; }
bool hasV7Ops() const { return ARMArchVersion >= V7A; }
bool hasVFP2() const { return ARMFPUType >= VFPv2; }
@ -105,6 +106,7 @@ protected:
bool isAAPCS_ABI() const { return TargetABI == ARM_ABI_AAPCS; }
bool isThumb() const { return IsThumb; }
bool isThumb1() const { return IsThumb && (ThumbMode == Thumb1); }
bool isThumb2() const { return IsThumb && (ThumbMode >= Thumb2); }
bool useThumbBacktraces() const { return UseThumbBacktraces; }

View File

@ -23,6 +23,9 @@
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
static cl::opt<bool>
EnablePreLdStOpti("arm-pre-alloc-loadstore-opti", cl::Hidden,
cl::desc("Enable pre-regalloc load store optimization pass"));
static cl::opt<bool> DisableLdStOpti("disable-arm-loadstore-opti", cl::Hidden,
cl::desc("Disable load store optimization pass"));
static cl::opt<bool> DisableIfConversion("disable-arm-if-conversion",cl::Hidden,
@ -144,6 +147,16 @@ bool ARMTargetMachine::addInstSelector(PassManagerBase &PM,
return false;
}
bool ARMTargetMachine::addPreRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
if (!EnablePreLdStOpti)
return false;
// FIXME: temporarily disabling load / store optimization pass for Thumb mode.
if (OptLevel != CodeGenOpt::None && !DisableLdStOpti && !Subtarget.isThumb())
PM.add(createARMLoadStoreOptimizationPass(true));
return true;
}
bool ARMTargetMachine::addPreEmitPass(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// FIXME: temporarily disabling load / store optimization pass for Thumb mode.

View File

@ -71,6 +71,7 @@ public:
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addAssemblyEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,

View File

@ -5,6 +5,7 @@ add_llvm_library(LLVMTarget
Target.cpp
TargetAsmInfo.cpp
TargetData.cpp
TargetELFWriterInfo.cpp
TargetFrameInfo.cpp
TargetInstrInfo.cpp
TargetMachOWriterInfo.cpp
@ -14,4 +15,4 @@ add_llvm_library(LLVMTarget
TargetSubtarget.cpp
)
# TODO: Support other targets besides X86. See Makefile.
# TODO: Support other targets besides X86. See Makefile.

View File

@ -33,8 +33,9 @@ bool PIC16AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
return true;
}
/// runOnMachineFunction - This uses the printInstruction()
/// method to print assembly for each instruction.
/// runOnMachineFunction - This emits the frame section, autos section and
/// assembly for each instruction. Also takes care of function begin debug
/// directive and file begin debug directive (if required) for the function.
///
bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
@ -47,20 +48,38 @@ bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
const Function *F = MF.getFunction();
CurrentFnName = Mang->getValueName(F);
DbgInfo.EmitFileDirective(F);
// Emit the function variables.
// Iterate over the first basic block instructions to find if it has a
// DebugLoc. If so emit .file directive. Instructions such as movlw do not
// have valid DebugLoc, so need to iterate over instructions.
MachineFunction::const_iterator I = MF.begin();
for (MachineBasicBlock::const_iterator MBBI = I->begin(), E = I->end();
MBBI != E; MBBI++) {
const DebugLoc DLoc = MBBI->getDebugLoc();
if (!DLoc.isUnknown()) {
GlobalVariable *CU = MF.getDebugLocTuple(DLoc).CompileUnit;
unsigned line = MF.getDebugLocTuple(DLoc).Line;
DbgInfo.EmitFileDirective(CU);
DbgInfo.SetFunctBeginLine(line);
break;
}
}
// Emit the function frame (args and temps).
EmitFunctionFrame(MF);
// Emit function begin debug directives
// Emit function begin debug directive.
DbgInfo.EmitFunctBeginDI(F);
// Emit the autos section of function.
EmitAutos(CurrentFnName);
// Now emit the instructions of function in its code section.
const char *codeSection = PAN::getCodeSectionName(CurrentFnName).c_str();
const Section *fCodeSection = TAI->getNamedSection(codeSection,
SectionFlags::Code);
O << "\n";
// Start the Code Section.
O << "\n";
SwitchToSection (fCodeSection);
// Emit the frame address of the function at the beginning of code.
@ -77,14 +96,17 @@ bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
printBasicBlockLabel(I, true);
O << '\n';
}
// Print a basic block.
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Emit the line directive if source line changed.
const DebugLoc DL = II->getDebugLoc();
if (!DL.isUnknown()) {
@ -102,6 +124,7 @@ bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Emit function end debug directives.
DbgInfo.EmitFunctEndDI(F, CurLine);
return false; // we didn't modify anything.
}
@ -158,11 +181,16 @@ void PIC16AsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
}
}
/// printCCOperand - Print the cond code operand.
///
void PIC16AsmPrinter::printCCOperand(const MachineInstr *MI, int opNum) {
int CC = (int)MI->getOperand(opNum).getImm();
O << PIC16CondCodeToString((PIC16CC::CondCodes)CC);
}
/// printLibcallDecls - print the extern declarations for compiler
/// intrinsics.
///
void PIC16AsmPrinter::printLibcallDecls(void) {
// If no libcalls used, return.
if (LibcallDecls.empty()) return;
@ -180,6 +208,10 @@ void PIC16AsmPrinter::printLibcallDecls(void) {
O << TAI->getCommentString() << "External decls for libcalls - END." <<"\n";
}
/// doInitialization - Perfrom Module level initializations here.
/// One task that we do here is to sectionize all global variables.
/// The MemSelOptimizer pass depends on the sectionizing.
///
bool PIC16AsmPrinter::doInitialization (Module &M) {
bool Result = AsmPrinter::doInitialization(M);
@ -194,23 +226,23 @@ bool PIC16AsmPrinter::doInitialization (Module &M) {
I->setSection(TAI->SectionForGlobal(I)->getName());
}
DbgInfo.EmitFileDirective(M);
DbgInfo.Init(M);
EmitFunctionDecls(M);
EmitUndefinedVars(M);
EmitDefinedVars(M);
EmitIData(M);
EmitUData(M);
EmitRomData(M);
DbgInfo.PopulateFunctsDI(M);
return Result;
}
// Emit extern decls for functions imported from other modules, and emit
// global declarations for function defined in this module and which are
// available to other modules.
/// Emit extern decls for functions imported from other modules, and emit
/// global declarations for function defined in this module and which are
/// available to other modules.
///
void PIC16AsmPrinter::EmitFunctionDecls (Module &M) {
// Emit declarations for external functions.
O << TAI->getCommentString() << "Function Declarations - BEGIN." <<"\n";
O <<"\n"<<TAI->getCommentString() << "Function Declarations - BEGIN." <<"\n";
for (Module::iterator I = M.begin(), E = M.end(); I != E; I++) {
std::string Name = Mang->getValueName(I);
if (Name.compare("@abort") == 0)
@ -280,6 +312,7 @@ void PIC16AsmPrinter::EmitRomData (Module &M)
bool PIC16AsmPrinter::doFinalization(Module &M) {
printLibcallDecls();
EmitRemainingAutos();
DbgInfo.EmitVarDebugInfo(M);
DbgInfo.EmitEOF();
O << "\n\t" << "END\n";
@ -383,6 +416,8 @@ void PIC16AsmPrinter::EmitAutos (std::string FunctName)
for (unsigned i = 0; i < AutosSections.size(); i++) {
O << "\n";
if (AutosSections[i]->S_->getName() == SectionName) {
// Set the printing status to true
AutosSections[i]->setPrintedStatus(true);
SwitchToSection(AutosSections[i]->S_);
std::vector<const GlobalVariable*> Items = AutosSections[i]->Items;
for (unsigned j = 0; j < Items.size(); j++) {
@ -398,3 +433,34 @@ void PIC16AsmPrinter::EmitAutos (std::string FunctName)
}
}
// Print autos that were not printed during the code printing of functions.
// As the functions might themselves would have got deleted by the optimizer.
void PIC16AsmPrinter::EmitRemainingAutos()
{
const TargetData *TD = TM.getTargetData();
// Now print Autos section for this function.
std::vector <PIC16Section *>AutosSections = PTAI->AutosSections;
for (unsigned i = 0; i < AutosSections.size(); i++) {
// if the section is already printed then don't print again
if (AutosSections[i]->isPrinted())
continue;
// Set status as printed
AutosSections[i]->setPrintedStatus(true);
O << "\n";
SwitchToSection(AutosSections[i]->S_);
std::vector<const GlobalVariable*> Items = AutosSections[i]->Items;
for (unsigned j = 0; j < Items.size(); j++) {
std::string VarName = Mang->getValueName(Items[j]);
Constant *C = Items[j]->getInitializer();
const Type *Ty = C->getType();
unsigned Size = TD->getTypeAllocSize(Ty);
// Emit memory reserve directive.
O << VarName << " RES " << Size << "\n";
}
}
}

View File

@ -52,6 +52,7 @@ namespace llvm {
void EmitIData (Module &M);
void EmitUData (Module &M);
void EmitAutos (std::string FunctName);
void EmitRemainingAutos ();
void EmitRomData (Module &M);
void EmitFunctionFrame(MachineFunction &MF);
void printLibcallDecls(void);

View File

@ -18,13 +18,6 @@
using namespace llvm;
PIC16DbgInfo::~PIC16DbgInfo() {
for(std::map<std::string, DISubprogram *>::iterator i = FunctNameMap.begin();
i!=FunctNameMap.end(); i++)
delete i->second;
FunctNameMap.clear();
}
void PIC16DbgInfo::PopulateDebugInfo(DIType Ty, unsigned short &TypeNo,
bool &HasAux, int Aux[],
std::string &TypeName) {
@ -70,7 +63,7 @@ void PIC16DbgInfo::PopulateDebugInfo(DIType Ty, unsigned short &TypeNo,
}
HasAux = true;
// In auxillary entry for array, 7th and 8th byte represent array size.
Aux[6] = size;
Aux[6] = size & 0xff;
Aux[7] = size >> 8;
DIType BaseType = CTy.getTypeDerivedFrom();
PopulateDebugInfo(BaseType, TypeNo, HasAux, Aux, TypeName);
@ -86,10 +79,14 @@ void PIC16DbgInfo::PopulateDebugInfo(DIType Ty, unsigned short &TypeNo,
else
TypeNo = TypeNo | PIC16Dbg::T_UNION;
CTy.getName(TypeName);
unsigned size = CTy.getSizeInBits()/8;
// UniqueSuffix is .number where number is obtained from
// llvm.dbg.composite<number>.
std::string UniqueSuffix = "." + Ty.getGV()->getName().substr(18);
TypeName += UniqueSuffix;
unsigned short size = CTy.getSizeInBits()/8;
// 7th and 8th byte represent size.
HasAux = true;
Aux[6] = size;
Aux[6] = size & 0xff;
Aux[7] = size >> 8;
break;
}
@ -145,37 +142,84 @@ short PIC16DbgInfo::getClass(DIGlobalVariable DIGV) {
return ClassNo;
}
void PIC16DbgInfo::PopulateFunctsDI(Module &M) {
GlobalVariable *Root = M.getGlobalVariable("llvm.dbg.subprograms");
if (!Root)
return;
Constant *RootC = cast<Constant>(*Root->use_begin());
for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end();
UI != UE; ++UI)
for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end();
UUI != UUE; ++UUI) {
GlobalVariable *GVSP = cast<GlobalVariable>(*UUI);
DISubprogram *SP = new DISubprogram(GVSP);
std::string Name;
SP->getLinkageName(Name);
FunctNameMap[Name] = SP;
}
return;
void PIC16DbgInfo::Init(Module &M) {
// Do all debug related initializations here.
EmitFileDirective(M);
EmitCompositeTypeDecls(M);
}
DISubprogram* PIC16DbgInfo::getFunctDI(std::string FunctName) {
return FunctNameMap[FunctName];
void PIC16DbgInfo::EmitCompositeTypeDecls(Module &M) {
for(iplist<GlobalVariable>::iterator I = M.getGlobalList().begin(),
E = M.getGlobalList().end(); I != E; I++) {
// Structures and union declaration's debug info has llvm.dbg.composite
// in its name.
if(I->getName().find("llvm.dbg.composite") != std::string::npos) {
GlobalVariable *GV = cast<GlobalVariable >(I);
DICompositeType CTy(GV);
if (CTy.getTag() == dwarf::DW_TAG_union_type ||
CTy.getTag() == dwarf::DW_TAG_structure_type ) {
std::string name;
CTy.getName(name);
std::string DIVar = I->getName();
// Get the number after llvm.dbg.composite and make UniqueSuffix from
// it.
std::string UniqueSuffix = "." + DIVar.substr(18);
std::string MangledCTyName = name + UniqueSuffix;
unsigned short size = CTy.getSizeInBits()/8;
int Aux[PIC16Dbg::AuxSize] = {0};
// 7th and 8th byte represent size of structure/union.
Aux[6] = size & 0xff;
Aux[7] = size >> 8;
// Emit .def for structure/union tag.
if( CTy.getTag() == dwarf::DW_TAG_union_type)
EmitSymbol(MangledCTyName, PIC16Dbg::C_UNTAG);
else if (CTy.getTag() == dwarf::DW_TAG_structure_type)
EmitSymbol(MangledCTyName, PIC16Dbg::C_STRTAG);
// Emit auxiliary debug information for structure/union tag.
EmitAuxEntry(MangledCTyName, Aux, PIC16Dbg::AuxSize);
unsigned long Value = 0;
DIArray Elements = CTy.getTypeArray();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; i++) {
DIDescriptor Element = Elements.getElement(i);
unsigned short TypeNo = 0;
bool HasAux = false;
int ElementAux[PIC16Dbg::AuxSize] = { 0 };
std::string TypeName = "";
std::string ElementName;
GlobalVariable *GV = Element.getGV();
DIDerivedType DITy(GV);
DITy.getName(ElementName);
unsigned short ElementSize = DITy.getSizeInBits()/8;
// Get mangleddd name for this structure/union element.
std::string MangMemName = ElementName + UniqueSuffix;
PopulateDebugInfo(DITy, TypeNo, HasAux, ElementAux, TypeName);
short Class;
if( CTy.getTag() == dwarf::DW_TAG_union_type)
Class = PIC16Dbg::C_MOU;
else if (CTy.getTag() == dwarf::DW_TAG_structure_type)
Class = PIC16Dbg::C_MOS;
EmitSymbol(MangMemName, Class, TypeNo, Value);
if (CTy.getTag() == dwarf::DW_TAG_structure_type)
Value += ElementSize;
if (HasAux)
EmitAuxEntry(MangMemName, ElementAux, PIC16Dbg::AuxSize, TypeName);
}
// Emit mangled Symbol for end of structure/union.
std::string EOSSymbol = ".eos" + UniqueSuffix;
EmitSymbol(EOSSymbol, PIC16Dbg::C_EOS);
EmitAuxEntry(EOSSymbol, Aux, PIC16Dbg::AuxSize, MangledCTyName);
}
}
}
}
void PIC16DbgInfo::EmitFunctBeginDI(const Function *F) {
std::string FunctName = F->getName();
DISubprogram *SP = getFunctDI(FunctName);
if (SP) {
if (EmitDebugDirectives) {
std::string FunctBeginSym = ".bf." + FunctName;
std::string BlockBeginSym = ".bb." + FunctName;
int FunctBeginLine = SP->getLineNumber();
int BFAux[PIC16Dbg::AuxSize] = {0};
BFAux[4] = FunctBeginLine;
BFAux[5] = FunctBeginLine >> 8;
@ -189,8 +233,7 @@ void PIC16DbgInfo::EmitFunctBeginDI(const Function *F) {
void PIC16DbgInfo::EmitFunctEndDI(const Function *F, unsigned Line) {
std::string FunctName = F->getName();
DISubprogram *SP = getFunctDI(FunctName);
if (SP) {
if (EmitDebugDirectives) {
std::string FunctEndSym = ".ef." + FunctName;
std::string BlockEndSym = ".eb." + FunctName;
@ -208,14 +251,21 @@ void PIC16DbgInfo::EmitFunctEndDI(const Function *F, unsigned Line) {
/// EmitAuxEntry - Emit Auxiliary debug information.
///
void PIC16DbgInfo::EmitAuxEntry(const std::string VarName, int Aux[], int num) {
void PIC16DbgInfo::EmitAuxEntry(const std::string VarName, int Aux[], int num,
std::string tag) {
O << "\n\t.dim " << VarName << ", 1" ;
if (tag != "")
O << ", " << tag;
for (int i = 0; i<num; i++)
O << "," << Aux[i];
}
void PIC16DbgInfo::EmitSymbol(std::string Name, int Class) {
O << "\n\t" << ".def "<< Name << ", debug, class = " << Class;
void PIC16DbgInfo::EmitSymbol(std::string Name, short Class, unsigned short
Type, unsigned long Value) {
O << "\n\t" << ".def "<< Name << ", type = " << Type << ", class = "
<< Class;
if (Value > 0)
O << ", value = " << Value;
}
void PIC16DbgInfo::EmitVarDebugInfo(Module &M) {
@ -241,18 +291,8 @@ void PIC16DbgInfo::EmitVarDebugInfo(Module &M) {
O << "\n\t.type " << VarName << ", " << TypeNo;
short ClassNo = getClass(DIGV);
O << "\n\t.class " << VarName << ", " << ClassNo;
if (HasAux) {
if (TypeName != "") {
// Emit debug info for structure and union objects after
// .dim directive supports structure/union tag name in aux entry.
/* O << "\n\t.dim " << VarName << ", 1," << TypeName;
for (int i = 0; i<PIC16Dbg::AuxSize; i++)
O << "," << Aux[i];*/
}
else {
EmitAuxEntry(VarName, Aux, PIC16Dbg::AuxSize);
}
}
if (HasAux)
EmitAuxEntry(VarName, Aux, PIC16Dbg::AuxSize, TypeName);
}
}
}
@ -262,26 +302,20 @@ void PIC16DbgInfo::EmitVarDebugInfo(Module &M) {
void PIC16DbgInfo::EmitFileDirective(Module &M) {
GlobalVariable *CU = M.getNamedGlobal("llvm.dbg.compile_unit");
if (CU) {
DICompileUnit DIUnit(CU);
std::string Dir, FN;
std::string File = DIUnit.getDirectory(Dir) + "/" + DIUnit.getFilename(FN);
O << "\n\t.file\t\"" << File << "\"\n" ;
CurFile = File;
EmitDebugDirectives = true;
EmitFileDirective(CU, false);
}
}
void PIC16DbgInfo::EmitFileDirective(const Function *F) {
std::string FunctName = F->getName();
DISubprogram *SP = getFunctDI(FunctName);
if (SP) {
std::string Dir, FN;
DICompileUnit CU = SP->getCompileUnit();
std::string File = CU.getDirectory(Dir) + "/" + CU.getFilename(FN);
if ( File != CurFile) {
void PIC16DbgInfo::EmitFileDirective(GlobalVariable *CU, bool EmitEof) {
std::string Dir, FN;
DICompileUnit DIUnit(CU);
std::string File = DIUnit.getDirectory(Dir) + "/" + DIUnit.getFilename(FN);
if ( File != CurFile ) {
if (EmitEof)
EmitEOF();
O << "\n\t.file\t\"" << File << "\"\n" ;
CurFile = File;
}
O << "\n\t.file\t\"" << File << "\"\n" ;
CurFile = File;
}
}
@ -290,3 +324,6 @@ void PIC16DbgInfo::EmitEOF() {
O << "\n\t.EOF";
}
void PIC16DbgInfo::SetFunctBeginLine(unsigned line) {
FunctBeginLine = line;
}

View File

@ -91,29 +91,36 @@ namespace llvm {
class raw_ostream;
class PIC16DbgInfo {
std::map <std::string, DISubprogram *> FunctNameMap;
raw_ostream &O;
const TargetAsmInfo *TAI;
std::string CurFile;
// EmitDebugDirectives is set if debug information is available. Default
// value for it is false.
bool EmitDebugDirectives;
unsigned FunctBeginLine;
public:
PIC16DbgInfo(raw_ostream &o, const TargetAsmInfo *T) : O(o), TAI(T) {
CurFile = "";
CurFile = "";
EmitDebugDirectives = false;
}
~PIC16DbgInfo();
void PopulateDebugInfo(DIType Ty, unsigned short &TypeNo, bool &HasAux,
int Aux[], std::string &TypeName);
unsigned GetTypeDebugNumber(std::string &type);
short getClass(DIGlobalVariable DIGV);
void PopulateFunctsDI(Module &M);
DISubprogram *getFunctDI(std::string FunctName);
void EmitFunctBeginDI(const Function *F);
void Init(Module &M);
void EmitCompositeTypeDecls(Module &M);
void EmitFunctEndDI(const Function *F, unsigned Line);
void EmitAuxEntry(const std::string VarName, int Aux[], int num);
inline void EmitSymbol(std::string Name, int Class);
void EmitAuxEntry(const std::string VarName, int Aux[],
int num = PIC16Dbg::AuxSize, std::string tag = "");
inline void EmitSymbol(std::string Name, short Class,
unsigned short Type = PIC16Dbg::T_NULL,
unsigned long Value = 0);
void EmitVarDebugInfo(Module &M);
void EmitFileDirective(Module &M);
void EmitFileDirective(const Function *F);
void EmitFileDirective(GlobalVariable *CU, bool EmitEof = true);
void EmitEOF();
void SetFunctBeginLine(unsigned line);
};
} // end namespace llvm;
#endif

View File

@ -56,6 +56,17 @@ static const char *getIntrinsicName(unsigned opcode) {
case RTLIB::SREM_I32: Basename = "srem.i32"; break;
case RTLIB::UREM_I16: Basename = "urem.i16"; break;
case RTLIB::UREM_I32: Basename = "urem.i32"; break;
case RTLIB::FPTOSINT_F32_I32:
Basename = "f32_to_si32"; break;
case RTLIB::SINTTOFP_I32_F32:
Basename = "si32_to_f32"; break;
case RTLIB::ADD_F32: Basename = "add.f32"; break;
case RTLIB::SUB_F32: Basename = "sub.f32"; break;
case RTLIB::MUL_F32: Basename = "mul.f32"; break;
case RTLIB::DIV_F32: Basename = "div.f32"; break;
}
std::string prefix = PAN::getTagName(PAN::PREFIX_SYMBOL);
@ -113,7 +124,17 @@ PIC16TargetLowering::PIC16TargetLowering(PIC16TargetMachine &TM)
// Unsigned remainder lib call names
setLibcallName(RTLIB::UREM_I16, getIntrinsicName(RTLIB::UREM_I16));
setLibcallName(RTLIB::UREM_I32, getIntrinsicName(RTLIB::UREM_I32));
// Floating point operations
setLibcallName(RTLIB::FPTOSINT_F32_I32,
getIntrinsicName(RTLIB::FPTOSINT_F32_I32));
setLibcallName(RTLIB::SINTTOFP_I32_F32,
getIntrinsicName(RTLIB::SINTTOFP_I32_F32));
setLibcallName(RTLIB::ADD_F32, getIntrinsicName(RTLIB::ADD_F32));
setLibcallName(RTLIB::SUB_F32, getIntrinsicName(RTLIB::SUB_F32));
setLibcallName(RTLIB::MUL_F32, getIntrinsicName(RTLIB::MUL_F32));
setLibcallName(RTLIB::DIV_F32, getIntrinsicName(RTLIB::DIV_F32));
setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);

View File

@ -33,9 +33,13 @@ namespace llvm {
struct PIC16Section {
const Section *S_; // Connection to actual Section.
unsigned Size; // Total size of the objects contained.
bool SectionPrinted;
std::vector<const GlobalVariable*> Items;
PIC16Section (const Section *s) { S_ = s; Size = 0; }
PIC16Section (const Section *s) { S_ = s; Size = 0;
SectionPrinted = false;}
bool isPrinted() { return SectionPrinted ; }
void setPrintedStatus(bool status) { SectionPrinted = status ;}
};
struct PIC16TargetAsmInfo : public TargetAsmInfo {

View File

@ -0,0 +1,36 @@
//===-- lib/Target/TargetELFWriterInfo.cpp - ELF Writer Info --0-*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetELFWriterInfo class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Function.h"
#include "llvm/Target/TargetELFWriterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
TargetELFWriterInfo::TargetELFWriterInfo(TargetMachine &tm) : TM(tm) {
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
}
TargetELFWriterInfo::~TargetELFWriterInfo() {}
/// getFunctionAlignment - Returns the alignment for function 'F', targets
/// with different alignment constraints should overload this method
unsigned TargetELFWriterInfo::getFunctionAlignment(const Function *F) const {
const TargetData *TD = TM.getTargetData();
unsigned FnAlign = F->getAlignment();
unsigned TDAlign = TD->getPointerABIAlignment();
unsigned Align = std::max(FnAlign, TDAlign);
assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
return Align;
}

View File

@ -30,6 +30,7 @@ namespace llvm {
bool FiniteOnlyFPMathOption;
bool HonorSignDependentRoundingFPMathOption;
bool UseSoftFloat;
FloatABI::ABIType FloatABIType;
bool NoImplicitFloat;
bool NoZerosInBSS;
bool ExceptionHandling;
@ -84,6 +85,19 @@ GenerateSoftFloatCalls("soft-float",
cl::desc("Generate software floating point library calls"),
cl::location(UseSoftFloat),
cl::init(false));
static cl::opt<llvm::FloatABI::ABIType, true>
FloatABIForCalls("float-abi",
cl::desc("Choose float ABI type"),
cl::location(FloatABIType),
cl::init(FloatABI::Default),
cl::values(
clEnumValN(FloatABI::Default, "default",
"Target default float ABI type"),
clEnumValN(FloatABI::Soft, "soft",
"Soft float ABI (implied by -soft-float)"),
clEnumValN(FloatABI::Hard, "hard",
"Hard float ABI (uses FP registers)"),
clEnumValEnd));
static cl::opt<bool, true>
DontPlaceZerosInBSS("nozero-initialized-in-bss",
cl::desc("Don't place zero-initialized symbols into bss section"),
@ -162,6 +176,14 @@ EnableStrongPHIElim(cl::Hidden, "strong-phi-elim",
// TargetMachine Class
//
TargetMachine::TargetMachine()
: AsmInfo(0) {
// Typically it will be subtargets that will adjust FloatABIType from Default
// to Soft or Hard.
if (UseSoftFloat)
FloatABIType = FloatABI::Soft;
}
TargetMachine::~TargetMachine() {
delete AsmInfo;
}

View File

@ -482,35 +482,6 @@ _usesbb:
//===---------------------------------------------------------------------===//
Currently we don't have elimination of redundant stack manipulations. Consider
the code:
int %main() {
entry:
call fastcc void %test1( )
call fastcc void %test2( sbyte* cast (void ()* %test1 to sbyte*) )
ret int 0
}
declare fastcc void %test1()
declare fastcc void %test2(sbyte*)
This currently compiles to:
subl $16, %esp
call _test5
addl $12, %esp
subl $16, %esp
movl $_test5, (%esp)
call _test6
addl $12, %esp
The add\sub pair is really unneeded here.
//===---------------------------------------------------------------------===//
Consider the expansion of:
define i32 @test3(i32 %X) {
@ -902,34 +873,6 @@ condition register is dead. xor reg reg is shorter than mov reg, #0.
//===---------------------------------------------------------------------===//
We aren't matching RMW instructions aggressively
enough. Here's a reduced testcase (more in PR1160):
define void @test(i32* %huge_ptr, i32* %target_ptr) {
%A = load i32* %huge_ptr ; <i32> [#uses=1]
%B = load i32* %target_ptr ; <i32> [#uses=1]
%C = or i32 %A, %B ; <i32> [#uses=1]
store i32 %C, i32* %target_ptr
ret void
}
$ llvm-as < t.ll | llc -march=x86-64
_test:
movl (%rdi), %eax
orl (%rsi), %eax
movl %eax, (%rsi)
ret
That should be something like:
_test:
movl (%rdi), %eax
orl %eax, (%rsi)
ret
//===---------------------------------------------------------------------===//
The following code:
bb114.preheader: ; preds = %cond_next94
@ -1897,3 +1840,60 @@ The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona,
Core 2, and "Generic"
//===---------------------------------------------------------------------===//
Testcase:
int a(int x) { return (x & 127) > 31; }
Current output:
movl 4(%esp), %eax
andl $127, %eax
cmpl $31, %eax
seta %al
movzbl %al, %eax
ret
Ideal output:
xorl %eax, %eax
testl $96, 4(%esp)
setne %al
ret
We could do this transformation in instcombine, but it's only clearly
beneficial on platforms with a test instruction.
//===---------------------------------------------------------------------===//
Testcase:
int x(int a) { return (a&0xf0)>>4; }
Current output:
movl 4(%esp), %eax
shrl $4, %eax
andl $15, %eax
ret
Ideal output:
movzbl 4(%esp), %eax
shrl $4, %eax
ret
//===---------------------------------------------------------------------===//
Testcase:
int x(int a) { return (a & 0x80) ? 0x100 : 0; }
Current output:
testl $128, 4(%esp)
setne %al
movzbl %al, %eax
shll $8, %eax
ret
Ideal output:
movl 4(%esp), %eax
addl %eax, %eax
andl $256, %eax
ret
We generally want to fold shifted tests of a single bit into a shift+and on x86.
//===---------------------------------------------------------------------===//

View File

@ -215,50 +215,6 @@ def CC_X86_Win64_C : CallingConv<[
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 16>>
]>;
// Tail call convention (fast): One register is reserved for target address,
// namely R9
def CC_X86_64_TailCall : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<8, 8>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 MMX (except for v1i64) vector arguments are passed in XMM
// registers on Darwin.
CCIfType<[v8i8, v4i16, v2i32, v2f32],
CCIfSubtarget<"isTargetDarwin()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 v1i64 vector arguments are passed in GPRs on Darwin.
CCIfType<[v1i64],
CCIfSubtarget<"isTargetDarwin()",
CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 8-byte aligned.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
]>;
//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//

View File

@ -12,8 +12,27 @@
//===----------------------------------------------------------------------===//
#include "X86ELFWriterInfo.h"
#include "llvm/Function.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
X86ELFWriterInfo::X86ELFWriterInfo(bool is64Bit) :
TargetELFWriterInfo(is64Bit ? EM_X86_64 : EM_386) {}
X86ELFWriterInfo::X86ELFWriterInfo(TargetMachine &TM)
: TargetELFWriterInfo(TM) {
bool is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
EMachine = is64Bit ? EM_X86_64 : EM_386;
}
X86ELFWriterInfo::~X86ELFWriterInfo() {}
unsigned X86ELFWriterInfo::getFunctionAlignment(const Function *F) const {
unsigned FnAlign = 4;
if (F->hasFnAttr(Attribute::OptimizeForSize))
FnAlign = 1;
if (F->getAlignment())
FnAlign = Log2_32(F->getAlignment());
return (1 << FnAlign);
}

View File

@ -20,8 +20,10 @@ namespace llvm {
class X86ELFWriterInfo : public TargetELFWriterInfo {
public:
X86ELFWriterInfo(bool is64Bit);
X86ELFWriterInfo(TargetMachine &TM);
virtual ~X86ELFWriterInfo();
virtual unsigned getFunctionAlignment(const Function *F) const;
};
} // end llvm namespace

View File

@ -171,8 +171,6 @@ CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return CC_X86_Win64_C;
else if (CC == CallingConv::Fast && isTaillCall)
return CC_X86_64_TailCall;
else
return CC_X86_64_C;
}

View File

@ -944,7 +944,7 @@ SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
SDValue StackAdjustment = TailCall.getOperand(2);
assert(((TargetAddress.getOpcode() == ISD::Register &&
(cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) ||
TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
"Expecting an global address, external symbol, or register");
@ -1171,8 +1171,6 @@ CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return CC_X86_Win64_C;
else if (CC == CallingConv::Fast && PerformTailCallOpt)
return CC_X86_64_TailCall;
else
return CC_X86_64_C;
}
@ -1799,7 +1797,7 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
} else if (IsTailCall) {
unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
Chain = DAG.getCopyToReg(Chain, dl,
DAG.getRegister(Opc, getPointerTy()),
@ -7696,7 +7694,7 @@ static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
SelectionDAG &DAG, MachineFrameInfo *MFI,
const TargetLowering &TLI) {
LDBase = NULL;
LastLoadedElt = -1;
LastLoadedElt = -1U;
for (unsigned i = 0; i < NumElems; ++i) {
if (N->getMaskElt(i) < 0) {
if (!LDBase)

View File

@ -822,6 +822,13 @@ void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
}
unsigned ReadyLabelId = 0;
if (needsFrameMoves) {
// Mark effective beginning of when frame pointer is ready.
ReadyLabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(ReadyLabelId);
}
// Skip the callee-saved push instructions.
while (MBBI != MBB.end() &&
(MBBI->getOpcode() == X86::PUSH32r ||
@ -831,67 +838,61 @@ void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
if (NumBytes) { // Adjust stack pointer: ESP -= numbytes.
if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
// Check, whether EAX is livein for this function.
bool isEAXAlive = false;
for (MachineRegisterInfo::livein_iterator
// Adjust stack pointer: ESP -= numbytes.
if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
// Check, whether EAX is livein for this function.
bool isEAXAlive = false;
for (MachineRegisterInfo::livein_iterator
II = MF.getRegInfo().livein_begin(),
EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
unsigned Reg = II->first;
isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
Reg == X86::AH || Reg == X86::AL);
}
// Function prologue calls _alloca to probe the stack when allocating more
// than 4k bytes in one go. Touching the stack at 4K increments is
// necessary to ensure that the guard pages used by the OS virtual memory
// manager are allocated in correct sequence.
if (!isEAXAlive) {
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addImm(NumBytes);
BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
} else {
// Save EAX
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
.addReg(X86::EAX, RegState::Kill);
// Allocate NumBytes-4 bytes on stack. We'll also use 4 already
// allocated bytes for EAX.
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addImm(NumBytes-4);
BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
// Restore EAX
MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
X86::EAX),
StackPtr, false, NumBytes-4);
MBB.insert(MBBI, MI);
}
} else {
// If there is an SUB32ri of ESP immediately before this instruction,
// merge the two. This can be the case when tail call elimination is
// enabled and the callee has more arguments then the caller.
NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
// If there is an ADD32ri or SUB32ri of ESP immediately after this
// instruction, merge the two instructions.
mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
if (NumBytes)
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
unsigned Reg = II->first;
isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
Reg == X86::AH || Reg == X86::AL);
}
// Function prologue calls _alloca to probe the stack when allocating more
// than 4k bytes in one go. Touching the stack at 4K increments is necessary
// to ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
if (!isEAXAlive) {
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addImm(NumBytes);
BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
} else {
// Save EAX
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
.addReg(X86::EAX, RegState::Kill);
// Allocate NumBytes-4 bytes on stack. We'll also use 4 already
// allocated bytes for EAX.
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addImm(NumBytes - 4);
BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
// Restore EAX
MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
X86::EAX),
StackPtr, false, NumBytes - 4);
MBB.insert(MBBI, MI);
}
} else if (NumBytes) {
// If there is an SUB32ri of ESP immediately before this instruction, merge
// the two. This can be the case when tail call elimination is enabled and
// the callee has more arguments then the caller.
NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
// If there is an ADD32ri or SUB32ri of ESP immediately after this
// instruction, merge the two instructions.
mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
if (NumBytes)
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
}
if (needsFrameMoves) {
// Mark effective beginning of when frame pointer is ready.
unsigned ReadyLabelId = 0;
ReadyLabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(ReadyLabelId);
if (needsFrameMoves)
emitFrameMoves(MF, FrameLabelId, ReadyLabelId);
}
}
void X86RegisterInfo::emitEpilogue(MachineFunction &MF,

View File

@ -350,6 +350,10 @@ X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
, MaxInlineSizeThreshold(128)
, Is64Bit(is64Bit)
, TargetType(isELF) { // Default to ELF unless otherwise specified.
// default to hard float ABI
if (FloatABIType == FloatABI::Default)
FloatABIType = FloatABI::Hard;
// Determine default and user specified characteristics
if (!FS.empty()) {

View File

@ -133,8 +133,7 @@ X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS,
DataLayout(Subtarget.getDataLayout()),
FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4),
InstrInfo(*this), JITInfo(*this), TLInfo(*this),
ELFWriterInfo(Subtarget.is64Bit()) {
InstrInfo(*this), JITInfo(*this), TLInfo(*this), ELFWriterInfo(*this) {
DefRelocModel = getRelocationModel();
// FIXME: Correctly select PIC model for Win64 stuff
if (getRelocationModel() == Reloc::Default) {

View File

@ -127,17 +127,8 @@ bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
// Second check: make sure that all callers are direct callers. We can't
// transform functions that have indirect callers.
for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
UI != E; ++UI) {
CallSite CS = CallSite::get(*UI);
if (!CS.getInstruction()) // "Taking the address" of the function
return false;
// Ensure that this call site is CALLING the function, not passing it as
// an argument.
if (!CS.isCallee(UI))
return false;
}
if (F->hasAddressTaken())
return false;
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.

View File

@ -175,15 +175,8 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
// Ensure that the function is only directly called.
for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
// If this use is anything other than a call site, give up.
CallSite CS = CallSite::get(*I);
Instruction *TheCall = CS.getInstruction();
if (!TheCall) return false; // Not a direct call site?
// The addr of this function is passed to the call.
if (!CS.isCallee(I)) return false;
}
if (Fn.hasAddressTaken())
return false;
// Okay, we know we can transform this function if safe. Scan its body
// looking for calls to llvm.vastart.

View File

@ -47,7 +47,6 @@ namespace {
void GlobalIsNeeded(GlobalValue *GV);
void MarkUsedGlobalsAsNeeded(Constant *C);
bool SafeToDestroyConstant(Constant* C);
bool RemoveUnusedGlobalValue(GlobalValue &GV);
};
}
@ -211,17 +210,3 @@ bool GlobalDCE::RemoveUnusedGlobalValue(GlobalValue &GV) {
GV.removeDeadConstantUsers();
return GV.use_empty();
}
// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
// by constants itself. Note that constants cannot be cyclic, so this test is
// pretty easy to implement recursively.
//
bool GlobalDCE::SafeToDestroyConstant(Constant *C) {
for (Value::use_iterator I = C->use_begin(), E = C->use_end(); I != E; ++I)
if (Constant *User = dyn_cast<Constant>(*I)) {
if (!SafeToDestroyConstant(User)) return false;
} else {
return false;
}
return true;
}

View File

@ -136,16 +136,16 @@ struct VISIBILITY_HIDDEN GlobalStatus {
}
/// ConstantIsDead - Return true if the specified constant is (transitively)
/// dead. The constant may be used by other constants (e.g. constant arrays and
/// constant exprs) as long as they are dead, but it cannot be used by anything
/// else.
static bool ConstantIsDead(Constant *C) {
// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
// by constants itself. Note that constants cannot be cyclic, so this test is
// pretty easy to implement recursively.
//
static bool SafeToDestroyConstant(Constant *C) {
if (isa<GlobalValue>(C)) return false;
for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
if (Constant *CU = dyn_cast<Constant>(*UI)) {
if (!ConstantIsDead(CU)) return false;
if (!SafeToDestroyConstant(CU)) return false;
} else
return false;
return true;
@ -233,7 +233,7 @@ static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
} else if (Constant *C = dyn_cast<Constant>(*UI)) {
GS.HasNonInstructionUser = true;
// We might have a dead and dangling constant hanging off of here.
if (!ConstantIsDead(C))
if (!SafeToDestroyConstant(C))
return true;
} else {
GS.HasNonInstructionUser = true;
@ -338,7 +338,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
} else if (Constant *C = dyn_cast<Constant>(U)) {
// If we have a chain of dead constantexprs or other things dangling from
// us, and if they are all dead, nuke them without remorse.
if (ConstantIsDead(C)) {
if (SafeToDestroyConstant(C)) {
C->destroyConstant();
// This could have invalidated UI, start over from scratch.
CleanupConstantGlobalUsers(V, Init);
@ -354,7 +354,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
static bool isSafeSROAElementUse(Value *V) {
// We might have a dead and dangling constant hanging off of here.
if (Constant *C = dyn_cast<Constant>(V))
return ConstantIsDead(C);
return SafeToDestroyConstant(C);
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
@ -1769,22 +1769,6 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
return false;
}
/// OnlyCalledDirectly - Return true if the specified function is only called
/// directly. In other words, its address is never taken.
static bool OnlyCalledDirectly(Function *F) {
for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
Instruction *User = dyn_cast<Instruction>(*UI);
if (!User) return false;
if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
// See if the function address is passed as an argument.
for (User::op_iterator i = User->op_begin() + 1, e = User->op_end();
i != e; ++i)
if (*i == F) return false;
}
return true;
}
/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
/// function, changing them to FastCC.
static void ChangeCalleesToFastCall(Function *F) {
@ -1830,7 +1814,7 @@ bool GlobalOpt::OptimizeFunctions(Module &M) {
++NumFnDeleted;
} else if (F->hasLocalLinkage()) {
if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
OnlyCalledDirectly(F)) {
!F->hasAddressTaken()) {
// If this function has C calling conventions, is not a varargs
// function, and is only called directly, promote it to use the Fast
// calling convention.
@ -1841,7 +1825,7 @@ bool GlobalOpt::OptimizeFunctions(Module &M) {
}
if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
OnlyCalledDirectly(F)) {
!F->hasAddressTaken()) {
// The function is not used by a trampoline intrinsic, so it is safe
// to remove the 'nest' attribute.
RemoveNestAttribute(F);

View File

@ -9,10 +9,6 @@
//
// This pass looks for equivalent functions that are mergable and folds them.
//
// A Function will not be analyzed if:
// * it is overridable at runtime (except for weak linkage), or
// * it is used by anything other than the callee parameter of a call/invoke
//
// A hash is computed from the function, based on its type and number of
// basic blocks.
//
@ -24,8 +20,6 @@
// When a match is found, the functions are folded. We can only fold two
// functions when we know that the definition of one of them is not
// overridable.
// * fold a function marked internal by replacing all of its users.
// * fold extern or weak functions by replacing them with a global alias
//
//===----------------------------------------------------------------------===//
//
@ -48,6 +42,7 @@
#define DEBUG_TYPE "mergefunc"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/InlineAsm.h"
@ -62,7 +57,6 @@
using namespace llvm;
STATISTIC(NumFunctionsMerged, "Number of functions merged");
STATISTIC(NumMergeFails, "Number of identical function pairings not merged");
namespace {
struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass {
@ -81,16 +75,169 @@ ModulePass *llvm::createMergeFunctionsPass() {
return new MergeFunctions();
}
// ===----------------------------------------------------------------------===
// Comparison of functions
// ===----------------------------------------------------------------------===
static unsigned long hash(const Function *F) {
return F->size() ^ reinterpret_cast<unsigned long>(F->getType());
//return F->size() ^ F->arg_size() ^ F->getReturnType();
const FunctionType *FTy = F->getFunctionType();
FoldingSetNodeID ID;
ID.AddInteger(F->size());
ID.AddInteger(F->getCallingConv());
ID.AddBoolean(F->hasGC());
ID.AddBoolean(FTy->isVarArg());
ID.AddInteger(FTy->getReturnType()->getTypeID());
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
ID.AddInteger(FTy->getParamType(i)->getTypeID());
return ID.ComputeHash();
}
/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
/// walking the chain of cast operands. Otherwise, returns the argument.
static Value* IgnoreBitcasts(Value *V) {
while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
V = BC->getOperand(0);
return V;
}
/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
/// type equivalence rules apply.
static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
if (Ty1 == Ty2)
return true;
if (Ty1->getTypeID() != Ty2->getTypeID())
return false;
switch(Ty1->getTypeID()) {
case Type::VoidTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
case Type::LabelTyID:
case Type::MetadataTyID:
return true;
case Type::IntegerTyID:
case Type::OpaqueTyID:
// Ty1 == Ty2 would have returned true earlier.
return false;
default:
assert(0 && "Unknown type!");
return false;
case Type::PointerTyID: {
const PointerType *PTy1 = cast<PointerType>(Ty1);
const PointerType *PTy2 = cast<PointerType>(Ty2);
return PTy1->getAddressSpace() == PTy2->getAddressSpace();
}
case Type::StructTyID: {
const StructType *STy1 = cast<StructType>(Ty1);
const StructType *STy2 = cast<StructType>(Ty2);
if (STy1->getNumElements() != STy2->getNumElements())
return false;
if (STy1->isPacked() != STy2->isPacked())
return false;
for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
return false;
}
return true;
}
case Type::FunctionTyID: {
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy1->getNumParams() != FTy2->getNumParams() ||
FTy1->isVarArg() != FTy2->isVarArg())
return false;
if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
return false;
for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
return false;
}
return true;
}
case Type::ArrayTyID:
case Type::VectorTyID: {
const SequentialType *STy1 = cast<SequentialType>(Ty1);
const SequentialType *STy2 = cast<SequentialType>(Ty2);
return isEquivalentType(STy1->getElementType(), STy2->getElementType());
}
}
}
/// isEquivalentOperation - determine whether the two operations are the same
/// except that pointer-to-A and pointer-to-B are equivalent. This should be
/// kept in sync with Instruction::isSameOperationAs.
static bool
isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
if (I1->getOpcode() != I2->getOpcode() ||
I1->getNumOperands() != I2->getNumOperands() ||
!isEquivalentType(I1->getType(), I2->getType()))
return false;
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same type
for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
if (!isEquivalentType(I1->getOperand(i)->getType(),
I2->getOperand(i)->getType()))
return false;
// Check special state that is a part of some instructions.
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
if (const CallInst *CI = dyn_cast<CallInst>(I1))
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
CI->getAttributes().getRawPointer() ==
cast<CallInst>(I2)->getAttributes().getRawPointer();
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
CI->getAttributes().getRawPointer() ==
cast<InvokeInst>(I2)->getAttributes().getRawPointer();
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
return false;
for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
return false;
return true;
}
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
return false;
for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
return false;
return true;
}
return true;
}
static bool compare(const Value *V, const Value *U) {
assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
"Must not compare basic blocks.");
assert(V->getType() == U->getType() &&
assert(isEquivalentType(V->getType(), U->getType()) &&
"Two of the same operation have operands of different type.");
// TODO: If the constant is an expression of F, we should accept that it's
@ -117,19 +264,39 @@ static bool compare(const Value *V, const Value *U) {
static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
DenseMap<const Value *, const Value *> &ValueMap,
DenseMap<const Value *, const Value *> &SpeculationMap) {
// Specutively add it anyways. If it's false, we'll notice a difference later, and
// this won't matter.
// Speculatively add it anyways. If it's false, we'll notice a difference
// later, and this won't matter.
ValueMap[BB1] = BB2;
BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
do {
if (!FI->isSameOperationAs(const_cast<Instruction *>(&*GI)))
if (isa<BitCastInst>(FI)) {
++FI;
continue;
}
if (isa<BitCastInst>(GI)) {
++GI;
continue;
}
if (!isEquivalentOperation(FI, GI))
return false;
if (FI->getNumOperands() != GI->getNumOperands())
return false;
if (isa<GetElementPtrInst>(FI)) {
const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
// It's effectively a bitcast.
++FI, ++GI;
continue;
}
// TODO: we only really care about the elements before the index
if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
return false;
}
if (ValueMap[FI] == GI) {
++FI, ++GI;
@ -140,8 +307,8 @@ static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
return false;
for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
Value *OpF = FI->getOperand(i);
Value *OpG = GI->getOperand(i);
Value *OpF = IgnoreBitcasts(FI->getOperand(i));
Value *OpG = IgnoreBitcasts(GI->getOperand(i));
if (ValueMap[OpF] == OpG)
continue;
@ -149,10 +316,8 @@ static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
if (ValueMap[OpF] != NULL)
return false;
assert(OpF->getType() == OpG->getType() &&
"Two of the same operation has operands of different type.");
if (OpF->getValueID() != OpG->getValueID())
if (OpF->getValueID() != OpG->getValueID() ||
!isEquivalentType(OpF->getType(), OpG->getType()))
return false;
if (isa<PHINode>(FI)) {
@ -203,14 +368,15 @@ static bool equals(const Function *F, const Function *G) {
if (F->hasSection() && F->getSection() != G->getSection())
return false;
if (F->isVarArg() != G->isVarArg())
return false;
// TODO: if it's internal and only used in direct calls, we could handle this
// case too.
if (F->getCallingConv() != G->getCallingConv())
return false;
// TODO: We want to permit cases where two functions take T* and S* but
// only load or store them into T** and S**.
if (F->getType() != G->getType())
if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
return false;
DenseMap<const Value *, const Value *> ValueMap;
@ -237,88 +403,212 @@ static bool equals(const Function *F, const Function *G) {
return true;
}
static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
if (FnVec[i]->mayBeOverridden() && !FnVec[j]->mayBeOverridden())
std::swap(FnVec[i], FnVec[j]);
// ===----------------------------------------------------------------------===
// Folding of functions
// ===----------------------------------------------------------------------===
// Cases:
// * F is external strong, G is external strong:
// turn G into a thunk to F (1)
// * F is external strong, G is external weak:
// turn G into a thunk to F (1)
// * F is external weak, G is external weak:
// unfoldable
// * F is external strong, G is internal:
// address of G taken:
// turn G into a thunk to F (1)
// address of G not taken:
// make G an alias to F (2)
// * F is internal, G is external weak
// address of F is taken:
// turn G into a thunk to F (1)
// address of F is not taken:
// make G an alias of F (2)
// * F is internal, G is internal:
// address of F and G are taken:
// turn G into a thunk to F (1)
// address of G is not taken:
// make G an alias to F (2)
//
// alias requires linkage == (external,local,weak) fallback to creating a thunk
// external means 'externally visible' linkage != (internal,private)
// internal means linkage == (internal,private)
// weak means linkage mayBeOverridable
// being external implies that the address is taken
//
// 1. turn G into a thunk to F
// 2. make G an alias to F
enum LinkageCategory {
ExternalStrong,
ExternalWeak,
Internal
};
static LinkageCategory categorize(const Function *F) {
switch (F->getLinkage()) {
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
return Internal;
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::ExternalWeakLinkage:
return ExternalWeak;
case GlobalValue::ExternalLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::AppendingLinkage:
case GlobalValue::DLLImportLinkage:
case GlobalValue::DLLExportLinkage:
case GlobalValue::GhostLinkage:
case GlobalValue::CommonLinkage:
return ExternalStrong;
}
assert(0 && "Unknown LinkageType.");
return ExternalWeak;
}
static void ThunkGToF(Function *F, Function *G) {
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
G->getParent());
BasicBlock *BB = BasicBlock::Create("", NewG);
std::vector<Value *> Args;
unsigned i = 0;
const FunctionType *FFTy = F->getFunctionType();
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
AI != AE; ++AI) {
if (FFTy->getParamType(i) == AI->getType())
Args.push_back(AI);
else {
Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
Args.push_back(BCI);
}
++i;
}
CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
CI->setTailCall();
CI->setCallingConv(F->getCallingConv());
if (NewG->getReturnType() == Type::VoidTy) {
ReturnInst::Create(BB);
} else if (CI->getType() != NewG->getReturnType()) {
Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
ReturnInst::Create(BCI, BB);
} else {
ReturnInst::Create(CI, BB);
}
NewG->copyAttributesFrom(G);
NewG->takeName(G);
G->replaceAllUsesWith(NewG);
G->eraseFromParent();
// TODO: look at direct callers to G and make them all direct callers to F.
}
static void AliasGToF(Function *F, Function *G) {
if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
return ThunkGToF(F, G);
GlobalAlias *GA = new GlobalAlias(
G->getType(), G->getLinkage(), "",
ConstantExpr::getBitCast(F, G->getType()), G->getParent());
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
GA->takeName(G);
GA->setVisibility(G->getVisibility());
G->replaceAllUsesWith(GA);
G->eraseFromParent();
}
static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
Function *F = FnVec[i];
Function *G = FnVec[j];
if (!F->mayBeOverridden()) {
if (G->hasLocalLinkage()) {
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
G->replaceAllUsesWith(F);
G->eraseFromParent();
++NumFunctionsMerged;
return true;
}
LinkageCategory catF = categorize(F);
LinkageCategory catG = categorize(G);
if (G->hasExternalLinkage() || G->hasWeakLinkage()) {
GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
F, G->getParent());
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
GA->takeName(G);
GA->setVisibility(G->getVisibility());
G->replaceAllUsesWith(GA);
G->eraseFromParent();
++NumFunctionsMerged;
return true;
}
if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
std::swap(FnVec[i], FnVec[j]);
std::swap(F, G);
std::swap(catF, catG);
}
if (F->hasWeakLinkage() && G->hasWeakLinkage()) {
GlobalAlias *GA_F = new GlobalAlias(F->getType(), F->getLinkage(), "",
0, F->getParent());
GA_F->takeName(F);
GA_F->setVisibility(F->getVisibility());
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
F->replaceAllUsesWith(GA_F);
F->setName("folded." + GA_F->getName());
F->setLinkage(GlobalValue::ExternalLinkage);
GA_F->setAliasee(F);
switch (catF) {
case ExternalStrong:
switch (catG) {
case ExternalStrong:
case ExternalWeak:
ThunkGToF(F, G);
break;
case Internal:
if (G->hasAddressTaken())
ThunkGToF(F, G);
else
AliasGToF(F, G);
break;
}
break;
GlobalAlias *GA_G = new GlobalAlias(G->getType(), G->getLinkage(), "",
F, G->getParent());
GA_G->takeName(G);
GA_G->setVisibility(G->getVisibility());
G->replaceAllUsesWith(GA_G);
G->eraseFromParent();
case ExternalWeak: {
assert(catG == ExternalWeak);
++NumFunctionsMerged;
return true;
// Make them both thunks to the same internal function.
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
F->getParent());
H->copyAttributesFrom(F);
H->takeName(F);
F->replaceAllUsesWith(H);
ThunkGToF(F, G);
ThunkGToF(F, H);
F->setLinkage(GlobalValue::InternalLinkage);
} break;
case Internal:
switch (catG) {
case ExternalStrong:
assert(0);
// fall-through
case ExternalWeak:
if (F->hasAddressTaken())
ThunkGToF(F, G);
else
AliasGToF(F, G);
break;
case Internal: {
bool addrTakenF = F->hasAddressTaken();
bool addrTakenG = G->hasAddressTaken();
if (!addrTakenF && addrTakenG) {
std::swap(FnVec[i], FnVec[j]);
std::swap(F, G);
std::swap(addrTakenF, addrTakenG);
}
if (addrTakenF && addrTakenG) {
ThunkGToF(F, G);
} else {
assert(!addrTakenG);
AliasGToF(F, G);
}
} break;
}
break;
}
DOUT << "Failed on " << F->getName() << " and " << G->getName() << "\n";
++NumMergeFails;
return false;
++NumFunctionsMerged;
return true;
}
static bool hasAddressTaken(User *U) {
for (User::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) {
User *Use = *I;
// 'call (bitcast @F to ...)' happens a lot.
while (isa<ConstantExpr>(Use) && Use->hasOneUse()) {
Use = *Use->use_begin();
}
if (isa<ConstantExpr>(Use)) {
if (hasAddressTaken(Use))
return true;
}
if (!isa<CallInst>(Use) && !isa<InvokeInst>(Use))
return true;
// Make sure we aren't passing U as a parameter to call instead of the
// callee.
if (CallSite(cast<Instruction>(Use)).hasArgument(U))
return true;
}
return false;
}
// ===----------------------------------------------------------------------===
// Pass definition
// ===----------------------------------------------------------------------===
bool MergeFunctions::runOnModule(Module &M) {
bool Changed = false;
@ -329,25 +619,19 @@ bool MergeFunctions::runOnModule(Module &M) {
if (F->isDeclaration() || F->isIntrinsic())
continue;
if (!F->hasLocalLinkage() && !F->hasExternalLinkage() &&
!F->hasWeakLinkage())
continue;
if (hasAddressTaken(F))
continue;
FnMap[hash(F)].push_back(F);
}
// TODO: instead of running in a loop, we could also fold functions in callgraph
// order. Constructing the CFG probably isn't cheaper than just running in a loop.
// TODO: instead of running in a loop, we could also fold functions in
// callgraph order. Constructing the CFG probably isn't cheaper than just
// running in a loop, unless it happened to already be available.
bool LocalChanged;
do {
LocalChanged = false;
DOUT << "size: " << FnMap.size() << "\n";
for (std::map<unsigned long, std::vector<Function *> >::iterator
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
DOUT << "size: " << FnMap.size() << "\n";
std::vector<Function *> &FnVec = I->second;
DOUT << "hash (" << I->first << "): " << FnVec.size() << "\n";

View File

@ -0,0 +1,171 @@
//===- PartialInlining.cpp - Inline parts of functions --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs partial inlining, typically by inlining an if statement
// that surrounds the body of the function.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "partialinlining"
#include "llvm/Transforms/IPO.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/FunctionUtils.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
namespace {
struct VISIBILITY_HIDDEN PartialInliner : public ModulePass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const { }
static char ID; // Pass identification, replacement for typeid
PartialInliner() : ModulePass(&ID) {}
bool runOnModule(Module& M);
private:
Function* unswitchFunction(Function* F);
};
}
char PartialInliner::ID = 0;
static RegisterPass<PartialInliner> X("partial-inliner", "Partial Inliner");
ModulePass* llvm::createPartialInliningPass() { return new PartialInliner(); }
Function* PartialInliner::unswitchFunction(Function* F) {
// First, verify that this function is an unswitching candidate...
BasicBlock* entryBlock = F->begin();
if (!isa<BranchInst>(entryBlock->getTerminator()))
return 0;
BasicBlock* returnBlock = 0;
BasicBlock* nonReturnBlock = 0;
unsigned returnCount = 0;
for (succ_iterator SI = succ_begin(entryBlock), SE = succ_end(entryBlock);
SI != SE; ++SI)
if (isa<ReturnInst>((*SI)->getTerminator())) {
returnBlock = *SI;
returnCount++;
} else
nonReturnBlock = *SI;
if (returnCount != 1)
return 0;
// Clone the function, so that we can hack away on it.
DenseMap<const Value*, Value*> ValueMap;
Function* duplicateFunction = CloneFunction(F, ValueMap);
duplicateFunction->setLinkage(GlobalValue::InternalLinkage);
F->getParent()->getFunctionList().push_back(duplicateFunction);
BasicBlock* newEntryBlock = cast<BasicBlock>(ValueMap[entryBlock]);
BasicBlock* newReturnBlock = cast<BasicBlock>(ValueMap[returnBlock]);
BasicBlock* newNonReturnBlock = cast<BasicBlock>(ValueMap[nonReturnBlock]);
// Go ahead and update all uses to the duplicate, so that we can just
// use the inliner functionality when we're done hacking.
F->replaceAllUsesWith(duplicateFunction);
// Special hackery is needed with PHI nodes that have inputs from more than
// one extracted block. For simplicity, just split the PHIs into a two-level
// sequence of PHIs, some of which will go in the extracted region, and some
// of which will go outside.
BasicBlock* preReturn = newReturnBlock;
newReturnBlock = newReturnBlock->splitBasicBlock(
newReturnBlock->getFirstNonPHI());
BasicBlock::iterator I = preReturn->begin();
BasicBlock::iterator Ins = newReturnBlock->begin();
while (I != preReturn->end()) {
PHINode* OldPhi = dyn_cast<PHINode>(I);
if (!OldPhi) break;
PHINode* retPhi = PHINode::Create(OldPhi->getType(), "", Ins);
OldPhi->replaceAllUsesWith(retPhi);
Ins = newReturnBlock->getFirstNonPHI();
retPhi->addIncoming(I, preReturn);
retPhi->addIncoming(OldPhi->getIncomingValueForBlock(newEntryBlock),
newEntryBlock);
OldPhi->removeIncomingValue(newEntryBlock);
++I;
}
newEntryBlock->getTerminator()->replaceUsesOfWith(preReturn, newReturnBlock);
// Gather up the blocks that we're going to extract.
std::vector<BasicBlock*> toExtract;
toExtract.push_back(newNonReturnBlock);
for (Function::iterator FI = duplicateFunction->begin(),
FE = duplicateFunction->end(); FI != FE; ++FI)
if (&*FI != newEntryBlock && &*FI != newReturnBlock &&
&*FI != newNonReturnBlock)
toExtract.push_back(FI);
// The CodeExtractor needs a dominator tree.
DominatorTree DT;
DT.runOnFunction(*duplicateFunction);
// Extract the body of the the if.
Function* extractedFunction = ExtractCodeRegion(DT, toExtract);
// Inline the top-level if test into all callers.
std::vector<User*> Users(duplicateFunction->use_begin(),
duplicateFunction->use_end());
for (std::vector<User*>::iterator UI = Users.begin(), UE = Users.end();
UI != UE; ++UI)
if (CallInst* CI = dyn_cast<CallInst>(*UI))
InlineFunction(CI);
else if (InvokeInst* II = dyn_cast<InvokeInst>(*UI))
InlineFunction(II);
// Ditch the duplicate, since we're done with it, and rewrite all remaining
// users (function pointers, etc.) back to the original function.
duplicateFunction->replaceAllUsesWith(F);
duplicateFunction->eraseFromParent();
return extractedFunction;
}
bool PartialInliner::runOnModule(Module& M) {
std::vector<Function*> worklist;
worklist.reserve(M.size());
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
if (!FI->use_empty() && !FI->isDeclaration())
worklist.push_back(&*FI);
bool changed = false;
while (!worklist.empty()) {
Function* currFunc = worklist.back();
worklist.pop_back();
if (currFunc->use_empty()) continue;
bool recursive = false;
for (Function::use_iterator UI = currFunc->use_begin(),
UE = currFunc->use_end(); UI != UE; ++UI)
if (Instruction* I = dyn_cast<Instruction>(UI))
if (I->getParent()->getParent() == currFunc) {
recursive = true;
break;
}
if (recursive) continue;
if (Function* newFunc = unswitchFunction(currFunc)) {
worklist.push_back(newFunc);
changed = true;
}
}
return changed;
}

View File

@ -168,7 +168,7 @@ ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
// Expand the code for the iteration count into the preheader of the loop.
BasicBlock *Preheader = L->getLoopPreheader();
Value *ExitCnt = Rewriter.expandCodeFor(RHS, CmpIndVar->getType(),
Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(),
Preheader->getTerminator());
// Insert a new icmp_ne or icmp_eq instruction before the branch.
@ -392,10 +392,31 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// in this loop, insert a canonical induction variable of the largest size.
Value *IndVar = 0;
if (NeedCannIV) {
// Check to see if the loop already has a canonical-looking induction
// variable. If one is present and it's wider than the planned canonical
// induction variable, temporarily remove it, so that the Rewriter
// doesn't attempt to reuse it.
PHINode *OldCannIV = L->getCanonicalInductionVariable();
if (OldCannIV) {
if (SE->getTypeSizeInBits(OldCannIV->getType()) >
SE->getTypeSizeInBits(LargestType))
OldCannIV->removeFromParent();
else
OldCannIV = 0;
}
IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
++NumInserted;
Changed = true;
DOUT << "INDVARS: New CanIV: " << *IndVar;
// Now that the official induction variable is established, reinsert
// the old canonical-looking variable after it so that the IR remains
// consistent. It will be deleted as part of the dead-PHI deletion at
// the end of the pass.
if (OldCannIV)
OldCannIV->insertAfter(cast<Instruction>(IndVar));
}
// If we have a trip count expression, rewrite the loop's exit condition
@ -459,8 +480,8 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
E = List.end(); UI != E; ++UI) {
SCEVHandle Offset = UI->getOffset();
Value *Op = UI->getOperandValToReplace();
const Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
bool isSigned = UI->isSigned();
// Compute the final addrec to expand into code.
SCEVHandle AR = IU->getReplacementExpr(*UI);
@ -471,7 +492,7 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
// Expand loop-invariant values in the loop preheader. They will
// be sunk to the exit block later, if possible.
NewVal =
Rewriter.expandCodeFor(AR, LargestType,
Rewriter.expandCodeFor(AR, UseTy,
L->getLoopPreheader()->getTerminator());
Rewriter.setInsertionPoint(I);
++NumReplaced;
@ -485,74 +506,6 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
if (!Stride->isLoopInvariant(L))
continue;
const Type *IVTy = Offset->getType();
const Type *UseTy = Op->getType();
// Promote the Offset and Stride up to the canonical induction
// variable's bit width.
SCEVHandle PromotedOffset = Offset;
SCEVHandle PromotedStride = Stride;
if (SE->getTypeSizeInBits(IVTy) != SE->getTypeSizeInBits(LargestType)) {
// It doesn't matter for correctness whether zero or sign extension
// is used here, since the value is truncated away below, but if the
// value is signed, sign extension is more likely to be folded.
if (isSigned) {
PromotedOffset = SE->getSignExtendExpr(PromotedOffset, LargestType);
PromotedStride = SE->getSignExtendExpr(PromotedStride, LargestType);
} else {
PromotedOffset = SE->getZeroExtendExpr(PromotedOffset, LargestType);
// If the stride is obviously negative, use sign extension to
// produce things like x-1 instead of x+255.
if (isa<SCEVConstant>(PromotedStride) &&
cast<SCEVConstant>(PromotedStride)
->getValue()->getValue().isNegative())
PromotedStride = SE->getSignExtendExpr(PromotedStride,
LargestType);
else
PromotedStride = SE->getZeroExtendExpr(PromotedStride,
LargestType);
}
}
// Create the SCEV representing the offset from the canonical
// induction variable, still in the canonical induction variable's
// type, so that all expanded arithmetic is done in the same type.
SCEVHandle NewAR = SE->getAddRecExpr(SE->getIntegerSCEV(0, LargestType),
PromotedStride, L);
// Add the PromotedOffset as a separate step, because it may not be
// loop-invariant.
NewAR = SE->getAddExpr(NewAR, PromotedOffset);
// Expand the addrec into instructions.
Value *V = Rewriter.expandCodeFor(NewAR);
// Insert an explicit cast if necessary to truncate the value
// down to the original stride type. This is done outside of
// SCEVExpander because in SCEV expressions, a truncate of an
// addrec is always folded.
if (LargestType != IVTy) {
if (SE->getTypeSizeInBits(IVTy) != SE->getTypeSizeInBits(LargestType))
NewAR = SE->getTruncateExpr(NewAR, IVTy);
if (Rewriter.isInsertedExpression(NewAR))
V = Rewriter.expandCodeFor(NewAR);
else {
V = Rewriter.InsertCastOfTo(CastInst::getCastOpcode(V, false,
IVTy, false),
V, IVTy);
assert(!isa<SExtInst>(V) && !isa<ZExtInst>(V) &&
"LargestType wasn't actually the largest type!");
// Force the rewriter to use this trunc whenever this addrec
// appears so that it doesn't insert new phi nodes or
// arithmetic in a different type.
Rewriter.addInsertedValue(V, NewAR);
}
}
DOUT << "INDVARS: Made offset-and-trunc IV for offset "
<< *IVTy << " " << *Offset << ": ";
DEBUG(WriteAsOperand(*DOUT, V, false));
DOUT << "\n";
// Now expand it into actual Instructions and patch it into place.
NewVal = Rewriter.expandCodeFor(AR, UseTy);
}

View File

@ -2608,21 +2608,6 @@ Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
return BinaryOperator::CreateFNeg(Op1I->getOperand(0), I.getName());
}
if (Op1I->hasOneUse()) {
// Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
// is not used by anyone else...
//
if (Op1I->getOpcode() == Instruction::FSub) {
// Swap the two operands of the subexpr...
Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
Op1I->setOperand(0, IIOp1);
Op1I->setOperand(1, IIOp0);
// Create the new top level fadd instruction...
return BinaryOperator::CreateFAdd(Op0, Op1);
}
}
}
return 0;
@ -11824,7 +11809,8 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
if (SI.isVolatile()) return 0; // Don't hack volatile stores.
// store X, null -> turns into 'unreachable' in SimplifyCFG
if (isa<ConstantPointerNull>(Ptr)) {
if (isa<ConstantPointerNull>(Ptr) &&
cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
if (!isa<UndefValue>(Val)) {
SI.setOperand(0, UndefValue::get(Val->getType()));
if (Instruction *U = dyn_cast<Instruction>(Val))

View File

@ -125,13 +125,17 @@ static bool MarkAliveBlocks(BasicBlock *BB,
}
}
if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
if (isa<ConstantPointerNull>(SI->getOperand(1)) ||
isa<UndefValue>(SI->getOperand(1))) {
if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Value *Ptr = SI->getOperand(1);
if (isa<UndefValue>(Ptr) ||
(isa<ConstantPointerNull>(Ptr) &&
cast<PointerType>(Ptr->getType())->getAddressSpace() == 0)) {
ChangeToUnreachable(SI);
Changed = true;
break;
}
}
}
// Turn invokes that call 'nounwind' functions into ordinary calls.

View File

@ -364,4 +364,15 @@ Function *Intrinsic::getDeclaration(Module *M, ID id, const Type **Tys,
#include "llvm/Intrinsics.gen"
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it.
bool Function::hasAddressTaken() const {
for (Value::use_const_iterator I = use_begin(), E = use_end(); I != E; ++I) {
if (I.getOperandNo() != 0 ||
(!isa<CallInst>(*I) && !isa<InvokeInst>(*I)))
return true;
}
return false;
}
// vim: sw=2 ai

View File

@ -218,9 +218,12 @@ bool Instruction::isIdenticalTo(const Instruction *I) const {
}
// isSameOperationAs
// This should be kept in sync with isEquivalentOperation in
// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::isSameOperationAs(const Instruction *I) const {
if (getOpcode() != I->getOpcode() || getType() != I->getType() ||
getNumOperands() != I->getNumOperands())
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
getType() != I->getType())
return false;
// We have two instructions of identical opcode and #operands. Check to see

View File

@ -276,8 +276,8 @@ namespace {
int VT, unsigned ArgNo, std::string &Suffix);
void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
unsigned RetNum, unsigned ParamNum, ...);
void VerifyAttrs(Attributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V);
void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V);
void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
const Value *V);
@ -437,22 +437,23 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) {
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
}
// VerifyAttrs - Check the given parameter attributes for an argument or return
// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
void Verifier::VerifyAttrs(Attributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V) {
void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V) {
if (Attrs == Attribute::None)
return;
Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
" only applies to the function!", V);
if (isReturnValue) {
Attributes RetI = Attrs & Attribute::ParameterOnly;
Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
" does not apply to return values!", V);
}
Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
" only applies to functions!", V);
for (unsigned i = 0;
i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
@ -495,9 +496,9 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
else if (Attr.Index-1 < FT->getNumParams())
Ty = FT->getParamType(Attr.Index-1);
else
break; // VarArgs attributes, don't verify.
VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
break; // VarArgs attributes, verified elsewhere.
VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
if (Attr.Attrs & Attribute::Nest) {
Assert1(!SawNest, "More than one parameter has attribute nest!", V);
@ -509,10 +510,10 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
}
Attributes FAttrs = Attrs.getFnAttributes();
Assert1(!(FAttrs & (~Attribute::FunctionOnly)),
"Attribute " + Attribute::getAsString(FAttrs) +
" does not apply to function!", V);
Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
" does not apply to the function!", V);
for (unsigned i = 0;
i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
@ -1025,7 +1026,7 @@ void Verifier::VerifyCallSite(CallSite CS) {
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
Attributes Attr = Attrs.getParamAttributes(Idx);
VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +

View File

@ -0,0 +1,12 @@
; RUN: llvm-as < %s | llvm-dis -disable-output
; PR4373
@foo = weak global { i32 } zeroinitializer
@bar = weak global i32 0
define void @test() {
entry:
store { i32 } zeroinitializer, { i32 }* @foo
store i32 1, i32* @bar
ret void
}

View File

@ -1,4 +1,7 @@
; RUN: bugpoint %s -dce -bugpoint-deletecalls -simplifycfg -silence-passes %bugpoint_topts
; XFAIL: powerpc-.*-linux
; END.
; Failure on PPC Linux is due to PR4293.
@.LC0 = internal global [13 x i8] c"Hello World\0A\00" ; <[13 x i8]*> [#uses=1]

View File

@ -0,0 +1,77 @@
; RUN: llvm-as < %s | llc -mtriple=armv6-apple-darwin
type { i32, i32, %struct.D_Sym**, [3 x %struct.D_Sym*] } ; type %0
type { i32, %struct.D_Reduction** } ; type %1
type { i32, %struct.D_RightEpsilonHint* } ; type %2
type { i32, %struct.D_ErrorRecoveryHint* } ; type %3
type { i32, i32, %struct.D_Reduction**, [3 x %struct.D_Reduction*] } ; type %4
%struct.D_ErrorRecoveryHint = type { i16, i16, i8* }
%struct.D_ParseNode = type { i32, %struct.d_loc_t, i8*, i8*, %struct.D_Scope*, void (%struct.D_Parser*, %struct.d_loc_t*, i8**)*, i8*, i8* }
%struct.D_Parser = type { i8*, void (%struct.D_Parser*, %struct.d_loc_t*, i8**)*, %struct.D_Scope*, void (%struct.D_Parser*)*, %struct.D_ParseNode* (%struct.D_Parser*, i32, %struct.D_ParseNode**)*, void (%struct.D_ParseNode*)*, %struct.d_loc_t, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32 }
%struct.D_ParserTables = type { i32, %struct.D_State*, i16*, i32, i32, %struct.D_Symbol*, void (%struct.D_Parser*, %struct.d_loc_t*, i8**)*, i32, %struct.D_Pass*, i32 }
%struct.D_Pass = type { i8*, i32, i32, i32 }
%struct.D_Reduction = type { i16, i16, i32 (i8*, i8**, i32, i32, %struct.D_Parser*)*, i32 (i8*, i8**, i32, i32, %struct.D_Parser*)*, i16, i16, i32, i32, i32, i32, i32 (i8*, i8**, i32, i32, %struct.D_Parser*)** }
%struct.D_RightEpsilonHint = type { i16, i16, %struct.D_Reduction* }
%struct.D_Scope = type { i8, %struct.D_Sym*, %struct.D_SymHash*, %struct.D_Sym*, %struct.D_Scope*, %struct.D_Scope*, %struct.D_Scope*, %struct.D_Scope*, %struct.D_Scope* }
%struct.D_Shift = type { i16, i8, i8, i32, i32, i32 (i8*, i8**, i32, i32, %struct.D_Parser*)* }
%struct.D_State = type { i8*, i32, %1, %2, %3, %struct.D_Shift**, i32 (i8**, i32*, i32*, i16*, i32*, i8*, i32*)*, i8*, i8, i8, i8, i8*, %struct.D_Shift***, i32 }
%struct.D_Sym = type { i8*, i32, i32, %struct.D_Sym*, %struct.D_Sym*, i32 }
%struct.D_SymHash = type { i32, i32, %0 }
%struct.D_Symbol = type { i32, i8*, i32 }
%struct.PNode = type { i32, i32, i32, i32, %struct.D_Reduction*, %struct.D_Shift*, i32, %struct.VecPNode, i32, i8, i8, %struct.PNode*, %struct.PNode*, %struct.PNode*, %struct.PNode*, i8*, i8*, %struct.D_Scope*, i8*, %struct.D_ParseNode }
%struct.PNodeHash = type { %struct.PNode**, i32, i32, i32, %struct.PNode* }
%struct.Parser = type { %struct.D_Parser, i8*, i8*, %struct.D_ParserTables*, i32, i32, i32, i32, i32, i32, i32, %struct.PNodeHash, %struct.SNodeHash, %struct.Reduction*, %struct.Shift*, %struct.D_Scope*, %struct.SNode*, i32, %struct.Reduction*, %struct.Shift*, i32, %struct.PNode*, %struct.SNode*, %struct.ZNode*, %4, %struct.ShiftResult*, %struct.D_Shift, %struct.Parser*, i8* }
%struct.Reduction = type { %struct.ZNode*, %struct.SNode*, %struct.D_Reduction*, %struct.SNode*, i32, %struct.Reduction* }
%struct.SNode = type { %struct.D_State*, %struct.D_Scope*, i8*, %struct.d_loc_t, i32, %struct.PNode*, %struct.VecZNode, i32, %struct.SNode*, %struct.SNode* }
%struct.SNodeHash = type { %struct.SNode**, i32, i32, i32, %struct.SNode*, %struct.SNode* }
%struct.Shift = type { %struct.SNode*, %struct.Shift* }
%struct.ShiftResult = type { %struct.D_Shift*, %struct.d_loc_t }
%struct.VecPNode = type { i32, i32, %struct.PNode**, [3 x %struct.PNode*] }
%struct.VecSNode = type { i32, i32, %struct.SNode**, [3 x %struct.SNode*] }
%struct.VecZNode = type { i32, i32, %struct.ZNode**, [3 x %struct.ZNode*] }
%struct.ZNode = type { %struct.PNode*, %struct.VecSNode }
%struct.d_loc_t = type { i8*, i8*, i32, i32, i32 }
declare void @llvm.memcpy.i32(i8* nocapture, i8* nocapture, i32, i32) nounwind
define fastcc i32 @exhaustive_parse(%struct.Parser* %p, i32 %state) nounwind {
entry:
store i8* undef, i8** undef, align 4
%0 = getelementptr %struct.Parser* %p, i32 0, i32 0, i32 6 ; <%struct.d_loc_t*> [#uses=1]
%1 = bitcast %struct.d_loc_t* %0 to i8* ; <i8*> [#uses=1]
call void @llvm.memcpy.i32(i8* undef, i8* %1, i32 20, i32 4)
br label %bb10
bb10: ; preds = %bb30, %bb29, %bb26, %entry
br i1 undef, label %bb18, label %bb20
bb18: ; preds = %bb10
br i1 undef, label %bb20, label %bb19
bb19: ; preds = %bb18
br label %bb20
bb20: ; preds = %bb19, %bb18, %bb10
br i1 undef, label %bb21, label %bb22
bb21: ; preds = %bb20
unreachable
bb22: ; preds = %bb20
br i1 undef, label %bb24, label %bb26
bb24: ; preds = %bb22
unreachable
bb26: ; preds = %bb22
br i1 undef, label %bb10, label %bb29
bb29: ; preds = %bb26
br i1 undef, label %bb10, label %bb30
bb30: ; preds = %bb29
br i1 undef, label %bb31, label %bb10
bb31: ; preds = %bb30
unreachable
}

View File

@ -0,0 +1,8 @@
; RUN: llvm-as < %s | llc -mtriple=arm-linux-gnueabi -mattr=+vfp2 -float-abi=hard | grep {fcpys s0, s1}
define float @f(float %z, double %a, float %b) {
%tmp = call float @g(float %b)
ret float %tmp
}
declare float @g(float)

View File

@ -1,4 +1,4 @@
; RUN: llvm-as < %s | llc -stats |& grep {40.*Number of machine instrs printed}
; RUN: llvm-as < %s | llc -stats |& grep {39.*Number of machine instrs printed}
; RUN: llvm-as < %s | llc -stats |& grep {.*Number of re-materialization}
; This test really wants to check that the resultant "cond_true" block only
; has a single store in it, and that cond_true55 only has code to materialize

13
test/CodeGen/ARM/stm.ll Normal file
View File

@ -0,0 +1,13 @@
; RUN: llvm-as < %s | llc -mtriple=arm-apple-darwin -mattr=+v6,+vfp2 -arm-pre-alloc-loadstore-opti | grep stm | count 2
@"\01LC" = internal constant [32 x i8] c"Boolean Not: %d %d %d %d %d %d\0A\00", section "__TEXT,__cstring,cstring_literals" ; <[32 x i8]*> [#uses=1]
@"\01LC1" = internal constant [26 x i8] c"Bitwise Not: %d %d %d %d\0A\00", section "__TEXT,__cstring,cstring_literals" ; <[26 x i8]*> [#uses=1]
declare i32 @printf(i8* nocapture, ...) nounwind
define i32 @main() nounwind {
entry:
%0 = tail call i32 (i8*, ...)* @printf(i8* getelementptr ([26 x i8]* @"\01LC1", i32 0, i32 0), i32 -2, i32 -3, i32 2, i32 -6) nounwind ; <i32> [#uses=0]
%1 = tail call i32 (i8*, ...)* @printf(i8* getelementptr ([32 x i8]* @"\01LC", i32 0, i32 0), i32 0, i32 1, i32 0, i32 1, i32 0, i32 1) nounwind ; <i32> [#uses=0]
ret i32 0
}

View File

@ -0,0 +1,15 @@
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -mattr=+sse2 -mtriple=x86_64-apple-darwin | grep fstpt
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -mattr=+sse2 -mtriple=x86_64-apple-darwin | grep xmm
; Check that x86-64 tail calls support x86_fp80 and v2f32 types. (Tail call
; calling convention out of sync with standard c calling convention on x86_64)
; Bug 4278.
declare fastcc double @tailcallee(x86_fp80, <2 x float>)
define fastcc double @tailcall() {
entry:
%tmp = fpext float 1.000000e+00 to x86_fp80
%tmp2 = tail call fastcc double @tailcallee( x86_fp80 %tmp, <2 x float> <float 1.000000e+00, float 1.000000e+00>)
ret double %tmp2
}

View File

@ -3,19 +3,19 @@
; Move param %in1 to temp register (%eax).
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {movl 40(%rsp), %eax}
; Add %in1 %p1 to another temporary register (%r9d).
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {movl %edi, %r9d}
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {addl 32(%rsp), %r9d}
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {movl %edi, %r10d}
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {addl 32(%rsp), %r10d}
; Move result of addition to stack.
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {movl %r9d, 40(%rsp)}
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {movl %r10d, 40(%rsp)}
; Move param %in2 to stack.
; RUN: llvm-as < %s | llc -tailcallopt -march=x86-64 -x86-asm-syntax=att | grep {movl %eax, 32(%rsp)}
declare fastcc i32 @tailcallee(i32 %p1, i32 %p2, i32 %p3, i32 %p4, i32 %p5, i32 %a, i32 %b)
declare fastcc i32 @tailcallee(i32 %p1, i32 %p2, i32 %p3, i32 %p4, i32 %p5, i32 %p6, i32 %a, i32 %b)
define fastcc i32 @tailcaller(i32 %p1, i32 %p2, i32 %p3, i32 %p4, i32 %p5, i32 %in1, i32 %in2) {
define fastcc i32 @tailcaller(i32 %p1, i32 %p2, i32 %p3, i32 %p4, i32 %p5, i32 %p6, i32 %in1, i32 %in2) {
entry:
%tmp = add i32 %in1, %p1
%retval = tail call fastcc i32 @tailcallee(i32 %p1, i32 %p2, i32 %p3, i32 %p4, i32 %p5, i32 %in2,i32 %tmp)
%retval = tail call fastcc i32 @tailcallee(i32 %p1, i32 %p2, i32 %p3, i32 %p4, i32 %p5, i32 %p6, i32 %in2,i32 %tmp)
ret i32 %retval
}

View File

@ -0,0 +1,94 @@
; RUN: llvm-as < %s | llc -f -o /dev/null
%llvm.dbg.anchor.type = type { i32, i32 }
%llvm.dbg.basictype.type = type { i32, { }*, i8*, { }*, i32, i64, i64, i64, i32, i32 }
%llvm.dbg.compile_unit.type = type { i32, { }*, i32, i8*, i8*, i8*, i1, i1, i8*, i32 }
%llvm.dbg.composite.type = type { i32, { }*, i8*, { }*, i32, i64, i64, i64, i32, { }*, { }*, i32 }
%llvm.dbg.derivedtype.type = type { i32, { }*, i8*, { }*, i32, i64, i64, i64, i32, { }* }
%llvm.dbg.subprogram.type = type { i32, { }*, { }*, i8*, i8*, i8*, { }*, i32, { }*, i1, i1 }
%llvm.dbg.variable.type = type { i32, { }*, i8*, { }*, i32, { }* }
%struct._objc_cache = type opaque
%struct._objc_category = type { i8*, i8*, %struct._objc_method_list*, %struct._objc_method_list*, %struct._objc_protocol_list*, i32, %struct._prop_list_t* }
%struct._objc_class = type { %struct._objc_class*, %struct._objc_class*, i8*, i32, i32, i32, %struct._objc_ivar_list*, %struct._objc_method_list*, %struct._objc_cache*, %struct._objc_protocol_list*, i8*, %struct._objc_class_extension* }
%struct._objc_class_extension = type { i32, i8*, %struct._prop_list_t* }
%struct._objc_exception_data = type { [18 x i32], [4 x i8*] }
%struct._objc_ivar = type { i8*, i8*, i32 }
%struct._objc_ivar_list = type opaque
%struct._objc_method = type { %struct.objc_selector*, i8*, i8* }
%struct._objc_method_description = type { %struct.objc_selector*, i8* }
%struct._objc_method_description_list = type { i32, [0 x %struct._objc_method_description] }
%struct._objc_method_list = type opaque
%struct._objc_module = type { i32, i32, i8*, %struct._objc_symtab* }
%struct._objc_protocol = type { %struct._objc_protocol_extension*, i8*, %struct._objc_protocol_list*, %struct._objc_method_description_list*, %struct._objc_method_description_list* }
%struct._objc_protocol_extension = type { i32, %struct._objc_method_description_list*, %struct._objc_method_description_list*, %struct._prop_list_t* }
%struct._objc_protocol_list = type { %struct._objc_protocol_list*, i32, [0 x %struct._objc_protocol] }
%struct._objc_super = type <{ %struct.objc_object*, %struct.objc_class* }>
%struct._objc_symtab = type { i32, %struct.objc_selector*, i16, i16, [0 x i8*] }
%struct._prop_list_t = type { i32, i32, [0 x %struct._prop_t] }
%struct._prop_t = type { i8*, i8* }
%struct.objc_class = type opaque
%struct.objc_object = type opaque
%struct.objc_selector = type opaque
@"\01L_OBJC_IMAGE_INFO" = internal constant [2 x i32] [i32 0, i32 16], section "__OBJC, __image_info,regular" ; <[2 x i32]*> [#uses=1]
@llvm.dbg.compile_units = linkonce constant %llvm.dbg.anchor.type { i32 458752, i32 17 }, section "llvm.metadata" ; <%llvm.dbg.anchor.type*> [#uses=1]
@.str = internal constant [4 x i8] c"t.m\00", section "llvm.metadata" ; <[4 x i8]*> [#uses=1]
@.str1 = internal constant [20 x i8] c"/Volumes/work/Radar\00", section "llvm.metadata" ; <[20 x i8]*> [#uses=1]
@.str2 = internal constant [10 x i8] c"clang 1.0\00", section "llvm.metadata" ; <[10 x i8]*> [#uses=1]
@llvm.dbg.compile_unit = internal constant %llvm.dbg.compile_unit.type { i32 458769, { }* bitcast (%llvm.dbg.anchor.type* @llvm.dbg.compile_units to { }*), i32 16, i8* getelementptr ([4 x i8]* @.str, i32 0, i32 0), i8* getelementptr ([20 x i8]* @.str1, i32 0, i32 0), i8* getelementptr ([10 x i8]* @.str2, i32 0, i32 0), i1 true, i1 false, i8* null, i32 1 }, section "llvm.metadata" ; <%llvm.dbg.compile_unit.type*> [#uses=1]
@llvm.dbg.subprograms = linkonce constant %llvm.dbg.anchor.type { i32 458752, i32 46 }, section "llvm.metadata" ; <%llvm.dbg.anchor.type*> [#uses=1]
@.str3 = internal constant [3 x i8] c"f1\00", section "llvm.metadata" ; <[3 x i8]*> [#uses=1]
@llvm.dbg.subprogram = internal constant %llvm.dbg.subprogram.type { i32 458798, { }* bitcast (%llvm.dbg.anchor.type* @llvm.dbg.subprograms to { }*), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* getelementptr ([3 x i8]* @.str3, i32 0, i32 0), i8* getelementptr ([3 x i8]* @.str3, i32 0, i32 0), i8* getelementptr ([3 x i8]* @.str3, i32 0, i32 0), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i32 3, { }* null, i1 false, i1 true }, section "llvm.metadata" ; <%llvm.dbg.subprogram.type*> [#uses=1]
@.str4 = internal constant [4 x i8] c"int\00", section "llvm.metadata" ; <[4 x i8]*> [#uses=1]
@llvm.dbg.basictype = internal constant %llvm.dbg.basictype.type { i32 458788, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* getelementptr ([4 x i8]* @.str4, i32 0, i32 0), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i32 0, i64 32, i64 32, i64 0, i32 0, i32 5 }, section "llvm.metadata" ; <%llvm.dbg.basictype.type*> [#uses=1]
@llvm.dbg.array = internal constant [2 x { }*] [{ }* null, { }* bitcast (%llvm.dbg.basictype.type* @llvm.dbg.basictype to { }*)], section "llvm.metadata" ; <[2 x { }*]*> [#uses=1]
@llvm.dbg.composite = internal constant %llvm.dbg.composite.type { i32 458773, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* null, { }* null, i32 0, i64 0, i64 0, i64 0, i32 0, { }* null, { }* bitcast ([2 x { }*]* @llvm.dbg.array to { }*), i32 0 }, section "llvm.metadata" ; <%llvm.dbg.composite.type*> [#uses=1]
@llvm.dbg.derivedtype = internal constant %llvm.dbg.derivedtype.type { i32 458767, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* null, { }* null, i32 0, i64 32, i64 32, i64 0, i32 0, { }* bitcast (%llvm.dbg.composite.type* @llvm.dbg.composite to { }*) }, section "llvm.metadata" ; <%llvm.dbg.derivedtype.type*> [#uses=1]
@.str5 = internal constant [3 x i8] c"l0\00", section "llvm.metadata" ; <[3 x i8]*> [#uses=1]
@llvm.dbg.variable = internal constant %llvm.dbg.variable.type { i32 459008, { }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram to { }*), i8* getelementptr ([3 x i8]* @.str5, i32 0, i32 0), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i32 5, { }* bitcast (%llvm.dbg.derivedtype.type* @llvm.dbg.derivedtype to { }*) }, section "llvm.metadata" ; <%llvm.dbg.variable.type*> [#uses=1]
@.str6 = internal constant [3 x i8] c"f0\00", section "llvm.metadata" ; <[3 x i8]*> [#uses=1]
@llvm.dbg.subprogram7 = internal constant %llvm.dbg.subprogram.type { i32 458798, { }* bitcast (%llvm.dbg.anchor.type* @llvm.dbg.subprograms to { }*), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* getelementptr ([3 x i8]* @.str6, i32 0, i32 0), i8* getelementptr ([3 x i8]* @.str6, i32 0, i32 0), i8* getelementptr ([3 x i8]* @.str6, i32 0, i32 0), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i32 2, { }* null, i1 false, i1 true }, section "llvm.metadata" ; <%llvm.dbg.subprogram.type*> [#uses=1]
@.str8 = internal constant [2 x i8] c"x\00", section "llvm.metadata" ; <[2 x i8]*> [#uses=1]
@llvm.dbg.variable9 = internal constant %llvm.dbg.variable.type { i32 459009, { }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram7 to { }*), i8* getelementptr ([2 x i8]* @.str8, i32 0, i32 0), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i32 2, { }* bitcast (%llvm.dbg.basictype.type* @llvm.dbg.basictype to { }*) }, section "llvm.metadata" ; <%llvm.dbg.variable.type*> [#uses=1]
@"\01L_OBJC_CLASS_NAME_" = internal global [1 x i8] zeroinitializer, section "__TEXT,__cstring,cstring_literals", align 1 ; <[1 x i8]*> [#uses=1]
@"\01L_OBJC_MODULES" = internal global %struct._objc_module { i32 7, i32 16, i8* getelementptr ([1 x i8]* @"\01L_OBJC_CLASS_NAME_", i32 0, i32 0), %struct._objc_symtab* null }, section "__OBJC,__module_info,regular,no_dead_strip", align 4 ; <%struct._objc_module*> [#uses=1]
@llvm.used = appending global [3 x i8*] [i8* bitcast ([2 x i32]* @"\01L_OBJC_IMAGE_INFO" to i8*), i8* getelementptr ([1 x i8]* @"\01L_OBJC_CLASS_NAME_", i32 0, i32 0), i8* bitcast (%struct._objc_module* @"\01L_OBJC_MODULES" to i8*)], section "llvm.metadata" ; <[3 x i8*]*> [#uses=0]
define void @f1() nounwind {
entry:
%x.addr.i = alloca i32 ; <i32*> [#uses=2]
%l0 = alloca void (i32)*, align 4 ; <void (i32)**> [#uses=2]
call void @llvm.dbg.func.start({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram to { }*))
call void @llvm.dbg.stoppoint(i32 4, i32 3, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.func.start({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram7 to { }*))
store i32 1, i32* %x.addr.i
%0 = bitcast i32* %x.addr.i to { }* ; <{ }*> [#uses=1]
call void @llvm.dbg.declare({ }* %0, { }* bitcast (%llvm.dbg.variable.type* @llvm.dbg.variable9 to { }*))
call void @llvm.dbg.stoppoint(i32 2, i32 66, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.stoppoint(i32 5, i32 3, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.region.end({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram7 to { }*))
%1 = bitcast void (i32)** %l0 to { }* ; <{ }*> [#uses=1]
call void @llvm.dbg.declare({ }* %1, { }* bitcast (%llvm.dbg.variable.type* @llvm.dbg.variable to { }*))
store void (i32)* @f0, void (i32)** %l0
call void @llvm.dbg.stoppoint(i32 6, i32 1, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.region.end({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram to { }*))
ret void
}
declare void @llvm.dbg.func.start({ }*) nounwind readnone
declare void @llvm.dbg.stoppoint(i32, i32, { }*) nounwind readnone
define internal void @f0(i32 %x) nounwind alwaysinline {
entry:
%x.addr = alloca i32 ; <i32*> [#uses=2]
call void @llvm.dbg.func.start({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram7 to { }*))
store i32 %x, i32* %x.addr
%0 = bitcast i32* %x.addr to { }* ; <{ }*> [#uses=1]
call void @llvm.dbg.declare({ }* %0, { }* bitcast (%llvm.dbg.variable.type* @llvm.dbg.variable9 to { }*))
call void @llvm.dbg.stoppoint(i32 2, i32 66, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.region.end({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram7 to { }*))
ret void
}
declare void @llvm.dbg.declare({ }*, { }*) nounwind readnone
declare void @llvm.dbg.region.end({ }*) nounwind readnone

View File

@ -0,0 +1,75 @@
; RUN: llvm-as < %s | llc
; RUN: llvm-as < %s | llc -O0
%llvm.dbg.anchor.type = type { i32, i32 }
%llvm.dbg.basictype.type = type { i32, { }*, i8*, { }*, i32, i64, i64, i64, i32, i32 }
%llvm.dbg.compile_unit.type = type { i32, { }*, i32, i8*, i8*, i8* }
%llvm.dbg.subprogram.type = type { i32, { }*, { }*, i8*, i8*, i8*, { }*, i32, { }*, i1, i1 }
@llvm.dbg.subprogram = internal constant %llvm.dbg.subprogram.type { i32 393262, { }* bitcast (%llvm.dbg.anchor.type* @llvm.dbg.subprograms to { }*), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* getelementptr ([4 x i8]* @.str3, i32 0, i32 0), i8* getelementptr ([4 x i8]* @.str3, i32 0, i32 0), i8* null, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i32 1, { }* bitcast (%llvm.dbg.basictype.type* @llvm.dbg.basictype to { }*), i1 false, i1 true }, section "llvm.metadata" ; <%llvm.dbg.subprogram.type*> [#uses=1]
@llvm.dbg.subprograms = linkonce constant %llvm.dbg.anchor.type { i32 393216, i32 46 }, section "llvm.metadata" ; <%llvm.dbg.anchor.type*> [#uses=1]
@llvm.dbg.compile_unit = internal constant %llvm.dbg.compile_unit.type { i32 393233, { }* bitcast (%llvm.dbg.anchor.type* @llvm.dbg.compile_units to { }*), i32 1, i8* getelementptr ([4 x i8]* @.str, i32 0, i32 0), i8* getelementptr ([5 x i8]* @.str1, i32 0, i32 0), i8* getelementptr ([52 x i8]* @.str2, i32 0, i32 0) }, section "llvm.metadata" ; <%llvm.dbg.compile_unit.type*> [#uses=1]
@llvm.dbg.compile_units = linkonce constant %llvm.dbg.anchor.type { i32 393216, i32 17 }, section "llvm.metadata" ; <%llvm.dbg.anchor.type*> [#uses=1]
@.str = internal constant [4 x i8] c"a.c\00", section "llvm.metadata" ; <[4 x i8]*> [#uses=1]
@.str1 = internal constant [5 x i8] c"/tmp\00", section "llvm.metadata" ; <[5 x i8]*> [#uses=1]
@.str2 = internal constant [52 x i8] c"4.2.1 (Based on Apple Inc. build 5627) (LLVM build)\00", section "llvm.metadata" ; <[52 x i8]*> [#uses=1]
@.str3 = internal constant [4 x i8] c"foo\00", section "llvm.metadata" ; <[4 x i8]*> [#uses=1]
@llvm.dbg.basictype = internal constant %llvm.dbg.basictype.type { i32 393252, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* getelementptr ([4 x i8]* @.str4, i32 0, i32 0), { }* null, i32 0, i64 32, i64 32, i64 0, i32 0, i32 5 }, section "llvm.metadata" ; <%llvm.dbg.basictype.type*> [#uses=1]
@.str4 = internal constant [4 x i8] c"int\00", section "llvm.metadata" ; <[4 x i8]*> [#uses=1]
@llvm.dbg.subprogram5 = internal constant %llvm.dbg.subprogram.type { i32 393262, { }* bitcast (%llvm.dbg.anchor.type* @llvm.dbg.subprograms to { }*), { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i8* getelementptr ([5 x i8]* @.str6, i32 0, i32 0), i8* getelementptr ([5 x i8]* @.str6, i32 0, i32 0), i8* null, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*), i32 2, { }* bitcast (%llvm.dbg.basictype.type* @llvm.dbg.basictype to { }*), i1 false, i1 true }, section "llvm.metadata" ; <%llvm.dbg.subprogram.type*> [#uses=1]
@.str6 = internal constant [5 x i8] c"main\00", section "llvm.metadata" ; <[5 x i8]*> [#uses=1]
define i32 @foo() nounwind alwaysinline {
entry:
%retval = alloca i32 ; <i32*> [#uses=2]
%0 = alloca i32 ; <i32*> [#uses=2]
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
call void @llvm.dbg.func.start({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram to { }*))
call void @llvm.dbg.stoppoint(i32 1, i32 0, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
store i32 42, i32* %0, align 4
%1 = load i32* %0, align 4 ; <i32> [#uses=1]
store i32 %1, i32* %retval, align 4
br label %return
return: ; preds = %entry
%retval1 = load i32* %retval ; <i32> [#uses=1]
call void @llvm.dbg.stoppoint(i32 1, i32 0, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.region.end({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram to { }*))
ret i32 %retval1
}
declare void @llvm.dbg.func.start({ }*) nounwind
declare void @llvm.dbg.stoppoint(i32, i32, { }*) nounwind
declare void @llvm.dbg.region.end({ }*) nounwind
define i32 @main() nounwind {
entry:
%retval.i = alloca i32 ; <i32*> [#uses=2]
%0 = alloca i32 ; <i32*> [#uses=2]
%retval = alloca i32 ; <i32*> [#uses=2]
%1 = alloca i32 ; <i32*> [#uses=2]
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
call void @llvm.dbg.func.start({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram5 to { }*))
br label %bb1
return: ; preds = %entry
%retval1 = load i32* %retval ; <i32> [#uses=1]
call void @llvm.dbg.stoppoint(i32 2, i32 0, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.region.end({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram5 to { }*))
ret i32 %retval1
bb1:
call void @llvm.dbg.stoppoint(i32 2, i32 0, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*))
call void @llvm.dbg.func.start({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram to { }*)) nounwind
call void @llvm.dbg.stoppoint(i32 1, i32 0, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*)) nounwind
store i32 42, i32* %0, align 4
%2 = load i32* %0, align 4 ; <i32> [#uses=1]
store i32 %2, i32* %retval.i, align 4
%retval1.i = load i32* %retval.i ; <i32> [#uses=1]
call void @llvm.dbg.stoppoint(i32 1, i32 0, { }* bitcast (%llvm.dbg.compile_unit.type* @llvm.dbg.compile_unit to { }*)) nounwind
call void @llvm.dbg.region.end({ }* bitcast (%llvm.dbg.subprogram.type* @llvm.dbg.subprogram to { }*)) nounwind
store i32 %retval1.i, i32* %1, align 4
%3 = load i32* %1, align 4 ; <i32> [#uses=1]
store i32 %3, i32* %retval, align 4
br label %return
}

24
test/FrontendC/pr3518.c Normal file
View File

@ -0,0 +1,24 @@
// RUN: %llvmgcc %s -S -emit-llvm -O0 -o - | grep {= internal global} | count 4
// PR 3518
// Some of the objects were coming out as unintialized (external) before 3518
// was fixed. Internal names are different between llvm-gcc and clang so they
// are not tested.
extern void abort (void);
struct A { int i; int j; };
struct B { struct A *a; struct A *b; };
struct C { struct B *c; struct A *d; };
struct C e = { &(struct B) { &(struct A) { 1, 2 }, &(struct A) { 3, 4 } }, &(struct A) { 5, 6 } };
int
main (void)
{
if (e.c->a->i != 1 || e.c->a->j != 2)
abort ();
if (e.c->b->i != 3 || e.c->b->j != 4)
abort ();
if (e.d->i != 5 || e.d->j != 6)
abort ();
return 0;
}

39
test/FrontendC/pr4349.c Normal file
View File

@ -0,0 +1,39 @@
// RUN: %llvmgcc %s -S -emit-llvm -O0 -o - | grep svars2 | grep {\\\[2 x \\\[2 x i8\\\]\\\]}
// RUN: %llvmgcc %s -S -emit-llvm -O0 -o - | grep svars2 | grep {, i\[\[:digit:\]\]\\+ 1)} | count 1
// RUN: %llvmgcc %s -S -emit-llvm -O0 -o - | grep svars3 | grep {\\\[2 x i16\\\]}
// RUN: %llvmgcc %s -S -emit-llvm -O0 -o - | grep svars3 | grep {, i\[\[:digit:\]\]\\+ 1)} | count 1
// RUN: %llvmgcc %s -S -emit-llvm -O0 -o - | grep svars4 | grep {\\\[2 x \\\[2 x i8\\\]\\\]} | count 1
// RUN: %llvmgcc %s -S -emit-llvm -O0 -o - | grep svars4 | grep {, i\[\[:digit:\]\]\\+ 1, i\[\[:digit:\]\]\\+ 1)} | count 1
// PR 4349
union reg
{
unsigned char b[2][2];
unsigned short w[2];
unsigned int d;
};
struct cpu
{
union reg pc;
};
extern struct cpu cpu;
struct svar
{
void *ptr;
};
struct svar svars1[] =
{
{ &((cpu.pc).w[0]) }
};
struct svar svars2[] =
{
{ &((cpu.pc).b[0][1]) }
};
struct svar svars3[] =
{
{ &((cpu.pc).w[1]) }
};
struct svar svars4[] =
{
{ &((cpu.pc).b[1][1]) }
};

87
test/TableGen/Slice.td Normal file
View File

@ -0,0 +1,87 @@
// RUN: tblgen %s | grep {\\\[(set} | count 2
// RUN: tblgen %s | grep {\\\[\\\]} | count 2
class ValueType<int size, int value> {
int Size = size;
int Value = value;
}
def f32 : ValueType<32, 1>; // 2 x i64 vector value
class Intrinsic<string name> {
string Name = name;
}
class Inst<bits<8> opcode, dag oopnds, dag iopnds, string asmstr,
list<dag> pattern> {
bits<8> Opcode = opcode;
dag OutOperands = oopnds;
dag InOperands = iopnds;
string AssemblyString = asmstr;
list<dag> Pattern = pattern;
}
def ops;
def outs;
def ins;
def set;
// Define registers
class Register<string n> {
string Name = n;
}
class RegisterClass<list<ValueType> regTypes, list<Register> regList> {
list<ValueType> RegTypes = regTypes;
list<Register> MemberList = regList;
}
def XMM0: Register<"xmm0">;
def XMM1: Register<"xmm1">;
def XMM2: Register<"xmm2">;
def XMM3: Register<"xmm3">;
def XMM4: Register<"xmm4">;
def XMM5: Register<"xmm5">;
def XMM6: Register<"xmm6">;
def XMM7: Register<"xmm7">;
def XMM8: Register<"xmm8">;
def XMM9: Register<"xmm9">;
def XMM10: Register<"xmm10">;
def XMM11: Register<"xmm11">;
def XMM12: Register<"xmm12">;
def XMM13: Register<"xmm13">;
def XMM14: Register<"xmm14">;
def XMM15: Register<"xmm15">;
def FR32 : RegisterClass<[f32],
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]>;
class SDNode {}
def not : SDNode;
multiclass scalar<bits<8> opcode, string asmstr = "", list<list<dag>> patterns = []> {
def SSrr : Inst<opcode, (outs FR32:$dst), (ins FR32:$src),
!strconcat(asmstr, "\t$dst, $src"),
!if(!null(patterns),[]<dag>,patterns[0])>;
def SSrm : Inst<opcode, (outs FR32:$dst), (ins FR32:$src),
!strconcat(asmstr, "\t$dst, $src"),
!if(!null(patterns),[]<dag>,!if(!null(!cdr(patterns)),patterns[0],patterns[1]))>;
}
multiclass vscalar<bits<8> opcode, string asmstr = "", list<list<dag>> patterns = []> {
def V#NAME#SSrr : Inst<opcode, (outs FR32:$dst), (ins FR32:$src),
!strconcat(asmstr, "\t$dst, $src"),
!if(!null(patterns),[]<dag>,patterns[0])>;
def V#NAME#SSrm : Inst<opcode, (outs FR32:$dst), (ins FR32:$src),
!strconcat(asmstr, "\t$dst, $src"),
!if(!null(patterns),[]<dag>,!if(!null(!cdr(patterns)),patterns[0],patterns[1]))>;
}
multiclass myscalar<bits<8> opcode, string asmstr = "", list<list<dag>> patterns = []> :
scalar<opcode, asmstr, patterns>,
vscalar<opcode, asmstr, patterns>;
defm NOT : myscalar<0x10, "not", [[], [(set FR32:$dst, (f32 (not FR32:$src)))]]>;

View File

@ -1,5 +1,5 @@
// RUN: tblgen %s | grep {1, 2, 3} | count 4
// RUN: tblgen %s | grep {4, 5, 6} | count 2
// RUN: tblgen %s | grep {\\\[1, 2, 3\\\]} | count 4
// RUN: tblgen %s | grep {\\\[4, 5, 6\\\]} | count 2
class A<list<list<int>> vals> {
list<int> first = vals[0];

View File

@ -1,4 +1,4 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis | %prcontext Loop: 1 | grep %indvar
; RUN: llvm-as < %s | opt -indvars | llvm-dis | %prcontext ^Loop: 1 | grep %Canonical
; The indvar simplification code should ensure that the first PHI in the block
; is the canonical one!

View File

@ -0,0 +1,24 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis | grep trunc | count 1
; Indvars should do the IV arithmetic in the canonical IV type (i64),
; and only use one truncation.
define void @foo(i64* %A, i64* %B, i64 %n, i64 %a, i64 %s) nounwind {
entry:
%t0 = icmp sgt i64 %n, 0 ; <i1> [#uses=1]
br i1 %t0, label %bb.preheader, label %return
bb.preheader: ; preds = %entry
br label %bb
bb: ; preds = %bb, %bb.preheader
%i.01 = phi i64 [ %t6, %bb ], [ %a, %bb.preheader ] ; <i64> [#uses=3]
%t1 = and i64 %i.01, 255 ; <i64> [#uses=1]
%t2 = getelementptr i64* %A, i64 %t1 ; <i64*> [#uses=1]
store i64 %i.01, i64* %t2, align 8
%t6 = add i64 %i.01, %s ; <i64> [#uses=1]
br label %bb
return: ; preds = %entry
ret void
}

View File

@ -0,0 +1,7 @@
; RUN: llvm-as < %s | opt -instcombine | llvm-dis | grep store
; PR4366
define void @a() {
store i32 0, i32 addrspace(1)* null
ret void
}

Some files were not shown because too many files have changed in this diff Show More