Kernel malloc layers malloc_type allocation over one of two underlying

allocators: a set of power-of-two UMA zones for small allocations, and the
VM page allocator for large allocations.  In order to maintain unified
statistics for specific malloc types, kernel malloc maintains a separate
per-type statistics pool, which can be monitored using vmstat -m.  Prior
to this commit, each pool of per-type statistics was protected using a
per-type mutex associated with the malloc type.

This change modifies kernel malloc to maintain per-CPU statistics pools
for each malloc type, and protects writing those statistics using critical
sections.  It also moves to unsynchronized reads of per-CPU statistics
when generating coalesced statistics.  To do this, several changes are
implemented:

- In the previous world order, the statistics memory was allocated by
  the owner of the malloc type structure, allocated statically using
  MALLOC_DEFINE().  This embedded the definition of the malloc_type
  structure into all kernel modules.  Move to a model in which a pointer
  within struct malloc_type points at a UMA-allocated
  malloc_type_internal data structure owned and maintained by
  kern_malloc.c, and not part of the exported ABI/API to the rest of
  the kernel.  For the purposes of easing a possible MFC, re-use an
  existing pointer in 'struct malloc_type', and maintain the current
  malloc_type structure size, as well as layout with respect to the
  fields reused outside of the malloc subsystem (such as ks_shortdesc).
  There are several unused fields as a result of no longer requiring
  the mutex in malloc_type.

- Struct malloc_type_internal contains an array of malloc_type_stats,
  of size MAXCPU.  The structure defined above avoids hard-coding a
  kernel compile-time value of MAXCPU into kernel modules that interact
  with malloc.

- When accessing per-cpu statistics for a malloc type, surround read -
  modify - update requests with critical_enter()/critical_exit() in
  order to avoid races during write.  The per-CPU fields are written
  only from the CPU that owns them.

- Per-CPU stats now maintained "allocated" and "freed" counters for
  number of allocations/frees and bytes allocated/freed, since there is
  no longer a coherent global notion of the totals.  When coalescing
  malloc stats, accept a slight race between reading stats across CPUs,
  and avoid showing the user a negative allocation count for the type
  in the event of a race.  The global high watermark is no longer
  maintained for a malloc type, as there is no global notion of the
  number of allocations.

- While tearing up the sysctl() path, also switch to using sbufs.  The
  current "export as text" sysctl format is retained with the same
  syntax.  We may want to change this in the future to export more
  per-CPU information, such as how allocations and frees are balanced
  across CPUs.

This change results in a substantial speedup of kernel malloc and free
paths on SMP, as critical sections (where usable) out-perform mutexes
due to avoiding atomic/bus-locked operations.  There is also a minor
improvement on UP due to the slightly lower cost of critical sections
there.  The cost of the change to this approach is the loss of a
continuous notion of total allocations that can be exploited to track
per-type high watermarks, as well as increased complexity when
monitoring statistics.

Due to carefully avoiding changing the ABI, as well as hardening the ABI
against future changes, it is not necessary to recompile kernel modules
for this change.  However, MFC'ing this change to RELENG_5 will require
also MFC'ing optimizations for soft critical sections, which may modify
exposed kernel ABIs.  The internal malloc API is changed, and
modifications to vmstat in order to restore "vmstat -m" on core dumps will
follow shortly.

Several improvements from:		bde
Statistics approach discussed with:	ups
Tested by:				scottl, others
This commit is contained in:
Robert Watson 2005-05-29 13:38:07 +00:00
parent 80afb03ba1
commit 63a7e0a3f9
2 changed files with 232 additions and 147 deletions

View File

@ -1,6 +1,8 @@
/*-
* Copyright (c) 1987, 1991, 1993
* The Regents of the University of California. All rights reserved.
* The Regents of the University of California.
* Copyright (c) 2005 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -44,6 +46,7 @@ __FBSDID("$FreeBSD$");
#include <sys/mutex.h>
#include <sys/vmmeter.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/time.h>
@ -133,6 +136,8 @@ struct {
{0, NULL},
};
static uma_zone_t mt_zone;
#ifdef DEBUG_MEMGUARD
u_int vm_memguard_divisor;
SYSCTL_UINT(_vm, OID_AUTO, memguard_divisor, CTLFLAG_RD, &vm_memguard_divisor,
@ -197,41 +202,44 @@ malloc_last_fail(void)
* Add this to the informational malloc_type bucket.
*/
static void
malloc_type_zone_allocated(struct malloc_type *ksp, unsigned long size,
malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
int zindx)
{
mtx_lock(&ksp->ks_mtx);
ksp->ks_calls++;
struct malloc_type_internal *mtip;
struct malloc_type_stats *mtsp;
critical_enter();
mtip = mtp->ks_handle;
mtsp = &mtip->mti_stats[curcpu];
mtsp->mts_memalloced += size;
mtsp->mts_numallocs++;
if (zindx != -1)
ksp->ks_size |= 1 << zindx;
if (size != 0) {
ksp->ks_memuse += size;
ksp->ks_inuse++;
if (ksp->ks_memuse > ksp->ks_maxused)
ksp->ks_maxused = ksp->ks_memuse;
}
mtx_unlock(&ksp->ks_mtx);
mtsp->mts_size |= 1 << zindx;
critical_exit();
}
void
malloc_type_allocated(struct malloc_type *ksp, unsigned long size)
malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
{
malloc_type_zone_allocated(ksp, size, -1);
malloc_type_zone_allocated(mtp, size, -1);
}
/*
* Remove this allocation from the informational malloc_type bucket.
*/
void
malloc_type_freed(struct malloc_type *ksp, unsigned long size)
malloc_type_freed(struct malloc_type *mtp, unsigned long size)
{
mtx_lock(&ksp->ks_mtx);
KASSERT(size <= ksp->ks_memuse,
("malloc(9)/free(9) confusion.\n%s",
"Probably freeing with wrong type, but maybe not here."));
ksp->ks_memuse -= size;
ksp->ks_inuse--;
mtx_unlock(&ksp->ks_mtx);
struct malloc_type_internal *mtip;
struct malloc_type_stats *mtsp;
critical_enter();
mtip = mtp->ks_handle;
mtsp = &mtip->mti_stats[curcpu];
mtsp->mts_memfreed += size;
mtsp->mts_numfrees++;
critical_exit();
}
/*
@ -243,7 +251,7 @@ malloc_type_freed(struct malloc_type *ksp, unsigned long size)
* the allocation fails.
*/
void *
malloc(unsigned long size, struct malloc_type *type, int flags)
malloc(unsigned long size, struct malloc_type *mtp, int flags)
{
int indx;
caddr_t va;
@ -290,7 +298,7 @@ malloc(unsigned long size, struct malloc_type *type, int flags)
#ifdef DEBUG_MEMGUARD
/* XXX CHANGEME! */
if (type == M_SUBPROC)
if (mtp == M_SUBPROC)
return memguard_alloc(size, flags);
#endif
@ -306,13 +314,13 @@ malloc(unsigned long size, struct malloc_type *type, int flags)
va = uma_zalloc(zone, flags);
if (va != NULL)
size = keg->uk_size;
malloc_type_zone_allocated(type, va == NULL ? 0 : size, indx);
malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
} else {
size = roundup(size, PAGE_SIZE);
zone = NULL;
keg = NULL;
va = uma_large_malloc(size, flags);
malloc_type_allocated(type, va == NULL ? 0 : size);
malloc_type_allocated(mtp, va == NULL ? 0 : size);
}
if (flags & M_WAITOK)
KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
@ -334,7 +342,7 @@ malloc(unsigned long size, struct malloc_type *type, int flags)
* This routine may not block.
*/
void
free(void *addr, struct malloc_type *type)
free(void *addr, struct malloc_type *mtp)
{
uma_slab_t slab;
u_long size;
@ -345,15 +353,12 @@ free(void *addr, struct malloc_type *type)
#ifdef DEBUG_MEMGUARD
/* XXX CHANGEME! */
if (type == M_SUBPROC) {
if (mtp == M_SUBPROC) {
memguard_free(addr);
return;
}
#endif
KASSERT(type->ks_memuse > 0,
("malloc(9)/free(9) confusion.\n%s",
"Probably freeing with wrong type, but maybe not here."));
size = 0;
slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
@ -365,7 +370,7 @@ free(void *addr, struct malloc_type *type)
if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
#ifdef INVARIANTS
struct malloc_type **mtp = addr;
struct malloc_type **mtpp = addr;
#endif
size = slab->us_keg->uk_size;
#ifdef INVARIANTS
@ -377,25 +382,25 @@ free(void *addr, struct malloc_type *type)
* This code assumes that size is a multiple of 8 bytes for
* 64 bit machines
*/
mtp = (struct malloc_type **)
((unsigned long)mtp & ~UMA_ALIGN_PTR);
mtp += (size - sizeof(struct malloc_type *)) /
mtpp = (struct malloc_type **)
((unsigned long)mtpp & ~UMA_ALIGN_PTR);
mtpp += (size - sizeof(struct malloc_type *)) /
sizeof(struct malloc_type *);
*mtp = type;
*mtpp = mtp;
#endif
uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
} else {
size = slab->us_size;
uma_large_free(slab);
}
malloc_type_freed(type, size);
malloc_type_freed(mtp, size);
}
/*
* realloc: change the size of a memory block
*/
void *
realloc(void *addr, unsigned long size, struct malloc_type *type, int flags)
realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
{
uma_slab_t slab;
unsigned long alloc;
@ -403,11 +408,16 @@ realloc(void *addr, unsigned long size, struct malloc_type *type, int flags)
/* realloc(NULL, ...) is equivalent to malloc(...) */
if (addr == NULL)
return (malloc(size, type, flags));
return (malloc(size, mtp, flags));
/*
* XXX: Should report free of old memory and alloc of new memory to
* per-CPU stats.
*/
#ifdef DEBUG_MEMGUARD
/* XXX: CHANGEME! */
if (type == M_SUBPROC) {
if (mtp == M_SUBPROC) {
slab = NULL;
alloc = size;
} else {
@ -435,12 +445,12 @@ if (type == M_SUBPROC) {
#endif
/* Allocate a new, bigger (or smaller) block */
if ((newaddr = malloc(size, type, flags)) == NULL)
if ((newaddr = malloc(size, mtp, flags)) == NULL)
return (NULL);
/* Copy over original contents */
bcopy(addr, newaddr, min(size, alloc));
free(addr, type);
free(addr, mtp);
return (newaddr);
}
@ -448,12 +458,12 @@ if (type == M_SUBPROC) {
* reallocf: same as realloc() but free memory on failure.
*/
void *
reallocf(void *addr, unsigned long size, struct malloc_type *type, int flags)
reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
{
void *mem;
if ((mem = realloc(addr, size, type, flags)) == NULL)
free(addr, type);
if ((mem = realloc(addr, size, mtp, flags)) == NULL)
free(addr, mtp);
return (mem);
}
@ -543,6 +553,13 @@ kmeminit(void *dummy)
uma_startup2();
mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
#ifdef INVARIANTS
mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
#else
NULL, NULL, NULL, NULL,
#endif
UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
int size = kmemzones[indx].kz_size;
char *name = kmemzones[indx].kz_name;
@ -564,125 +581,141 @@ kmeminit(void *dummy)
void
malloc_init(void *data)
{
struct malloc_type *type = (struct malloc_type *)data;
struct malloc_type_internal *mtip;
struct malloc_type *mtp;
KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
mtp = data;
mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
mtp->ks_handle = mtip;
mtx_lock(&malloc_mtx);
if (type->ks_magic != M_MAGIC)
panic("malloc type lacks magic");
if (cnt.v_page_count == 0)
panic("malloc_init not allowed before vm init");
if (type->ks_next != NULL)
return;
type->ks_next = kmemstatistics;
kmemstatistics = type;
mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
mtp->ks_next = kmemstatistics;
kmemstatistics = mtp;
mtx_unlock(&malloc_mtx);
}
void
malloc_uninit(void *data)
{
struct malloc_type *type = (struct malloc_type *)data;
struct malloc_type *t;
struct malloc_type_internal *mtip;
struct malloc_type *mtp, *temp;
mtp = data;
KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
mtx_lock(&malloc_mtx);
mtx_lock(&type->ks_mtx);
if (type->ks_magic != M_MAGIC)
panic("malloc type lacks magic");
if (cnt.v_page_count == 0)
panic("malloc_uninit not allowed before vm init");
if (type == kmemstatistics)
kmemstatistics = type->ks_next;
else {
for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
if (t->ks_next == type) {
t->ks_next = type->ks_next;
break;
}
mtip = mtp->ks_handle;
mtp->ks_handle = NULL;
if (mtp != kmemstatistics) {
for (temp = kmemstatistics; temp != NULL;
temp = temp->ks_next) {
if (temp->ks_next == mtp)
temp->ks_next = mtp->ks_next;
}
}
type->ks_next = NULL;
mtx_destroy(&type->ks_mtx);
} else
kmemstatistics = mtp->ks_next;
mtx_unlock(&malloc_mtx);
uma_zfree(mt_zone, mtp);
}
static int
sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
{
struct malloc_type *type;
struct malloc_type_stats mts_local, *mtsp;
struct malloc_type_internal *mtip;
struct malloc_type *mtp;
struct sbuf sbuf;
long temp_allocs, temp_bytes;
int linesize = 128;
int curline;
int bufsize;
int first;
int error;
char *buf;
char *p;
int cnt;
int len;
int i;
cnt = 0;
/* Guess at how much room is needed. */
mtx_lock(&malloc_mtx);
for (type = kmemstatistics; type != NULL; type = type->ks_next)
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next)
cnt++;
mtx_unlock(&malloc_mtx);
bufsize = linesize * (cnt + 1);
p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
mtx_lock(&malloc_mtx);
len = snprintf(p, linesize,
sbuf_printf(&sbuf,
"\n Type InUse MemUse HighUse Requests Size(s)\n");
p += len;
for (type = kmemstatistics; cnt != 0 && type != NULL;
type = type->ks_next, cnt--) {
if (type->ks_calls == 0)
for (mtp = kmemstatistics; cnt != 0 && mtp != NULL;
mtp = mtp->ks_next, cnt--) {
mtip = mtp->ks_handle;
bzero(&mts_local, sizeof(mts_local));
for (i = 0; i < MAXCPU; i++) {
mtsp = &mtip->mti_stats[i];
mts_local.mts_memalloced += mtsp->mts_memalloced;
mts_local.mts_memfreed += mtsp->mts_memfreed;
mts_local.mts_numallocs += mtsp->mts_numallocs;
mts_local.mts_numfrees += mtsp->mts_numfrees;
mts_local.mts_size |= mtsp->mts_size;
}
if (mts_local.mts_numallocs == 0)
continue;
curline = linesize - 2; /* Leave room for the \n */
len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
type->ks_shortdesc,
type->ks_inuse,
(type->ks_memuse + 1023) / 1024,
(type->ks_maxused + 1023) / 1024,
(long long unsigned)type->ks_calls);
curline -= len;
p += len;
/*
* Due to races in per-CPU statistics gather, it's possible to
* get a slightly negative number here. If we do, approximate
* with 0.
*/
if (mts_local.mts_numallocs > mts_local.mts_numfrees)
temp_allocs = mts_local.mts_numallocs -
mts_local.mts_numfrees;
else
temp_allocs = 0;
/*
* Ditto for bytes allocated.
*/
if (mts_local.mts_memalloced > mts_local.mts_memfreed)
temp_bytes = mts_local.mts_memalloced -
mts_local.mts_memfreed;
else
temp_bytes = 0;
/*
* XXXRW: High-waterwark is no longer easily available, so
* we just print '-' for that column.
*/
sbuf_printf(&sbuf, "%13s%6lu%6luK -%9lu",
mtp->ks_shortdesc,
temp_allocs,
(temp_bytes + 1023) / 1024,
mts_local.mts_numallocs);
first = 1;
for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
i++) {
if (type->ks_size & (1 << i)) {
if (mts_local.mts_size & (1 << i)) {
if (first)
len = snprintf(p, curline, " ");
sbuf_printf(&sbuf, " ");
else
len = snprintf(p, curline, ",");
curline -= len;
p += len;
len = snprintf(p, curline,
"%s", kmemzones[i].kz_name);
curline -= len;
p += len;
sbuf_printf(&sbuf, ",");
sbuf_printf(&sbuf, "%s",
kmemzones[i].kz_name);
first = 0;
}
}
len = snprintf(p, 2, "\n");
p += len;
sbuf_printf(&sbuf, "\n");
}
sbuf_finish(&sbuf);
mtx_unlock(&malloc_mtx);
error = SYSCTL_OUT(req, buf, p - buf);
error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
sbuf_delete(&sbuf);
free(buf, M_TEMP);
return (error);
}
@ -696,6 +729,7 @@ static int
sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
{
int linesize = 64;
struct sbuf sbuf;
uint64_t count;
uint64_t waste;
uint64_t mem;
@ -704,7 +738,6 @@ sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
char *buf;
int rsize;
int size;
char *p;
int len;
int i;
@ -714,34 +747,30 @@ sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
waste = 0;
mem = 0;
p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
len = snprintf(p, bufsize,
buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
sbuf_printf(&sbuf,
"\n Size Requests Real Size\n");
bufsize -= len;
p += len;
for (i = 0; i < KMEM_ZSIZE; i++) {
size = i << KMEM_ZSHIFT;
rsize = kmemzones[kmemsize[i]].kz_size;
count = (long long unsigned)krequests[i];
len = snprintf(p, bufsize, "%6d%28llu%11d\n",
size, (unsigned long long)count, rsize);
bufsize -= len;
p += len;
sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
(unsigned long long)count, rsize);
if ((rsize * count) > (size * count))
waste += (rsize * count) - (size * count);
mem += (rsize * count);
}
len = snprintf(p, bufsize,
sbuf_printf(&sbuf,
"\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
(unsigned long long)mem, (unsigned long long)waste);
p += len;
sbuf_finish(&sbuf);
error = SYSCTL_OUT(req, buf, p - buf);
error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
sbuf_delete(&sbuf);
free(buf, M_TEMP);
return (error);
}

View File

@ -1,6 +1,8 @@
/*-
* Copyright (c) 1987, 1993
* The Regents of the University of California. All rights reserved.
* The Regents of the University of California.
* Copyright (c) 2005 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -50,25 +52,79 @@
#define M_MAGIC 877983977 /* time when first defined :-) */
/*
* Two malloc type structures are present: malloc_type, which is used by a
* type owner to declare the type, and malloc_type_internal, which holds
* malloc-owned statistics and other ABI-sensitive fields, such as the set of
* malloc statistics indexed by the compile-time MAXCPU constant.
* Applications should avoid introducing dependence on the allocator private
* data layout and size.
*
* The malloc_type ks_next field is protected by malloc_mtx. Other fields in
* malloc_type are static after initialization so unsynchronized.
*
* Statistics in malloc_type_stats are written only when holding a critical
* section and running on the CPU associated with the index into the stat
* array, but read lock-free resulting in possible (minor) races, which the
* monitoring app should take into account.
*/
struct malloc_type_stats {
u_long mts_memalloced; /* Bytes allocated on CPU. */
u_long mts_memfreed; /* Bytes freed on CPU. */
u_long mts_numallocs; /* Number of allocates on CPU. */
u_long mts_numfrees; /* number of frees on CPU. */
u_long mts_size; /* Bitmask of sizes allocated on CPU. */
u_long _mts_reserved1; /* Reserved field. */
u_long _mts_reserved2; /* Reserved field. */
u_long _mts_reserved3; /* Reserved field. */
};
struct malloc_type_internal {
struct malloc_type_stats mti_stats[MAXCPU];
};
/*
* ABI-compatible version of the old 'struct malloc_type', only all stats are
* now malloc-managed in malloc-owned memory rather than in caller memory, so
* as to avoid ABI issues. The ks_next pointer is reused as a pointer to the
* internal data handle.
*/
struct malloc_type {
struct malloc_type *ks_next; /* next in list */
u_long ks_memuse; /* total memory held in bytes */
u_long ks_size; /* sizes of this thing that are allocated */
u_long ks_inuse; /* # of packets of this type currently in use */
uint64_t ks_calls; /* total packets of this type ever allocated */
u_long ks_maxused; /* maximum number ever used */
u_long ks_magic; /* if it's not magic, don't touch it */
const char *ks_shortdesc; /* short description */
struct mtx ks_mtx; /* lock for stats */
struct malloc_type *ks_next; /* Next in global chain. */
u_long _ks_memuse; /* No longer used. */
u_long _ks_size; /* No longer used. */
u_long _ks_inuse; /* No longer used. */
uint64_t _ks_calls; /* No longer used. */
u_long _ks_maxused; /* No longer used. */
u_long ks_magic; /* Detect programmer error. */
const char *ks_shortdesc; /* Printable type name. */
/*
* struct malloc_type was terminated with a struct mtx, which is no
* longer required. For ABI reasons, continue to flesh out the full
* size of the old structure, but reuse the _lo_class field for our
* internal data handle.
*/
void *ks_handle; /* Priv. data, was lo_class. */
const char *_lo_name;
const char *_lo_type;
u_int _lo_flags;
void *_lo_list_next;
struct witness *_lo_witness;
uintptr_t _mtx_lock;
u_int _mtx_recurse;
};
#ifdef _KERNEL
#define MALLOC_DEFINE(type, shortdesc, longdesc) \
struct malloc_type type[1] = { \
{ NULL, 0, 0, 0, 0, 0, M_MAGIC, shortdesc, {} } \
}; \
SYSINIT(type##_init, SI_SUB_KMEM, SI_ORDER_SECOND, malloc_init, type); \
SYSUNINIT(type##_uninit, SI_SUB_KMEM, SI_ORDER_ANY, malloc_uninit, type)
#define MALLOC_DEFINE(type, shortdesc, longdesc) \
struct malloc_type type[1] = { \
{ NULL, 0, 0, 0, 0, 0, M_MAGIC, shortdesc, NULL, NULL, \
NULL, 0, NULL, NULL, 0, 0 } \
}; \
SYSINIT(type##_init, SI_SUB_KMEM, SI_ORDER_SECOND, malloc_init, \
type); \
SYSUNINIT(type##_uninit, SI_SUB_KMEM, SI_ORDER_ANY, \
malloc_uninit, type);
#define MALLOC_DECLARE(type) \
extern struct malloc_type type[1]