Merge llvm, clang, lld, lldb, compiler-rt and libc++ r308421, and update

build glue.
This commit is contained in:
dim 2017-07-19 19:41:41 +00:00
commit 663f5db3f7
532 changed files with 16648 additions and 6068 deletions

View File

@ -21,7 +21,9 @@
#include "asan_report.h"
#include "asan_stack.h"
#include "asan_thread.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_list.h"
@ -799,11 +801,6 @@ void PrintInternalAllocatorStats() {
instance.PrintStats();
}
void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
AllocType alloc_type) {
return instance.Allocate(size, alignment, stack, alloc_type, true);
}
void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
instance.Deallocate(ptr, 0, stack, alloc_type);
}
@ -814,16 +811,16 @@ void asan_sized_free(void *ptr, uptr size, BufferedStackTrace *stack,
}
void *asan_malloc(uptr size, BufferedStackTrace *stack) {
return instance.Allocate(size, 8, stack, FROM_MALLOC, true);
return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
}
void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
return instance.Calloc(nmemb, size, stack);
return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
}
void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
if (!p)
return instance.Allocate(size, 8, stack, FROM_MALLOC, true);
return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
if (size == 0) {
if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
instance.Deallocate(p, 0, stack, FROM_MALLOC);
@ -832,26 +829,41 @@ void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
// Allocate a size of 1 if we shouldn't free() on Realloc to 0
size = 1;
}
return instance.Reallocate(p, size, stack);
return SetErrnoOnNull(instance.Reallocate(p, size, stack));
}
void *asan_valloc(uptr size, BufferedStackTrace *stack) {
return instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
return SetErrnoOnNull(
instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
}
void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = PageSize;
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(
instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
}
void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
AllocType alloc_type) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
return AsanAllocator::FailureHandler::OnBadRequest();
}
return instance.Allocate(size, PageSize, stack, FROM_MALLOC, true);
return SetErrnoOnNull(
instance.Allocate(size, alignment, stack, alloc_type, true));
}
int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
BufferedStackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
AsanAllocator::FailureHandler::OnBadRequest();
return errno_EINVAL;
}
void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
if (UNLIKELY(!ptr))
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;

View File

@ -178,6 +178,10 @@ void SetThreadName(const char *name) {
}
int OnExit() {
if (CAN_SANITIZE_LEAKS && common_flags()->detect_leaks &&
__lsan::HasReportedLeaks()) {
return common_flags()->exitcode;
}
// FIXME: ask frontend whether we need to return failure.
return 0;
}

View File

@ -190,8 +190,8 @@ static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_X64)
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
@ -200,6 +200,16 @@ static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
int registers[4];
__cpuidex(registers, value, subleaf);
@ -211,35 +221,6 @@ static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
#else
return true;
#endif
#elif defined(__i386__) || defined(_M_IX86)
#if defined(__GNUC__) || defined(__clang__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
mov ecx,subleaf
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#else
return true;
#endif
#else
return true;
#endif
}
// Read control register 0 (XCR0). Used to detect features such as AVX.

View File

@ -15,7 +15,9 @@
#include "lsan_allocator.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
@ -86,6 +88,13 @@ void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
return p;
}
static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb)))
return Allocator::FailureHandler::OnBadRequest();
size *= nmemb;
return Allocate(stack, size, 1, true);
}
void Deallocate(void *p) {
if (&__sanitizer_free_hook) __sanitizer_free_hook(p);
RunFreeHooks(p);
@ -118,11 +127,15 @@ uptr GetMallocUsableSize(const void *p) {
}
void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) {
return Allocate(stack, size, alignment, kAlwaysClearMemory);
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
return Allocator::FailureHandler::OnBadRequest();
}
return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
}
void *lsan_malloc(uptr size, const StackTrace &stack) {
return Allocate(stack, size, 1, kAlwaysClearMemory);
return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory));
}
void lsan_free(void *p) {
@ -130,20 +143,16 @@ void lsan_free(void *p) {
}
void *lsan_realloc(void *p, uptr size, const StackTrace &stack) {
return Reallocate(stack, p, size, 1);
return SetErrnoOnNull(Reallocate(stack, p, size, 1));
}
void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) {
if (CheckForCallocOverflow(size, nmemb))
return Allocator::FailureHandler::OnBadRequest();
size *= nmemb;
return Allocate(stack, size, 1, true);
return SetErrnoOnNull(Calloc(nmemb, size, stack));
}
void *lsan_valloc(uptr size, const StackTrace &stack) {
if (size == 0)
size = GetPageSizeCached();
return Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory);
return SetErrnoOnNull(
Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory));
}
uptr lsan_mz_size(const void *p) {

View File

@ -576,18 +576,16 @@ static bool CheckForLeaks() {
return false;
}
static bool has_reported_leaks = false;
bool HasReportedLeaks() { return has_reported_leaks; }
void DoLeakCheck() {
BlockingMutexLock l(&global_mutex);
static bool already_done;
if (already_done) return;
already_done = true;
bool have_leaks = CheckForLeaks();
if (!have_leaks) {
return;
}
if (common_flags()->exitcode) {
Die();
}
has_reported_leaks = CheckForLeaks();
if (has_reported_leaks) HandleLeaks();
}
static int DoRecoverableLeakCheck() {

View File

@ -226,6 +226,12 @@ IgnoreObjectResult IgnoreObjectLocked(const void *p);
// Return the linker module, if valid for the platform.
LoadedModule *GetLinker();
// Return true if LSan has finished leak checking and reported leaks.
bool HasReportedLeaks();
// Run platform-specific leak handlers.
void HandleLeaks();
// Wrapper for chunk metadata operations.
class LsanMetadata {
public:

View File

@ -100,6 +100,13 @@ struct DoStopTheWorldParam {
void *argument;
};
// While calling Die() here is undefined behavior and can potentially
// cause race conditions, it isn't possible to intercept exit on linux,
// so we have no choice but to call Die() from the atexit handler.
void HandleLeaks() {
if (common_flags()->exitcode) Die();
}
static int DoStopTheWorldCallback(struct dl_phdr_info *info, size_t size,
void *data) {
DoStopTheWorldParam *param = reinterpret_cast<DoStopTheWorldParam *>(data);

View File

@ -164,6 +164,11 @@ void ProcessPlatformSpecificAllocations(Frontier *frontier) {
}
}
// On darwin, we can intercept _exit gracefully, and return a failing exit code
// if required at that point. Calling Die() here is undefined behavior and
// causes rare race conditions.
void HandleLeaks() {}
void DoStopTheWorld(StopTheWorldCallback callback, void *argument) {
StopTheWorld(callback, argument);
}

View File

@ -352,6 +352,11 @@ INTERCEPTOR(int, pthread_join, void *th, void **ret) {
return res;
}
INTERCEPTOR(void, _exit, int status) {
if (status == 0 && HasReportedLeaks()) status = common_flags()->exitcode;
REAL(_exit)(status);
}
namespace __lsan {
void InitializeInterceptors() {
@ -371,6 +376,7 @@ void InitializeInterceptors() {
LSAN_MAYBE_INTERCEPT_MALLOPT;
INTERCEPT_FUNCTION(pthread_create);
INTERCEPT_FUNCTION(pthread_join);
INTERCEPT_FUNCTION(_exit);
if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
Report("LeakSanitizer: failed to create thread key.\n");

View File

@ -280,10 +280,18 @@ void InitializeInterceptors();
void MsanAllocatorInit();
void MsanAllocatorThreadFinish();
void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size);
void *MsanReallocate(StackTrace *stack, void *oldp, uptr size,
uptr alignment, bool zeroise);
void MsanDeallocate(StackTrace *stack, void *ptr);
void *msan_malloc(uptr size, StackTrace *stack);
void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack);
void *msan_realloc(void *ptr, uptr size, StackTrace *stack);
void *msan_valloc(uptr size, StackTrace *stack);
void *msan_pvalloc(uptr size, StackTrace *stack);
void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack);
void *msan_memalign(uptr alignment, uptr size, StackTrace *stack);
int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack);
void InstallTrapHandler();
void InstallAtExitHandler();

View File

@ -13,7 +13,9 @@
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "msan.h"
#include "msan_allocator.h"
#include "msan_origin.h"
@ -194,20 +196,8 @@ void MsanDeallocate(StackTrace *stack, void *p) {
}
}
void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
if (CheckForCallocOverflow(size, nmemb))
return Allocator::FailureHandler::OnBadRequest();
return MsanReallocate(stack, nullptr, nmemb * size, sizeof(u64), true);
}
void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
uptr alignment, bool zeroise) {
if (!old_p)
return MsanAllocate(stack, new_size, alignment, zeroise);
if (!new_size) {
MsanDeallocate(stack, old_p);
return nullptr;
}
uptr alignment) {
Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
uptr old_size = meta->requested_size;
uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
@ -215,10 +205,7 @@ void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
// We are not reallocating here.
meta->requested_size = new_size;
if (new_size > old_size) {
if (zeroise) {
__msan_clear_and_unpoison((char *)old_p + old_size,
new_size - old_size);
} else if (flags()->poison_in_malloc) {
if (flags()->poison_in_malloc) {
stack->tag = StackTrace::TAG_ALLOC;
PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
}
@ -226,8 +213,7 @@ void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
return old_p;
}
uptr memcpy_size = Min(new_size, old_size);
void *new_p = MsanAllocate(stack, new_size, alignment, zeroise);
// Printf("realloc: old_size %zd new_size %zd\n", old_size, new_size);
void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
if (new_p) {
CopyMemory(new_p, old_p, memcpy_size, stack);
MsanDeallocate(stack, old_p);
@ -243,6 +229,67 @@ static uptr AllocationSize(const void *p) {
return b->requested_size;
}
void *msan_malloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
}
void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb)))
return SetErrnoOnNull(Allocator::FailureHandler::OnBadRequest());
return SetErrnoOnNull(MsanAllocate(stack, nmemb * size, sizeof(u64), true));
}
void *msan_realloc(void *ptr, uptr size, StackTrace *stack) {
if (!ptr)
return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
if (size == 0) {
MsanDeallocate(stack, ptr);
return nullptr;
}
return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
}
void *msan_valloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
}
void *msan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
// pvalloc(0) should allocate one page.
size = size == 0 ? PageSize : RoundUpTo(size, PageSize);
return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
}
void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
return Allocator::FailureHandler::OnBadRequest();
}
return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}
void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
return Allocator::FailureHandler::OnBadRequest();
}
return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}
int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
Allocator::FailureHandler::OnBadRequest();
return errno_EINVAL;
}
void *ptr = MsanAllocate(stack, size, alignment, false);
if (UNLIKELY(!ptr))
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
} // namespace __msan
using namespace __msan;

View File

@ -161,58 +161,45 @@ INTERCEPTOR(void *, bcopy, const void *src, void *dest, SIZE_T n) {
INTERCEPTOR(int, posix_memalign, void **memptr, SIZE_T alignment, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
CHECK_EQ(alignment & (alignment - 1), 0);
CHECK_NE(memptr, 0);
*memptr = MsanReallocate(&stack, nullptr, size, alignment, false);
CHECK_NE(*memptr, 0);
__msan_unpoison(memptr, sizeof(*memptr));
return 0;
int res = msan_posix_memalign(memptr, alignment, size, &stack);
if (!res)
__msan_unpoison(memptr, sizeof(*memptr));
return res;
}
#if !SANITIZER_FREEBSD
INTERCEPTOR(void *, memalign, SIZE_T boundary, SIZE_T size) {
INTERCEPTOR(void *, memalign, SIZE_T alignment, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
CHECK_EQ(boundary & (boundary - 1), 0);
void *ptr = MsanReallocate(&stack, nullptr, size, boundary, false);
return ptr;
return msan_memalign(alignment, size, &stack);
}
#define MSAN_MAYBE_INTERCEPT_MEMALIGN INTERCEPT_FUNCTION(memalign)
#else
#define MSAN_MAYBE_INTERCEPT_MEMALIGN
#endif
INTERCEPTOR(void *, aligned_alloc, SIZE_T boundary, SIZE_T size) {
INTERCEPTOR(void *, aligned_alloc, SIZE_T alignment, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
CHECK_EQ(boundary & (boundary - 1), 0);
void *ptr = MsanReallocate(&stack, nullptr, size, boundary, false);
return ptr;
return msan_aligned_alloc(alignment, size, &stack);
}
INTERCEPTOR(void *, __libc_memalign, SIZE_T boundary, SIZE_T size) {
INTERCEPTOR(void *, __libc_memalign, SIZE_T alignment, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
CHECK_EQ(boundary & (boundary - 1), 0);
void *ptr = MsanReallocate(&stack, nullptr, size, boundary, false);
DTLS_on_libc_memalign(ptr, size);
void *ptr = msan_memalign(alignment, size, &stack);
if (ptr)
DTLS_on_libc_memalign(ptr, size);
return ptr;
}
INTERCEPTOR(void *, valloc, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
void *ptr = MsanReallocate(&stack, nullptr, size, GetPageSizeCached(), false);
return ptr;
return msan_valloc(size, &stack);
}
#if !SANITIZER_FREEBSD
INTERCEPTOR(void *, pvalloc, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = PageSize;
}
void *ptr = MsanReallocate(&stack, nullptr, size, PageSize, false);
return ptr;
return msan_pvalloc(size, &stack);
}
#define MSAN_MAYBE_INTERCEPT_PVALLOC INTERCEPT_FUNCTION(pvalloc)
#else
@ -853,7 +840,7 @@ INTERCEPTOR(void *, calloc, SIZE_T nmemb, SIZE_T size) {
if (UNLIKELY(!msan_inited))
// Hack: dlsym calls calloc before REAL(calloc) is retrieved from dlsym.
return AllocateFromLocalPool(nmemb * size);
return MsanCalloc(&stack, nmemb, size);
return msan_calloc(nmemb, size, &stack);
}
INTERCEPTOR(void *, realloc, void *ptr, SIZE_T size) {
@ -866,12 +853,12 @@ INTERCEPTOR(void *, realloc, void *ptr, SIZE_T size) {
new_ptr = AllocateFromLocalPool(copy_size);
} else {
copy_size = size;
new_ptr = MsanReallocate(&stack, nullptr, copy_size, sizeof(u64), false);
new_ptr = msan_malloc(copy_size, &stack);
}
internal_memcpy(new_ptr, ptr, copy_size);
return new_ptr;
}
return MsanReallocate(&stack, ptr, size, sizeof(u64), false);
return msan_realloc(ptr, size, &stack);
}
INTERCEPTOR(void *, malloc, SIZE_T size) {
@ -879,7 +866,7 @@ INTERCEPTOR(void *, malloc, SIZE_T size) {
if (UNLIKELY(!msan_inited))
// Hack: dlsym calls malloc before REAL(malloc) is retrieved from dlsym.
return AllocateFromLocalPool(size);
return MsanReallocate(&stack, nullptr, size, sizeof(u64), false);
return msan_malloc(size, &stack);
}
void __msan_allocated_memory(const void *data, uptr size) {

View File

@ -31,7 +31,7 @@ namespace std {
// TODO(alekseys): throw std::bad_alloc instead of dying on OOM.
#define OPERATOR_NEW_BODY(nothrow) \
GET_MALLOC_STACK_TRACE; \
void *res = MsanReallocate(&stack, 0, size, sizeof(u64), false);\
void *res = msan_malloc(size, &stack);\
if (!nothrow && UNLIKELY(!res)) DieOnFailure::OnOOM();\
return res

View File

@ -14,6 +14,7 @@
#include "sanitizer_allocator.h"
#include "sanitizer_allocator_checks.h"
#include "sanitizer_allocator_internal.h"
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"
@ -160,7 +161,7 @@ void *InternalRealloc(void *addr, uptr size, InternalAllocatorCache *cache) {
}
void *InternalCalloc(uptr count, uptr size, InternalAllocatorCache *cache) {
if (CheckForCallocOverflow(count, size))
if (UNLIKELY(CheckForCallocOverflow(count, size)))
return InternalAllocator::FailureHandler::OnBadRequest();
void *p = InternalAlloc(count * size, cache);
if (p) internal_memset(p, 0, count * size);
@ -202,12 +203,6 @@ void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) {
low_level_alloc_callback = callback;
}
bool CheckForCallocOverflow(uptr size, uptr n) {
if (!size) return false;
uptr max = (uptr)-1L;
return (max / size) < n;
}
static atomic_uint8_t allocator_out_of_memory = {0};
static atomic_uint8_t allocator_may_return_null = {0};

View File

@ -56,11 +56,6 @@ struct NoOpMapUnmapCallback {
// Callback type for iterating over chunks.
typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
// Returns true if calloc(size, n) call overflows on size*n calculation.
// The caller should "return POLICY::OnBadRequest();" where POLICY is the
// current allocator failure handling policy.
bool CheckForCallocOverflow(uptr size, uptr n);
#include "sanitizer_allocator_size_class_map.h"
#include "sanitizer_allocator_stats.h"
#include "sanitizer_allocator_primary64.h"

View File

@ -0,0 +1,64 @@
//===-- sanitizer_allocator_checks.h ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Various checks shared between ThreadSanitizer, MemorySanitizer, etc. memory
// allocators.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_CHECKS_H
#define SANITIZER_ALLOCATOR_CHECKS_H
#include "sanitizer_errno.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_common.h"
#include "sanitizer_platform.h"
namespace __sanitizer {
// A common errno setting logic shared by almost all sanitizer allocator APIs.
INLINE void *SetErrnoOnNull(void *ptr) {
if (UNLIKELY(!ptr))
errno = errno_ENOMEM;
return ptr;
}
// In case of the check failure, the caller of the following Check... functions
// should "return POLICY::OnBadRequest();" where POLICY is the current allocator
// failure handling policy.
// Checks aligned_alloc() parameters, verifies that the alignment is a power of
// two and that the size is a multiple of alignment for POSIX implementation,
// and a bit relaxed requirement for non-POSIX ones, that the size is a multiple
// of alignment.
INLINE bool CheckAlignedAllocAlignmentAndSize(uptr alignment, uptr size) {
#if SANITIZER_POSIX
return IsPowerOfTwo(alignment) && (size & (alignment - 1)) == 0;
#else
return size % alignment == 0;
#endif
}
// Checks posix_memalign() parameters, verifies that alignment is a power of two
// and a multiple of sizeof(void *).
INLINE bool CheckPosixMemalignAlignment(uptr alignment) {
return IsPowerOfTwo(alignment) && (alignment % sizeof(void *)) == 0; // NOLINT
}
// Returns true if calloc(size, n) call overflows on size*n calculation.
INLINE bool CheckForCallocOverflow(uptr size, uptr n) {
if (!size)
return false;
uptr max = (uptr)-1L;
return (max / size) < n;
}
} // namespace __sanitizer
#endif // SANITIZER_ALLOCATOR_CHECKS_H

View File

@ -26,6 +26,8 @@
# define __errno_location __error
#elif SANITIZER_ANDROID
# define __errno_location __errno
#elif SANITIZER_WINDOWS
# define __errno_location _errno
#endif
extern "C" int *__errno_location();

View File

@ -629,8 +629,7 @@ uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) {
}
#endif
uptr internal_sigaltstack(const struct sigaltstack *ss,
struct sigaltstack *oss) {
uptr internal_sigaltstack(const void *ss, void *oss) {
return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss);
}

View File

@ -21,7 +21,6 @@
#include "sanitizer_platform_limits_posix.h"
struct link_map; // Opaque type returned by dlopen().
struct sigaltstack;
namespace __sanitizer {
// Dirent structure for getdents(). Note that this structure is different from
@ -30,8 +29,7 @@ struct linux_dirent;
// Syscall wrappers.
uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count);
uptr internal_sigaltstack(const struct sigaltstack* ss,
struct sigaltstack* oss);
uptr internal_sigaltstack(const void* ss, void* oss);
uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set,
__sanitizer_sigset_t *oldset);

View File

@ -805,14 +805,35 @@ char **GetArgv() {
// fields only available in 10.12+. Declare the struct manually to be able to
// build against older SDKs.
struct __sanitizer_task_vm_info {
uptr _unused[(SANITIZER_WORDSIZE == 32) ? 20 : 19];
uptr min_address;
uptr max_address;
mach_vm_size_t virtual_size;
integer_t region_count;
integer_t page_size;
mach_vm_size_t resident_size;
mach_vm_size_t resident_size_peak;
mach_vm_size_t device;
mach_vm_size_t device_peak;
mach_vm_size_t internal;
mach_vm_size_t internal_peak;
mach_vm_size_t external;
mach_vm_size_t external_peak;
mach_vm_size_t reusable;
mach_vm_size_t reusable_peak;
mach_vm_size_t purgeable_volatile_pmap;
mach_vm_size_t purgeable_volatile_resident;
mach_vm_size_t purgeable_volatile_virtual;
mach_vm_size_t compressed;
mach_vm_size_t compressed_peak;
mach_vm_size_t compressed_lifetime;
mach_vm_size_t phys_footprint;
mach_vm_address_t min_address;
mach_vm_address_t max_address;
};
#define __SANITIZER_TASK_VM_INFO_COUNT ((mach_msg_type_number_t) \
(sizeof(__sanitizer_task_vm_info) / sizeof(natural_t)))
uptr GetTaskInfoMaxAddress() {
__sanitizer_task_vm_info vm_info = {{0}, 0, 0};
mach_msg_type_number_t count = sizeof(vm_info) / sizeof(int);
__sanitizer_task_vm_info vm_info = {};
mach_msg_type_number_t count = __SANITIZER_TASK_VM_INFO_COUNT;
int err = task_info(mach_task_self(), TASK_VM_INFO, (int *)&vm_info, &count);
if (err == 0) {
return vm_info.max_address - 1;

View File

@ -13,7 +13,7 @@
#ifndef SANITIZER_PLATFORM_H
#define SANITIZER_PLATFORM_H
#if !defined(__linux__) && !defined(__FreeBSD__) && \
#if !defined(__linux__) && !defined(__FreeBSD__) && !defined(__NetBSD__) && \
!defined(__APPLE__) && !defined(_WIN32)
# error "This operating system is not supported"
#endif
@ -30,6 +30,12 @@
# define SANITIZER_FREEBSD 0
#endif
#if defined(__NetBSD__)
# define SANITIZER_NETBSD 1
#else
# define SANITIZER_NETBSD 0
#endif
#if defined(__APPLE__)
# define SANITIZER_MAC 1
# include <TargetConditionals.h>
@ -79,7 +85,8 @@
# define SANITIZER_ANDROID 0
#endif
#define SANITIZER_POSIX (SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_MAC)
#define SANITIZER_POSIX \
(SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_MAC || SANITIZER_NETBSD)
#if __LP64__ || defined(_WIN64)
# define SANITIZER_WORDSIZE 64

View File

@ -49,6 +49,12 @@
# define SI_FREEBSD 0
#endif
#if SANITIZER_NETBSD
# define SI_NETBSD 1
#else
# define SI_NETBSD 0
#endif
#if SANITIZER_LINUX
# define SI_LINUX 1
#else
@ -109,9 +115,9 @@
// memmem on Darwin doesn't exist on 10.6
// FIXME: enable memmem on Windows.
#define SANITIZER_INTERCEPT_MEMMEM \
SI_NOT_WINDOWS && !SI_MAC_DEPLOYMENT_BELOW_10_7
(SI_NOT_WINDOWS && !SI_MAC_DEPLOYMENT_BELOW_10_7)
#define SANITIZER_INTERCEPT_MEMCHR 1
#define SANITIZER_INTERCEPT_MEMRCHR SI_FREEBSD || SI_LINUX
#define SANITIZER_INTERCEPT_MEMRCHR (SI_FREEBSD || SI_LINUX || SI_NETBSD)
#define SANITIZER_INTERCEPT_READ SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_PREAD SI_NOT_WINDOWS
@ -127,7 +133,8 @@
#define SANITIZER_INTERCEPT_READV SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_WRITEV SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_PREADV SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_PREADV \
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_PWRITEV SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_PREADV64 SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_PWRITEV64 SI_LINUX_NOT_ANDROID
@ -142,7 +149,7 @@
#ifndef SANITIZER_INTERCEPT_PRINTF
# define SANITIZER_INTERCEPT_PRINTF SI_NOT_WINDOWS
# define SANITIZER_INTERCEPT_PRINTF_L SI_FREEBSD
# define SANITIZER_INTERCEPT_PRINTF_L (SI_FREEBSD || SI_NETBSD)
# define SANITIZER_INTERCEPT_ISOC99_PRINTF SI_LINUX_NOT_ANDROID
#endif
@ -151,13 +158,14 @@
#define SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_GETPWENT \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_FGETPWENT SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_GETPWENT_R SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_SETPWENT SI_MAC || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_CLOCK_GETTIME SI_FREEBSD || SI_LINUX
#define SANITIZER_INTERCEPT_GETPWENT_R \
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_SETPWENT (SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_CLOCK_GETTIME (SI_FREEBSD || SI_NETBSD || SI_LINUX)
#define SANITIZER_INTERCEPT_GETITIMER SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_TIME SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_GLOB SI_LINUX_NOT_ANDROID
@ -168,10 +176,11 @@
#define SANITIZER_INTERCEPT_GETNAMEINFO SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_GETSOCKNAME SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_GETHOSTBYNAME SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_GETHOSTBYNAME_R SI_FREEBSD || SI_LINUX
#define SANITIZER_INTERCEPT_GETHOSTBYNAME2_R SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_GETHOSTBYADDR_R SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_GETHOSTENT_R SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_GETHOSTBYNAME_R (SI_FREEBSD || SI_LINUX)
#define SANITIZER_INTERCEPT_GETHOSTBYNAME2_R \
(SI_FREEBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_GETHOSTBYADDR_R (SI_FREEBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_GETHOSTENT_R (SI_FREEBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_GETSOCKOPT SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_ACCEPT SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_ACCEPT4 SI_LINUX_NOT_ANDROID
@ -197,63 +206,67 @@
#define SANITIZER_INTERCEPT_GET_CURRENT_DIR_NAME SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_STRTOIMAX SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_MBSTOWCS SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_MBSNRTOWCS SI_MAC || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_MBSNRTOWCS (SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_WCSTOMBS SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_WCSNRTOMBS \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_WCRTOMB \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_TCGETATTR SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_REALPATH SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_CANONICALIZE_FILE_NAME SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_CONFSTR \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_SCHED_GETAFFINITY SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_SCHED_GETPARAM SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_STRERROR SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_STRERROR_R SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_XPG_STRERROR_R SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_SCANDIR \
SI_FREEBSD || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_SCANDIR64 SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_GETGROUPS SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_POLL SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_PPOLL SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_WORDEXP \
SI_FREEBSD || (SI_MAC && !SI_IOS) || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || (SI_MAC && !SI_IOS) || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_SIGWAIT SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_SIGWAITINFO SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_SIGTIMEDWAIT SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_SIGSETOPS \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_SIGPENDING SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_SIGPROCMASK SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_BACKTRACE SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_BACKTRACE \
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_GETMNTENT SI_LINUX
#define SANITIZER_INTERCEPT_GETMNTENT_R SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_STATFS SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_STATFS \
(SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_STATFS64 \
(SI_MAC && !SI_IOS) || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_STATVFS SI_FREEBSD || SI_LINUX_NOT_ANDROID
((SI_MAC && !SI_IOS) || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_STATVFS \
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_STATVFS64 SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_INITGROUPS SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_ETHER_NTOA_ATON SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_ETHER_HOST \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_ETHER_R SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_SHMCTL \
((SI_FREEBSD || SI_LINUX_NOT_ANDROID) && SANITIZER_WORDSIZE == 64)
(SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_ETHER_R (SI_FREEBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_SHMCTL \
(SI_NETBSD || ((SI_FREEBSD || SI_LINUX_NOT_ANDROID) && \
SANITIZER_WORDSIZE == 64)) // NOLINT
#define SANITIZER_INTERCEPT_RANDOM_R SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_PTHREAD_ATTR_GET SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_PTHREAD_ATTR_GETINHERITSCHED \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_PTHREAD_ATTR_GETAFFINITY_NP SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPSHARED SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETTYPE SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPROTOCOL \
SI_MAC || SI_LINUX_NOT_ANDROID
(SI_MAC || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPRIOCEILING \
SI_MAC || SI_LINUX_NOT_ANDROID
(SI_MAC || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETROBUST SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETROBUST_NP SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_PTHREAD_RWLOCKATTR_GETPSHARED SI_NOT_WINDOWS
@ -268,33 +281,36 @@
#define SANITIZER_INTERCEPT_SINCOS SI_LINUX
#define SANITIZER_INTERCEPT_REMQUO SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_LGAMMA SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_LGAMMA_R SI_FREEBSD || SI_LINUX
#define SANITIZER_INTERCEPT_LGAMMA_R (SI_FREEBSD || SI_LINUX)
#define SANITIZER_INTERCEPT_LGAMMAL_R SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_DRAND48_R SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_RAND_R \
SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_ICONV SI_FREEBSD || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_MAC || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_ICONV \
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_TIMES SI_NOT_WINDOWS
// FIXME: getline seems to be available on OSX 10.7
#define SANITIZER_INTERCEPT_GETLINE SI_FREEBSD || SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_GETLINE \
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT__EXIT SI_LINUX || SI_FREEBSD || SI_MAC
#define SANITIZER_INTERCEPT__EXIT \
(SI_LINUX || SI_FREEBSD || SI_NETBSD || SI_MAC)
#define SANITIZER_INTERCEPT_PHTREAD_MUTEX SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_PTHREAD_SETNAME_NP \
SI_FREEBSD || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_TLS_GET_ADDR \
SI_FREEBSD || SI_LINUX_NOT_ANDROID
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID)
#define SANITIZER_INTERCEPT_LISTXATTR SI_LINUX
#define SANITIZER_INTERCEPT_GETXATTR SI_LINUX
#define SANITIZER_INTERCEPT_GETRESID SI_LINUX
#define SANITIZER_INTERCEPT_GETIFADDRS \
SI_FREEBSD || SI_LINUX_NOT_ANDROID || SI_MAC
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID || SI_MAC)
#define SANITIZER_INTERCEPT_IF_INDEXTONAME \
SI_FREEBSD || SI_LINUX_NOT_ANDROID || SI_MAC
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID || SI_MAC)
#define SANITIZER_INTERCEPT_CAPGET SI_LINUX_NOT_ANDROID
#if SI_LINUX && defined(__arm__)
#define SANITIZER_INTERCEPT_AEABI_MEM 1
@ -302,55 +318,61 @@
#define SANITIZER_INTERCEPT_AEABI_MEM 0
#endif
#define SANITIZER_INTERCEPT___BZERO SI_MAC
#define SANITIZER_INTERCEPT_FTIME !SI_FREEBSD && SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_FTIME (!SI_FREEBSD && !SI_NETBSD && SI_NOT_WINDOWS)
#define SANITIZER_INTERCEPT_XDR SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_TSEARCH SI_LINUX_NOT_ANDROID || SI_MAC
#define SANITIZER_INTERCEPT_TSEARCH \
(SI_LINUX_NOT_ANDROID || SI_MAC || SI_NETBSD)
#define SANITIZER_INTERCEPT_LIBIO_INTERNALS SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_FOPEN SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_FOPEN64 SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_OPEN_MEMSTREAM SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_OPEN_MEMSTREAM (SI_LINUX_NOT_ANDROID || SI_NETBSD)
#define SANITIZER_INTERCEPT_OBSTACK SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_FFLUSH SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_FCLOSE SI_NOT_WINDOWS
#ifndef SANITIZER_INTERCEPT_DLOPEN_DLCLOSE
#define SANITIZER_INTERCEPT_DLOPEN_DLCLOSE \
SI_FREEBSD || SI_LINUX_NOT_ANDROID || SI_MAC
(SI_FREEBSD || SI_NETBSD || SI_LINUX_NOT_ANDROID || SI_MAC)
#endif
#define SANITIZER_INTERCEPT_GETPASS SI_LINUX_NOT_ANDROID || SI_MAC
#define SANITIZER_INTERCEPT_GETPASS \
(SI_LINUX_NOT_ANDROID || SI_MAC || SI_NETBSD)
#define SANITIZER_INTERCEPT_TIMERFD SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_MLOCKX SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_FOPENCOOKIE SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_SEM SI_LINUX || SI_FREEBSD
#define SANITIZER_INTERCEPT_SEM (SI_LINUX || SI_FREEBSD || SI_NETBSD)
#define SANITIZER_INTERCEPT_PTHREAD_SETCANCEL SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_MINCORE SI_LINUX
#define SANITIZER_INTERCEPT_MINCORE (SI_LINUX || SI_NETBSD)
#define SANITIZER_INTERCEPT_PROCESS_VM_READV SI_LINUX
#define SANITIZER_INTERCEPT_CTERMID SI_LINUX || SI_MAC || SI_FREEBSD
#define SANITIZER_INTERCEPT_CTERMID_R SI_MAC || SI_FREEBSD
#define SANITIZER_INTERCEPT_CTERMID \
(SI_LINUX || SI_MAC || SI_FREEBSD || SI_NETBSD)
#define SANITIZER_INTERCEPT_CTERMID_R (SI_MAC || SI_FREEBSD)
#define SANITIZER_INTERCEPTOR_HOOKS SI_LINUX || SI_MAC || SI_WINDOWS
#define SANITIZER_INTERCEPTOR_HOOKS (SI_LINUX || SI_MAC || SI_WINDOWS)
#define SANITIZER_INTERCEPT_RECV_RECVFROM SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_SEND_SENDTO SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_EVENTFD_READ_WRITE SI_LINUX
#define SANITIZER_INTERCEPT_STAT (SI_FREEBSD || SI_MAC || SI_ANDROID)
#define SANITIZER_INTERCEPT___XSTAT !SANITIZER_INTERCEPT_STAT && SI_NOT_WINDOWS
#define SANITIZER_INTERCEPT_STAT \
(SI_FREEBSD || SI_MAC || SI_ANDROID || SI_NETBSD)
#define SANITIZER_INTERCEPT___XSTAT \
(!SANITIZER_INTERCEPT_STAT && SI_NOT_WINDOWS)
#define SANITIZER_INTERCEPT___XSTAT64 SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT___LXSTAT SANITIZER_INTERCEPT___XSTAT
#define SANITIZER_INTERCEPT___LXSTAT64 SI_LINUX_NOT_ANDROID
#define SANITIZER_INTERCEPT_UTMP SI_NOT_WINDOWS && !SI_MAC && !SI_FREEBSD
#define SANITIZER_INTERCEPT_UTMPX SI_LINUX_NOT_ANDROID || SI_MAC || SI_FREEBSD
#define SANITIZER_INTERCEPT_UTMP (SI_NOT_WINDOWS && !SI_MAC && !SI_FREEBSD)
#define SANITIZER_INTERCEPT_UTMPX (SI_LINUX_NOT_ANDROID || SI_MAC || SI_FREEBSD)
#define SANITIZER_INTERCEPT_GETLOADAVG \
SI_LINUX_NOT_ANDROID || SI_MAC || SI_FREEBSD
(SI_LINUX_NOT_ANDROID || SI_MAC || SI_FREEBSD || SI_NETBSD)
#define SANITIZER_INTERCEPT_MALLOPT_AND_MALLINFO (!SI_FREEBSD && !SI_MAC)
#define SANITIZER_INTERCEPT_MEMALIGN (!SI_FREEBSD && !SI_MAC)
#define SANITIZER_INTERCEPT_PVALLOC (!SI_FREEBSD && !SI_MAC)
#define SANITIZER_INTERCEPT_CFREE (!SI_FREEBSD && !SI_MAC)
#define SANITIZER_INTERCEPT_MALLOPT_AND_MALLINFO \
(!SI_FREEBSD && !SI_MAC && !SI_NETBSD)
#define SANITIZER_INTERCEPT_MEMALIGN (!SI_FREEBSD && !SI_MAC && !SI_NETBSD)
#define SANITIZER_INTERCEPT_PVALLOC (!SI_FREEBSD && !SI_MAC && !SI_NETBSD)
#define SANITIZER_INTERCEPT_CFREE (!SI_FREEBSD && !SI_MAC && !SI_NETBSD)
#define SANITIZER_INTERCEPT_ALIGNED_ALLOC (!SI_MAC)
#define SANITIZER_INTERCEPT_MALLOC_USABLE_SIZE (!SI_MAC)
#define SANITIZER_INTERCEPT_MCHECK_MPROBE SI_LINUX_NOT_ANDROID

View File

@ -287,7 +287,7 @@ static int TracerThread(void* argument) {
// Alternate stack for signal handling.
InternalScopedBuffer<char> handler_stack_memory(kHandlerStackSize);
struct sigaltstack handler_stack;
stack_t handler_stack;
internal_memset(&handler_stack, 0, sizeof(handler_stack));
handler_stack.ss_sp = handler_stack_memory.data();
handler_stack.ss_size = kHandlerStackSize;

View File

@ -19,10 +19,11 @@
#include "scudo_tls.h"
#include "scudo_utils.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_quarantine.h"
#include <errno.h>
#include <string.h>
namespace __scudo {
@ -73,7 +74,7 @@ struct ScudoChunk : UnpackedHeader {
// beginning of the user data to the end of the backend allocated chunk.
uptr getUsableSize(UnpackedHeader *Header) {
uptr Size =
getBackendAllocator().GetActuallyAllocatedSize(getAllocBeg(Header),
getBackendAllocator().getActuallyAllocatedSize(getAllocBeg(Header),
Header->FromPrimary);
if (Size == 0)
return 0;
@ -232,7 +233,10 @@ struct QuarantineCallback {
}
Chunk->eraseHeader();
void *Ptr = Chunk->getAllocBeg(&Header);
getBackendAllocator().Deallocate(Cache_, Ptr, Header.FromPrimary);
if (Header.FromPrimary)
getBackendAllocator().deallocatePrimary(Cache_, Ptr);
else
getBackendAllocator().deallocateSecondary(Ptr);
}
// Internal quarantine allocation and deallocation functions. We first check
@ -240,11 +244,11 @@ struct QuarantineCallback {
// TODO(kostyak): figure out the best way to protect the batches.
COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
void *Allocate(uptr Size) {
return getBackendAllocator().Allocate(Cache_, Size, MinAlignment, true);
return getBackendAllocator().allocatePrimary(Cache_, Size);
}
void Deallocate(void *Ptr) {
getBackendAllocator().Deallocate(Cache_, Ptr, true);
getBackendAllocator().deallocatePrimary(Cache_, Ptr);
}
AllocatorCache *Cache_;
@ -277,6 +281,9 @@ struct ScudoAllocator {
ScudoBackendAllocator BackendAllocator;
ScudoQuarantine AllocatorQuarantine;
StaticSpinMutex GlobalPrngMutex;
ScudoPrng GlobalPrng;
// The fallback caches are used when the thread local caches have been
// 'detroyed' on thread tear-down. They are protected by a Mutex as they can
// be accessed by different threads.
@ -303,10 +310,10 @@ struct ScudoAllocator {
// result, the maximum offset will be at most the maximum alignment for the
// last size class minus the header size, in multiples of MinAlignment.
UnpackedHeader Header = {};
uptr MaxPrimaryAlignment = 1 << MostSignificantSetBitIndex(
SizeClassMap::kMaxSize - MinAlignment);
uptr MaxOffset = (MaxPrimaryAlignment - AlignedChunkHeaderSize) >>
MinAlignmentLog;
uptr MaxPrimaryAlignment =
1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
uptr MaxOffset =
(MaxPrimaryAlignment - AlignedChunkHeaderSize) >> MinAlignmentLog;
Header.Offset = MaxOffset;
if (Header.Offset != MaxOffset) {
dieWithMessage("ERROR: the maximum possible offset doesn't fit in the "
@ -328,13 +335,14 @@ struct ScudoAllocator {
DeleteSizeMismatch = Options.DeleteSizeMismatch;
ZeroContents = Options.ZeroContents;
SetAllocatorMayReturnNull(Options.MayReturnNull);
BackendAllocator.Init(Options.ReleaseToOSIntervalMs);
BackendAllocator.init(Options.ReleaseToOSIntervalMs);
AllocatorQuarantine.Init(
static_cast<uptr>(Options.QuarantineSizeMb) << 20,
static_cast<uptr>(Options.ThreadLocalQuarantineSizeKb) << 10);
BackendAllocator.InitCache(&FallbackAllocatorCache);
GlobalPrng.init();
Cookie = GlobalPrng.getU64();
BackendAllocator.initCache(&FallbackAllocatorCache);
FallbackPrng.init();
Cookie = FallbackPrng.getU64();
}
// Helper function that checks for a valid Scudo chunk. nullptr isn't.
@ -374,28 +382,36 @@ struct ScudoAllocator {
void *Ptr;
u8 Salt;
uptr AllocationSize = FromPrimary ? AlignedSize : NeededSize;
uptr AllocationAlignment = FromPrimary ? MinAlignment : Alignment;
ScudoThreadContext *ThreadContext = getThreadContextAndLock();
if (LIKELY(ThreadContext)) {
Salt = getPrng(ThreadContext)->getU8();
Ptr = BackendAllocator.Allocate(getAllocatorCache(ThreadContext),
AllocationSize, AllocationAlignment,
FromPrimary);
ThreadContext->unlock();
uptr AllocSize;
if (FromPrimary) {
AllocSize = AlignedSize;
ScudoThreadContext *ThreadContext = getThreadContextAndLock();
if (LIKELY(ThreadContext)) {
Salt = getPrng(ThreadContext)->getU8();
Ptr = BackendAllocator.allocatePrimary(getAllocatorCache(ThreadContext),
AllocSize);
ThreadContext->unlock();
} else {
SpinMutexLock l(&FallbackMutex);
Salt = FallbackPrng.getU8();
Ptr = BackendAllocator.allocatePrimary(&FallbackAllocatorCache,
AllocSize);
}
} else {
SpinMutexLock l(&FallbackMutex);
Salt = FallbackPrng.getU8();
Ptr = BackendAllocator.Allocate(&FallbackAllocatorCache, AllocationSize,
AllocationAlignment, FromPrimary);
{
SpinMutexLock l(&GlobalPrngMutex);
Salt = GlobalPrng.getU8();
}
AllocSize = NeededSize;
Ptr = BackendAllocator.allocateSecondary(AllocSize, Alignment);
}
if (UNLIKELY(!Ptr))
return FailureHandler::OnOOM();
// If requested, we will zero out the entire contents of the returned chunk.
if ((ForceZeroContents || ZeroContents) && FromPrimary)
memset(Ptr, 0,
BackendAllocator.GetActuallyAllocatedSize(Ptr, FromPrimary));
memset(Ptr, 0, BackendAllocator.getActuallyAllocatedSize(
Ptr, /*FromPrimary=*/true));
UnpackedHeader Header = {};
uptr AllocBeg = reinterpret_cast<uptr>(Ptr);
@ -409,11 +425,11 @@ struct ScudoAllocator {
uptr Offset = UserBeg - AlignedChunkHeaderSize - AllocBeg;
Header.Offset = Offset >> MinAlignmentLog;
}
CHECK_LE(UserBeg + Size, AllocBeg + AllocationSize);
CHECK_LE(UserBeg + Size, AllocBeg + AllocSize);
Header.State = ChunkAllocated;
Header.AllocType = Type;
if (FromPrimary) {
Header.FromPrimary = FromPrimary;
Header.FromPrimary = 1;
Header.SizeOrUnusedBytes = Size;
} else {
// The secondary fits the allocations to a page, so the amount of unused
@ -424,7 +440,7 @@ struct ScudoAllocator {
if (TrailingBytes)
Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
}
Header.Salt = static_cast<u8>(Salt);
Header.Salt = Salt;
getScudoChunk(UserBeg)->storeHeader(&Header);
void *UserPtr = reinterpret_cast<void *>(UserBeg);
// if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(UserPtr, Size);
@ -442,15 +458,18 @@ struct ScudoAllocator {
if (BypassQuarantine) {
Chunk->eraseHeader();
void *Ptr = Chunk->getAllocBeg(Header);
ScudoThreadContext *ThreadContext = getThreadContextAndLock();
if (LIKELY(ThreadContext)) {
getBackendAllocator().Deallocate(getAllocatorCache(ThreadContext), Ptr,
FromPrimary);
ThreadContext->unlock();
if (FromPrimary) {
ScudoThreadContext *ThreadContext = getThreadContextAndLock();
if (LIKELY(ThreadContext)) {
getBackendAllocator().deallocatePrimary(
getAllocatorCache(ThreadContext), Ptr);
ThreadContext->unlock();
} else {
SpinMutexLock Lock(&FallbackMutex);
getBackendAllocator().deallocatePrimary(&FallbackAllocatorCache, Ptr);
}
} else {
SpinMutexLock Lock(&FallbackMutex);
getBackendAllocator().Deallocate(&FallbackAllocatorCache, Ptr,
FromPrimary);
getBackendAllocator().deallocateSecondary(Ptr);
}
} else {
UnpackedHeader NewHeader = *Header;
@ -580,7 +599,7 @@ struct ScudoAllocator {
void *calloc(uptr NMemB, uptr Size) {
initThreadMaybe();
if (CheckForCallocOverflow(NMemB, Size))
if (UNLIKELY(CheckForCallocOverflow(NMemB, Size)))
return FailureHandler::OnBadRequest();
return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
}
@ -589,13 +608,13 @@ struct ScudoAllocator {
AllocatorCache *Cache = getAllocatorCache(ThreadContext);
AllocatorQuarantine.Drain(getQuarantineCache(ThreadContext),
QuarantineCallback(Cache));
BackendAllocator.DestroyCache(Cache);
BackendAllocator.destroyCache(Cache);
}
uptr getStats(AllocatorStat StatType) {
initThreadMaybe();
uptr stats[AllocatorStatCount];
BackendAllocator.GetStats(stats);
BackendAllocator.getStats(stats);
return stats[StatType];
}
};
@ -611,7 +630,7 @@ static void initScudoInternal(const AllocatorOptions &Options) {
}
void ScudoThreadContext::init() {
getBackendAllocator().InitCache(&Cache);
getBackendAllocator().initCache(&Cache);
Prng.init();
memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
}
@ -621,7 +640,7 @@ void ScudoThreadContext::commitBack() {
}
void *scudoMalloc(uptr Size, AllocType Type) {
return Instance.allocate(Size, MinAlignment, Type);
return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, Type));
}
void scudoFree(void *Ptr, AllocType Type) {
@ -634,54 +653,56 @@ void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) {
void *scudoRealloc(void *Ptr, uptr Size) {
if (!Ptr)
return Instance.allocate(Size, MinAlignment, FromMalloc);
return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
if (Size == 0) {
Instance.deallocate(Ptr, 0, FromMalloc);
return nullptr;
}
return Instance.reallocate(Ptr, Size);
return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
}
void *scudoCalloc(uptr NMemB, uptr Size) {
return Instance.calloc(NMemB, Size);
return SetErrnoOnNull(Instance.calloc(NMemB, Size));
}
void *scudoValloc(uptr Size) {
return Instance.allocate(Size, GetPageSizeCached(), FromMemalign);
return SetErrnoOnNull(
Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
}
void *scudoPvalloc(uptr Size) {
uptr PageSize = GetPageSizeCached();
Size = RoundUpTo(Size, PageSize);
if (Size == 0) {
// pvalloc(0) should allocate one page.
Size = PageSize;
}
return Instance.allocate(Size, PageSize, FromMemalign);
// pvalloc(0) should allocate one page.
Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
}
void *scudoMemalign(uptr Alignment, uptr Size) {
if (UNLIKELY(!IsPowerOfTwo(Alignment)))
if (UNLIKELY(!IsPowerOfTwo(Alignment))) {
errno = errno_EINVAL;
return ScudoAllocator::FailureHandler::OnBadRequest();
return Instance.allocate(Size, Alignment, FromMemalign);
}
return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMemalign));
}
int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
if (UNLIKELY(!IsPowerOfTwo(Alignment) || (Alignment % sizeof(void *)) != 0)) {
*MemPtr = ScudoAllocator::FailureHandler::OnBadRequest();
return EINVAL;
if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
ScudoAllocator::FailureHandler::OnBadRequest();
return errno_EINVAL;
}
*MemPtr = Instance.allocate(Size, Alignment, FromMemalign);
if (!*MemPtr)
return ENOMEM;
void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
if (UNLIKELY(!Ptr))
return errno_ENOMEM;
*MemPtr = Ptr;
return 0;
}
void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
// Alignment must be a power of 2, Size must be a multiple of Alignment.
if (UNLIKELY(!IsPowerOfTwo(Alignment) || (Size & (Alignment - 1)) != 0))
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
errno = errno_EINVAL;
return ScudoAllocator::FailureHandler::OnBadRequest();
return Instance.allocate(Size, Alignment, FromMalloc);
}
return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
}
uptr scudoMallocUsableSize(void *Ptr) {

View File

@ -23,41 +23,47 @@ template <class PrimaryAllocator, class AllocatorCache,
class SecondaryAllocator>
class ScudoCombinedAllocator {
public:
void Init(s32 ReleaseToOSIntervalMs) {
void init(s32 ReleaseToOSIntervalMs) {
Primary.Init(ReleaseToOSIntervalMs);
Secondary.Init();
Stats.Init();
}
void *Allocate(AllocatorCache *Cache, uptr Size, uptr Alignment,
bool FromPrimary) {
if (FromPrimary)
return Cache->Allocate(&Primary, Primary.ClassID(Size));
// Primary allocations are always MinAlignment aligned, and as such do not
// require an Alignment parameter.
void *allocatePrimary(AllocatorCache *Cache, uptr Size) {
return Cache->Allocate(&Primary, Primary.ClassID(Size));
}
// Secondary allocations do not require a Cache, but do require an Alignment
// parameter.
void *allocateSecondary(uptr Size, uptr Alignment) {
return Secondary.Allocate(&Stats, Size, Alignment);
}
void Deallocate(AllocatorCache *Cache, void *Ptr, bool FromPrimary) {
if (FromPrimary)
Cache->Deallocate(&Primary, Primary.GetSizeClass(Ptr), Ptr);
else
Secondary.Deallocate(&Stats, Ptr);
void deallocatePrimary(AllocatorCache *Cache, void *Ptr) {
Cache->Deallocate(&Primary, Primary.GetSizeClass(Ptr), Ptr);
}
uptr GetActuallyAllocatedSize(void *Ptr, bool FromPrimary) {
void deallocateSecondary(void *Ptr) {
Secondary.Deallocate(&Stats, Ptr);
}
uptr getActuallyAllocatedSize(void *Ptr, bool FromPrimary) {
if (FromPrimary)
return PrimaryAllocator::ClassIdToSize(Primary.GetSizeClass(Ptr));
return Secondary.GetActuallyAllocatedSize(Ptr);
}
void InitCache(AllocatorCache *Cache) {
void initCache(AllocatorCache *Cache) {
Cache->Init(&Stats);
}
void DestroyCache(AllocatorCache *Cache) {
void destroyCache(AllocatorCache *Cache) {
Cache->Destroy(&Primary, &Stats);
}
void GetStats(AllocatorStatCounters StatType) const {
void getStats(AllocatorStatCounters StatType) const {
Stats.Get(StatType);
}

View File

@ -61,20 +61,13 @@
// an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection.
//
// Description of ThreadClock state:
// clk_ - fixed size vector clock.
// nclk_ - effective size of the vector clock (the rest is zeros).
// tid_ - index of the thread associated with he clock ("current thread").
// last_acquire_ - current thread time when it acquired something from
// other threads.
//
// Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp,
// the remaining bits hold "acquired" flag (the actual value is thread's
// reused counter);
// if acquried == thr->reused_, then the respective thread has already
// acquired this clock (except possibly dirty_tids_).
// dirty_tids_ - holds up to two indeces in the vector clock that other threads
// acquired this clock (except possibly for dirty elements).
// dirty_ - holds up to two indeces in the vector clock that other threads
// need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of
// release-store operation by the thread with release_store_tid_ index.
@ -90,21 +83,51 @@
namespace __tsan {
static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
}
// Drop reference to the first level block idx.
static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
ClockBlock *cb = ctx->clock_alloc.Map(idx);
atomic_uint32_t *ref = ref_ptr(cb);
u32 v = atomic_load(ref, memory_order_acquire);
for (;;) {
CHECK_GT(v, 0);
if (v == 1)
break;
if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
return;
}
// First level block owns second level blocks, so them as well.
for (uptr i = 0; i < blocks; i++)
ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
ctx->clock_alloc.Free(c, idx);
}
ThreadClock::ThreadClock(unsigned tid, unsigned reused)
: tid_(tid)
, reused_(reused + 1) { // 0 has special meaning
, reused_(reused + 1) // 0 has special meaning
, cached_idx_()
, cached_size_()
, cached_blocks_() {
CHECK_LT(tid, kMaxTidInClock);
CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
nclk_ = tid_ + 1;
last_acquire_ = 0;
internal_memset(clk_, 0, sizeof(clk_));
clk_[tid_].reused = reused_;
}
void ThreadClock::ResetCached(ClockCache *c) {
if (cached_idx_) {
UnrefClockBlock(c, cached_idx_, cached_blocks_);
cached_idx_ = 0;
cached_size_ = 0;
cached_blocks_ = 0;
}
}
void ThreadClock::acquire(ClockCache *c, const SyncClock *src) {
void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(src->size_, kMaxTid);
CPP_STAT_INC(StatClockAcquire);
@ -116,50 +139,46 @@ void ThreadClock::acquire(ClockCache *c, const SyncClock *src) {
return;
}
// Check if we've already acquired src after the last release operation on src
bool acquired = false;
if (nclk > tid_) {
if (src->elem(tid_).reused == reused_) {
for (unsigned i = 0; i < kDirtyTids; i++) {
unsigned tid = src->dirty_tids_[i];
if (tid != kInvalidTid) {
u64 epoch = src->elem(tid).epoch;
if (clk_[tid].epoch < epoch) {
clk_[tid].epoch = epoch;
acquired = true;
}
}
for (unsigned i = 0; i < kDirtyTids; i++) {
SyncClock::Dirty dirty = src->dirty_[i];
unsigned tid = dirty.tid;
if (tid != kInvalidTid) {
if (clk_[tid] < dirty.epoch) {
clk_[tid] = dirty.epoch;
acquired = true;
}
if (acquired) {
CPP_STAT_INC(StatClockAcquiredSomething);
last_acquire_ = clk_[tid_].epoch;
}
return;
}
}
// O(N) acquire.
CPP_STAT_INC(StatClockAcquireFull);
nclk_ = max(nclk_, nclk);
for (uptr i = 0; i < nclk; i++) {
u64 epoch = src->elem(i).epoch;
if (clk_[i].epoch < epoch) {
clk_[i].epoch = epoch;
acquired = true;
// Check if we've already acquired src after the last release operation on src
if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
// O(N) acquire.
CPP_STAT_INC(StatClockAcquireFull);
nclk_ = max(nclk_, nclk);
u64 *dst_pos = &clk_[0];
for (ClockElem &src_elem : *src) {
u64 epoch = src_elem.epoch;
if (*dst_pos < epoch) {
*dst_pos = epoch;
acquired = true;
}
dst_pos++;
}
}
// Remember that this thread has acquired this clock.
if (nclk > tid_)
src->elem(tid_).reused = reused_;
// Remember that this thread has acquired this clock.
if (nclk > tid_)
src->elem(tid_).reused = reused_;
}
if (acquired) {
CPP_STAT_INC(StatClockAcquiredSomething);
last_acquire_ = clk_[tid_].epoch;
last_acquire_ = clk_[tid_];
ResetCached(c);
}
}
void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
void ThreadClock::release(ClockCache *c, SyncClock *dst) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid);
@ -179,7 +198,7 @@ void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
// since the last release on dst. If so, we need to update
// only dst->elem(tid_).
if (dst->elem(tid_).epoch > last_acquire_) {
UpdateCurrentThread(dst);
UpdateCurrentThread(c, dst);
if (dst->release_store_tid_ != tid_ ||
dst->release_store_reused_ != reused_)
dst->release_store_tid_ = kInvalidTid;
@ -188,23 +207,24 @@ void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
// O(N) release.
CPP_STAT_INC(StatClockReleaseFull);
dst->Unshare(c);
// First, remember whether we've acquired dst.
bool acquired = IsAlreadyAcquired(dst);
if (acquired)
CPP_STAT_INC(StatClockReleaseAcquired);
// Update dst->clk_.
for (uptr i = 0; i < nclk_; i++) {
ClockElem &ce = dst->elem(i);
ce.epoch = max(ce.epoch, clk_[i].epoch);
dst->FlushDirty();
uptr i = 0;
for (ClockElem &ce : *dst) {
ce.epoch = max(ce.epoch, clk_[i]);
ce.reused = 0;
i++;
}
// Clear 'acquired' flag in the remaining elements.
if (nclk_ < dst->size_)
CPP_STAT_INC(StatClockReleaseClearTail);
for (uptr i = nclk_; i < dst->size_; i++)
dst->elem(i).reused = 0;
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
dst->release_store_tid_ = kInvalidTid;
dst->release_store_reused_ = 0;
// If we've acquired dst, remember this fact,
@ -213,11 +233,37 @@ void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
dst->elem(tid_).reused = reused_;
}
void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) const {
void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid);
CPP_STAT_INC(StatClockStore);
if (dst->size_ == 0 && cached_idx_ != 0) {
// Reuse the cached clock.
// Note: we could reuse/cache the cached clock in more cases:
// we could update the existing clock and cache it, or replace it with the
// currently cached clock and release the old one. And for a shared
// existing clock, we could replace it with the currently cached;
// or unshare, update and cache. But, for simplicity, we currnetly reuse
// cached clock only when the target clock is empty.
dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
dst->tab_idx_ = cached_idx_;
dst->size_ = cached_size_;
dst->blocks_ = cached_blocks_;
CHECK_EQ(dst->dirty_[0].tid, kInvalidTid);
// The cached clock is shared (immutable),
// so this is where we store the current clock.
dst->dirty_[0].tid = tid_;
dst->dirty_[0].epoch = clk_[tid_];
dst->release_store_tid_ = tid_;
dst->release_store_reused_ = reused_;
// Rememeber that we don't need to acquire it in future.
dst->elem(tid_).reused = reused_;
// Grab a reference.
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
return;
}
// Check if we need to resize dst.
if (dst->size_ < nclk_)
dst->Resize(c, nclk_);
@ -226,32 +272,41 @@ void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) const {
dst->release_store_reused_ == reused_ &&
dst->elem(tid_).epoch > last_acquire_) {
CPP_STAT_INC(StatClockStoreFast);
UpdateCurrentThread(dst);
UpdateCurrentThread(c, dst);
return;
}
// O(N) release-store.
CPP_STAT_INC(StatClockStoreFull);
for (uptr i = 0; i < nclk_; i++) {
ClockElem &ce = dst->elem(i);
ce.epoch = clk_[i].epoch;
dst->Unshare(c);
// Note: dst can be larger than this ThreadClock.
// This is fine since clk_ beyond size is all zeros.
uptr i = 0;
for (ClockElem &ce : *dst) {
ce.epoch = clk_[i];
ce.reused = 0;
i++;
}
// Clear the tail of dst->clk_.
if (nclk_ < dst->size_) {
for (uptr i = nclk_; i < dst->size_; i++) {
ClockElem &ce = dst->elem(i);
ce.epoch = 0;
ce.reused = 0;
}
CPP_STAT_INC(StatClockStoreTail);
}
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
for (uptr i = 0; i < kDirtyTids; i++)
dst->dirty_[i].tid = kInvalidTid;
dst->release_store_tid_ = tid_;
dst->release_store_reused_ = reused_;
// Rememeber that we don't need to acquire it in future.
dst->elem(tid_).reused = reused_;
// If the resulting clock is cachable, cache it for future release operations.
// The clock is always cachable if we released to an empty sync object.
if (cached_idx_ == 0 && dst->Cachable()) {
// Grab a reference to the ClockBlock.
atomic_uint32_t *ref = ref_ptr(dst->tab_);
if (atomic_load(ref, memory_order_acquire) == 1)
atomic_store_relaxed(ref, 2);
else
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
cached_idx_ = dst->tab_idx_;
cached_size_ = dst->size_;
cached_blocks_ = dst->blocks_;
}
}
void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
@ -261,37 +316,36 @@ void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
}
// Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(SyncClock *dst) const {
void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
// Update the threads time, but preserve 'acquired' flag.
dst->elem(tid_).epoch = clk_[tid_].epoch;
for (unsigned i = 0; i < kDirtyTids; i++) {
if (dst->dirty_tids_[i] == tid_) {
SyncClock::Dirty *dirty = &dst->dirty_[i];
const unsigned tid = dirty->tid;
if (tid == tid_ || tid == kInvalidTid) {
CPP_STAT_INC(StatClockReleaseFast);
return;
}
if (dst->dirty_tids_[i] == kInvalidTid) {
CPP_STAT_INC(StatClockReleaseFast);
dst->dirty_tids_[i] = tid_;
dirty->tid = tid_;
dirty->epoch = clk_[tid_];
return;
}
}
// Reset all 'acquired' flags, O(N).
// We are going to touch dst elements, so we need to unshare it.
dst->Unshare(c);
CPP_STAT_INC(StatClockReleaseSlow);
dst->elem(tid_).epoch = clk_[tid_];
for (uptr i = 0; i < dst->size_; i++)
dst->elem(i).reused = 0;
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
dst->FlushDirty();
}
// Checks whether the current threads has already acquired src.
// Checks whether the current thread has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
if (src->elem(tid_).reused != reused_)
return false;
for (unsigned i = 0; i < kDirtyTids; i++) {
unsigned tid = src->dirty_tids_[i];
if (tid != kInvalidTid) {
if (clk_[tid].epoch < src->elem(tid).epoch)
SyncClock::Dirty dirty = src->dirty_[i];
if (dirty.tid != kInvalidTid) {
if (clk_[dirty.tid] < dirty.epoch)
return false;
}
}
@ -302,22 +356,19 @@ bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
// This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
DCHECK_LT(tid, kMaxTid);
DCHECK_GE(v, clk_[tid].epoch);
clk_[tid].epoch = v;
DCHECK_GE(v, clk_[tid]);
clk_[tid] = v;
if (nclk_ <= tid)
nclk_ = tid + 1;
last_acquire_ = clk_[tid_].epoch;
last_acquire_ = clk_[tid_];
ResetCached(c);
}
void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("clock=[");
for (uptr i = 0; i < nclk_; i++)
printf("%s%llu", i == 0 ? "" : ",", clk_[i].epoch);
printf("] reused=[");
for (uptr i = 0; i < nclk_; i++)
printf("%s%llu", i == 0 ? "" : ",", clk_[i].reused);
printf("] tid=%u/%u last_acq=%llu",
tid_, reused_, last_acquire_);
printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
}
SyncClock::SyncClock() {
@ -327,22 +378,14 @@ SyncClock::SyncClock() {
SyncClock::~SyncClock() {
// Reset must be called before dtor.
CHECK_EQ(size_, 0);
CHECK_EQ(blocks_, 0);
CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0);
}
void SyncClock::Reset(ClockCache *c) {
if (size_ == 0) {
// nothing
} else if (size_ <= ClockBlock::kClockCount) {
// One-level table.
ctx->clock_alloc.Free(c, tab_idx_);
} else {
// Two-level table.
for (uptr i = 0; i < size_; i += ClockBlock::kClockCount)
ctx->clock_alloc.Free(c, tab_->table[i / ClockBlock::kClockCount]);
ctx->clock_alloc.Free(c, tab_idx_);
}
if (size_)
UnrefClockBlock(c, tab_idx_, blocks_);
ResetImpl();
}
@ -350,66 +393,171 @@ void SyncClock::ResetImpl() {
tab_ = 0;
tab_idx_ = 0;
size_ = 0;
blocks_ = 0;
release_store_tid_ = kInvalidTid;
release_store_reused_ = 0;
for (uptr i = 0; i < kDirtyTids; i++)
dirty_tids_[i] = kInvalidTid;
dirty_[i].tid = kInvalidTid;
}
void SyncClock::Resize(ClockCache *c, uptr nclk) {
CPP_STAT_INC(StatClockReleaseResize);
if (RoundUpTo(nclk, ClockBlock::kClockCount) <=
RoundUpTo(size_, ClockBlock::kClockCount)) {
// Growing within the same block.
Unshare(c);
if (nclk <= capacity()) {
// Memory is already allocated, just increase the size.
size_ = nclk;
return;
}
if (nclk <= ClockBlock::kClockCount) {
if (size_ == 0) {
// Grow from 0 to one-level table.
CHECK_EQ(size_, 0);
CHECK_EQ(blocks_, 0);
CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0);
size_ = nclk;
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
return;
atomic_store_relaxed(ref_ptr(tab_), 1);
size_ = 1;
} else if (size_ > blocks_ * ClockBlock::kClockCount) {
u32 idx = ctx->clock_alloc.Alloc(c);
ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
uptr top = size_ - blocks_ * ClockBlock::kClockCount;
CHECK_LT(top, ClockBlock::kClockCount);
const uptr move = top * sizeof(tab_->clock[0]);
internal_memcpy(&new_cb->clock[0], tab_->clock, move);
internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
internal_memset(tab_->clock, 0, move);
append_block(idx);
}
// Growing two-level table.
if (size_ == 0) {
// Allocate first level table.
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
} else if (size_ <= ClockBlock::kClockCount) {
// Transform one-level table to two-level table.
u32 old = tab_idx_;
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
tab_->table[0] = old;
}
// At this point we have first level table allocated.
// At this point we have first level table allocated and all clock elements
// are evacuated from it to a second level block.
// Add second level tables as necessary.
for (uptr i = RoundUpTo(size_, ClockBlock::kClockCount);
i < nclk; i += ClockBlock::kClockCount) {
while (nclk > capacity()) {
u32 idx = ctx->clock_alloc.Alloc(c);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
internal_memset(cb, 0, sizeof(*cb));
CHECK_EQ(tab_->table[i/ClockBlock::kClockCount], 0);
tab_->table[i/ClockBlock::kClockCount] = idx;
append_block(idx);
}
size_ = nclk;
}
ClockElem &SyncClock::elem(unsigned tid) const {
// Flushes all dirty elements into the main clock array.
void SyncClock::FlushDirty() {
for (unsigned i = 0; i < kDirtyTids; i++) {
Dirty *dirty = &dirty_[i];
if (dirty->tid != kInvalidTid) {
CHECK_LT(dirty->tid, size_);
elem(dirty->tid).epoch = dirty->epoch;
dirty->tid = kInvalidTid;
}
}
}
bool SyncClock::IsShared() const {
if (size_ == 0)
return false;
atomic_uint32_t *ref = ref_ptr(tab_);
u32 v = atomic_load(ref, memory_order_acquire);
CHECK_GT(v, 0);
return v > 1;
}
// Unshares the current clock if it's shared.
// Shared clocks are immutable, so they need to be unshared before any updates.
// Note: this does not apply to dirty entries as they are not shared.
void SyncClock::Unshare(ClockCache *c) {
if (!IsShared())
return;
// First, copy current state into old.
SyncClock old;
old.tab_ = tab_;
old.tab_idx_ = tab_idx_;
old.size_ = size_;
old.blocks_ = blocks_;
old.release_store_tid_ = release_store_tid_;
old.release_store_reused_ = release_store_reused_;
for (unsigned i = 0; i < kDirtyTids; i++)
old.dirty_[i] = dirty_[i];
// Then, clear current object.
ResetImpl();
// Allocate brand new clock in the current object.
Resize(c, old.size_);
// Now copy state back into this object.
Iter old_iter(&old);
for (ClockElem &ce : *this) {
ce = *old_iter;
++old_iter;
}
release_store_tid_ = old.release_store_tid_;
release_store_reused_ = old.release_store_reused_;
for (unsigned i = 0; i < kDirtyTids; i++)
dirty_[i] = old.dirty_[i];
// Drop reference to old and delete if necessary.
old.Reset(c);
}
// Can we cache this clock for future release operations?
ALWAYS_INLINE bool SyncClock::Cachable() const {
if (size_ == 0)
return false;
for (unsigned i = 0; i < kDirtyTids; i++) {
if (dirty_[i].tid != kInvalidTid)
return false;
}
return atomic_load_relaxed(ref_ptr(tab_)) == 1;
}
// elem linearizes the two-level structure into linear array.
// Note: this is used only for one time accesses, vector operations use
// the iterator as it is much faster.
ALWAYS_INLINE ClockElem &SyncClock::elem(unsigned tid) const {
DCHECK_LT(tid, size_);
if (size_ <= ClockBlock::kClockCount)
const uptr block = tid / ClockBlock::kClockCount;
DCHECK_LE(block, blocks_);
tid %= ClockBlock::kClockCount;
if (block == blocks_)
return tab_->clock[tid];
u32 idx = tab_->table[tid / ClockBlock::kClockCount];
u32 idx = get_block(block);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
return cb->clock[tid % ClockBlock::kClockCount];
return cb->clock[tid];
}
ALWAYS_INLINE uptr SyncClock::capacity() const {
if (size_ == 0)
return 0;
uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
// How many clock elements we can fit into the first level block.
// +1 for ref counter.
uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
return blocks_ * ClockBlock::kClockCount + top;
}
ALWAYS_INLINE u32 SyncClock::get_block(uptr bi) const {
DCHECK(size_);
DCHECK_LT(bi, blocks_);
return tab_->table[ClockBlock::kBlockIdx - bi];
}
ALWAYS_INLINE void SyncClock::append_block(u32 idx) {
uptr bi = blocks_++;
CHECK_EQ(get_block(bi), 0);
tab_->table[ClockBlock::kBlockIdx - bi] = idx;
}
// Used only by tests.
u64 SyncClock::get(unsigned tid) const {
for (unsigned i = 0; i < kDirtyTids; i++) {
Dirty dirty = dirty_[i];
if (dirty.tid == tid)
return dirty.epoch;
}
return elem(tid).epoch;
}
// Used only by Iter test.
u64 SyncClock::get_clean(unsigned tid) const {
return elem(tid).epoch;
}
void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
@ -419,8 +567,32 @@ void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("] reused=[");
for (uptr i = 0; i < size_; i++)
printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
printf("] release_store_tid=%d/%d dirty_tids=%d/%d",
printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
release_store_tid_, release_store_reused_,
dirty_tids_[0], dirty_tids_[1]);
dirty_[0].tid, dirty_[0].epoch,
dirty_[1].tid, dirty_[1].epoch);
}
void SyncClock::Iter::Next() {
// Finished with the current block, move on to the next one.
block_++;
if (block_ < parent_->blocks_) {
// Iterate over the next second level block.
u32 idx = parent_->get_block(block_);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
pos_ = &cb->clock[0];
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
ClockBlock::kClockCount);
return;
}
if (block_ == parent_->blocks_ &&
parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
// Iterate over elements in the first level block.
pos_ = &parent_->tab_->clock[0];
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
ClockBlock::kClockCount);
return;
}
parent_ = nullptr; // denotes end
}
} // namespace __tsan

View File

@ -18,25 +18,6 @@
namespace __tsan {
struct ClockElem {
u64 epoch : kClkBits;
u64 reused : 64 - kClkBits;
};
struct ClockBlock {
static const uptr kSize = 512;
static const uptr kTableSize = kSize / sizeof(u32);
static const uptr kClockCount = kSize / sizeof(ClockElem);
union {
u32 table[kTableSize];
ClockElem clock[kClockCount];
};
ClockBlock() {
}
};
typedef DenseSlabAlloc<ClockBlock, 1<<16, 1<<10> ClockAlloc;
typedef DenseSlabAllocCache ClockCache;
@ -46,69 +27,117 @@ class SyncClock {
SyncClock();
~SyncClock();
uptr size() const {
return size_;
}
uptr size() const;
u64 get(unsigned tid) const {
return elem(tid).epoch;
}
// These are used only in tests.
u64 get(unsigned tid) const;
u64 get_clean(unsigned tid) const;
void Resize(ClockCache *c, uptr nclk);
void Reset(ClockCache *c);
void DebugDump(int(*printf)(const char *s, ...));
// Clock element iterator.
// Note: it iterates only over the table without regard to dirty entries.
class Iter {
public:
explicit Iter(SyncClock* parent);
Iter& operator++();
bool operator!=(const Iter& other);
ClockElem &operator*();
private:
SyncClock *parent_;
// [pos_, end_) is the current continuous range of clock elements.
ClockElem *pos_;
ClockElem *end_;
int block_; // Current number of second level block.
NOINLINE void Next();
};
Iter begin();
Iter end();
private:
friend struct ThreadClock;
friend class ThreadClock;
friend class Iter;
static const uptr kDirtyTids = 2;
struct Dirty {
u64 epoch : kClkBits;
u64 tid : 64 - kClkBits; // kInvalidId if not active
};
unsigned release_store_tid_;
unsigned release_store_reused_;
unsigned dirty_tids_[kDirtyTids];
// tab_ contains indirect pointer to a 512b block using DenseSlabAlloc.
// If size_ <= 64, then tab_ points to an array with 64 ClockElem's.
// Otherwise, tab_ points to an array with 128 u32 elements,
Dirty dirty_[kDirtyTids];
// If size_ is 0, tab_ is nullptr.
// If size <= 64 (kClockCount), tab_ contains pointer to an array with
// 64 ClockElem's (ClockBlock::clock).
// Otherwise, tab_ points to an array with up to 127 u32 elements,
// each pointing to the second-level 512b block with 64 ClockElem's.
// Unused space in the first level ClockBlock is used to store additional
// clock elements.
// The last u32 element in the first level ClockBlock is always used as
// reference counter.
//
// See the following scheme for details.
// All memory blocks are 512 bytes (allocated from ClockAlloc).
// Clock (clk) elements are 64 bits.
// Idx and ref are 32 bits.
//
// tab_
// |
// \/
// +----------------------------------------------------+
// | clk128 | clk129 | ...unused... | idx1 | idx0 | ref |
// +----------------------------------------------------+
// | |
// | \/
// | +----------------+
// | | clk0 ... clk63 |
// | +----------------+
// \/
// +------------------+
// | clk64 ... clk127 |
// +------------------+
//
// Note: dirty entries, if active, always override what's stored in the clock.
ClockBlock *tab_;
u32 tab_idx_;
u32 size_;
u16 size_;
u16 blocks_; // Number of second level blocks.
void Unshare(ClockCache *c);
bool IsShared() const;
bool Cachable() const;
void ResetImpl();
void FlushDirty();
uptr capacity() const;
u32 get_block(uptr bi) const;
void append_block(u32 idx);
ClockElem &elem(unsigned tid) const;
};
// The clock that lives in threads.
struct ThreadClock {
class ThreadClock {
public:
typedef DenseSlabAllocCache Cache;
explicit ThreadClock(unsigned tid, unsigned reused = 0);
u64 get(unsigned tid) const {
DCHECK_LT(tid, kMaxTidInClock);
return clk_[tid].epoch;
}
u64 get(unsigned tid) const;
void set(ClockCache *c, unsigned tid, u64 v);
void set(u64 v);
void tick();
uptr size() const;
void set(u64 v) {
DCHECK_GE(v, clk_[tid_].epoch);
clk_[tid_].epoch = v;
}
void tick() {
clk_[tid_].epoch++;
}
uptr size() const {
return nclk_;
}
void acquire(ClockCache *c, const SyncClock *src);
void release(ClockCache *c, SyncClock *dst) const;
void acquire(ClockCache *c, SyncClock *src);
void release(ClockCache *c, SyncClock *dst);
void acq_rel(ClockCache *c, SyncClock *dst);
void ReleaseStore(ClockCache *c, SyncClock *dst) const;
void ReleaseStore(ClockCache *c, SyncClock *dst);
void ResetCached(ClockCache *c);
void DebugReset();
@ -116,16 +145,82 @@ struct ThreadClock {
private:
static const uptr kDirtyTids = SyncClock::kDirtyTids;
// Index of the thread associated with he clock ("current thread").
const unsigned tid_;
const unsigned reused_;
const unsigned reused_; // tid_ reuse count.
// Current thread time when it acquired something from other threads.
u64 last_acquire_;
// Cached SyncClock (without dirty entries and release_store_tid_).
// We reuse it for subsequent store-release operations without intervening
// acquire operations. Since it is shared (and thus constant), clock value
// for the current thread is then stored in dirty entries in the SyncClock.
// We host a refernece to the table while it is cached here.
u32 cached_idx_;
u16 cached_size_;
u16 cached_blocks_;
// Number of active elements in the clk_ table (the rest is zeros).
uptr nclk_;
ClockElem clk_[kMaxTidInClock];
u64 clk_[kMaxTidInClock]; // Fixed size vector clock.
bool IsAlreadyAcquired(const SyncClock *src) const;
void UpdateCurrentThread(SyncClock *dst) const;
void UpdateCurrentThread(ClockCache *c, SyncClock *dst) const;
};
ALWAYS_INLINE u64 ThreadClock::get(unsigned tid) const {
DCHECK_LT(tid, kMaxTidInClock);
return clk_[tid];
}
ALWAYS_INLINE void ThreadClock::set(u64 v) {
DCHECK_GE(v, clk_[tid_]);
clk_[tid_] = v;
}
ALWAYS_INLINE void ThreadClock::tick() {
clk_[tid_]++;
}
ALWAYS_INLINE uptr ThreadClock::size() const {
return nclk_;
}
ALWAYS_INLINE SyncClock::Iter SyncClock::begin() {
return Iter(this);
}
ALWAYS_INLINE SyncClock::Iter SyncClock::end() {
return Iter(nullptr);
}
ALWAYS_INLINE uptr SyncClock::size() const {
return size_;
}
ALWAYS_INLINE SyncClock::Iter::Iter(SyncClock* parent)
: parent_(parent)
, pos_(nullptr)
, end_(nullptr)
, block_(-1) {
if (parent)
Next();
}
ALWAYS_INLINE SyncClock::Iter& SyncClock::Iter::operator++() {
pos_++;
if (UNLIKELY(pos_ >= end_))
Next();
return *this;
}
ALWAYS_INLINE bool SyncClock::Iter::operator!=(const SyncClock::Iter& other) {
return parent_ != other.parent_;
}
ALWAYS_INLINE ClockElem &SyncClock::Iter::operator*() {
return *pos_;
}
} // namespace __tsan
#endif // TSAN_CLOCK_H

View File

@ -38,15 +38,40 @@
namespace __tsan {
const int kClkBits = 42;
const unsigned kMaxTidReuse = (1 << (64 - kClkBits)) - 1;
struct ClockElem {
u64 epoch : kClkBits;
u64 reused : 64 - kClkBits; // tid reuse count
};
struct ClockBlock {
static const uptr kSize = 512;
static const uptr kTableSize = kSize / sizeof(u32);
static const uptr kClockCount = kSize / sizeof(ClockElem);
static const uptr kRefIdx = kTableSize - 1;
static const uptr kBlockIdx = kTableSize - 2;
union {
u32 table[kTableSize];
ClockElem clock[kClockCount];
};
ClockBlock() {
}
};
const int kTidBits = 13;
const unsigned kMaxTid = 1 << kTidBits;
// Reduce kMaxTid by kClockCount because one slot in ClockBlock table is
// occupied by reference counter, so total number of elements we can store
// in SyncClock is kClockCount * (kTableSize - 1).
const unsigned kMaxTid = (1 << kTidBits) - ClockBlock::kClockCount;
#if !SANITIZER_GO
const unsigned kMaxTidInClock = kMaxTid * 2; // This includes msb 'freed' bit.
#else
const unsigned kMaxTidInClock = kMaxTid; // Go does not track freed memory.
#endif
const int kClkBits = 42;
const unsigned kMaxTidReuse = (1 << (64 - kClkBits)) - 1;
const uptr kShadowStackSize = 64 * 1024;
// Count of shadow values in a shadow cell.
@ -74,7 +99,7 @@ const bool kCollectHistory = false;
const bool kCollectHistory = true;
#endif
const unsigned kInvalidTid = (unsigned)-1;
const u16 kInvalidTid = kMaxTid + 1;
// The following "build consistency" machinery ensures that all source files
// are built in the same configuration. Inconsistent builds lead to

View File

@ -10,6 +10,7 @@
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_placement_new.h"

View File

@ -286,7 +286,7 @@ void InitializePlatform() {
int ExtractResolvFDs(void *state, int *fds, int nfd) {
#if SANITIZER_LINUX && !SANITIZER_ANDROID
int cnt = 0;
__res_state *statp = (__res_state*)state;
struct __res_state *statp = (struct __res_state*)state;
for (int i = 0; i < MAXNS && cnt < nfd; i++) {
if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
fds[cnt++] = statp->_u._ext.nssocks[i];

View File

@ -573,14 +573,19 @@ static void handlePointerOverflowImpl(PointerOverflowData *Data,
ScopedReport R(Opts, Loc, ET);
if ((sptr(Base) >= 0) == (sptr(Result) >= 0))
Diag(Loc, DL_Error, "unsigned pointer index expression result is %0, "
"preceding its base %1")
<< (void *)Result << (void *)Base;
else
if ((sptr(Base) >= 0) == (sptr(Result) >= 0)) {
if (Base > Result)
Diag(Loc, DL_Error, "addition of unsigned offset to %0 overflowed to %1")
<< (void *)Base << (void *)Result;
else
Diag(Loc, DL_Error,
"subtraction of unsigned offset from %0 overflowed to %1")
<< (void *)Base << (void *)Result;
} else {
Diag(Loc, DL_Error,
"pointer index expression with base %0 overflowed to %1")
<< (void *)Base << (void *)Result;
}
}
void __ubsan::__ubsan_handle_pointer_overflow(PointerOverflowData *Data,

View File

@ -229,8 +229,9 @@
# define _LIBCPP_SHORT_WCHAR 1
// Both MinGW and native MSVC provide a "MSVC"-like enviroment
# define _LIBCPP_MSVCRT_LIKE
// If mingw not explicitly detected, assume using MS C runtime only.
# ifndef __MINGW32__
// If mingw not explicitly detected, assume using MS C runtime only if
// a MS compatibility version is specified.
# if defined(_MSC_VER) && !defined(__MINGW32__)
# define _LIBCPP_MSVCRT // Using Microsoft's C Runtime library
# endif
# if (defined(_M_AMD64) || defined(__x86_64__)) || (defined(_M_ARM) || defined(__arm__))
@ -625,7 +626,6 @@ namespace std {
#define _LIBCPP_HIDDEN
#define _LIBCPP_METHOD_TEMPLATE_IMPLICIT_INSTANTIATION_VIS
#define _LIBCPP_TEMPLATE_VIS
#define _LIBCPP_FUNC_VIS_ONLY
#define _LIBCPP_ENUM_VIS
#if defined(_LIBCPP_COMPILER_MSVC)
@ -684,10 +684,6 @@ namespace std {
# endif
#endif
#ifndef _LIBCPP_FUNC_VIS_ONLY
# define _LIBCPP_FUNC_VIS_ONLY _LIBCPP_FUNC_VIS
#endif
#ifndef _LIBCPP_EXTERN_VIS
# define _LIBCPP_EXTERN_VIS
#endif
@ -925,8 +921,10 @@ template <unsigned> struct __static_assert_check {};
# define _LIBCPP_STD_VER 11
# elif __cplusplus <= 201402L
# define _LIBCPP_STD_VER 14
# elif __cplusplus <= 201703L
# define _LIBCPP_STD_VER 17
# else
# define _LIBCPP_STD_VER 16 // current year, or date of c++17 ratification
# define _LIBCPP_STD_VER 18 // current year, or date of c++2a ratification
# endif
#endif // _LIBCPP_STD_VER

View File

@ -4234,10 +4234,6 @@ sort(__wrap_iter<_Tp*> __first, __wrap_iter<_Tp*> __last, _Compare __comp)
_VSTD::sort<_Tp*, _Comp_ref>(__first.base(), __last.base(), __comp);
}
#ifdef _LIBCPP_MSVC
#pragma warning( push )
#pragma warning( disable: 4231)
#endif // _LIBCPP_MSVC
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS void __sort<__less<char>&, char*>(char*, char*, __less<char>&))
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS void __sort<__less<wchar_t>&, wchar_t*>(wchar_t*, wchar_t*, __less<wchar_t>&))
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS void __sort<__less<signed char>&, signed char*>(signed char*, signed char*, __less<signed char>&))
@ -4271,9 +4267,6 @@ _LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS bool __insertion_sort_incomplete<__less
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS bool __insertion_sort_incomplete<__less<long double>&, long double*>(long double*, long double*, __less<long double>&))
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS unsigned __sort5<__less<long double>&, long double*>(long double*, long double*, long double*, long double*, long double*, __less<long double>&))
#ifdef _LIBCPP_MSVC
#pragma warning( pop )
#endif // _LIBCPP_MSVC
// lower_bound

View File

@ -578,14 +578,7 @@ __basic_string_common<__b>::__throw_out_of_range() const
_VSTD::__throw_out_of_range("basic_string");
}
#ifdef _LIBCPP_MSVC
#pragma warning( push )
#pragma warning( disable: 4231 )
#endif // _LIBCPP_MSVC
_LIBCPP_EXTERN_TEMPLATE(class _LIBCPP_EXTERN_TEMPLATE_TYPE_VIS __basic_string_common<true>)
#ifdef _LIBCPP_MSVC
#pragma warning( pop )
#endif // _LIBCPP_MSVC
#ifdef _LIBCPP_NO_EXCEPTIONS
template <class _Iter>
@ -4006,7 +3999,7 @@ basic_string<_CharT, _Traits, _Allocator>::__subscriptable(const const_iterator*
_LIBCPP_EXTERN_TEMPLATE(class _LIBCPP_EXTERN_TEMPLATE_TYPE_VIS basic_string<char>)
_LIBCPP_EXTERN_TEMPLATE(class _LIBCPP_EXTERN_TEMPLATE_TYPE_VIS basic_string<wchar_t>)
_LIBCPP_EXTERN_TEMPLATE(string operator+<char, char_traits<char>, allocator<char> >(char const*, string const&))
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS string operator+<char, char_traits<char>, allocator<char> >(char const*, string const&))
#if _LIBCPP_STD_VER > 11
// Literal suffixes for basic_string [basic.string.literals]

View File

@ -310,14 +310,7 @@ __vector_base_common<__b>::__throw_out_of_range() const
_VSTD::__throw_out_of_range("vector");
}
#ifdef _LIBCPP_MSVC
#pragma warning( push )
#pragma warning( disable: 4231 )
#endif // _LIBCPP_MSVC
_LIBCPP_EXTERN_TEMPLATE(class _LIBCPP_EXTERN_TEMPLATE_TYPE_VIS __vector_base_common<true>)
#ifdef _LIBCPP_MSVC
#pragma warning( pop )
#endif // _LIBCPP_MSVC
template <class _Tp, class _Allocator>
class __vector_base

View File

@ -29,9 +29,9 @@ namespace llvm {
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
///
template <class BlockT>
template <class BlockT, bool IsPostDom>
class DominanceFrontierBase {
public:
public:
typedef std::set<BlockT *> DomSetType; // Dom set for a bb
typedef std::map<BlockT *, DomSetType> DomSetMapType; // Dom set map
@ -40,10 +40,10 @@ protected:
DomSetMapType Frontiers;
std::vector<BlockT *> Roots;
const bool IsPostDominators;
static constexpr bool IsPostDominators = IsPostDom;
public:
DominanceFrontierBase(bool isPostDom) : IsPostDominators(isPostDom) {}
public:
DominanceFrontierBase() {}
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
@ -96,7 +96,7 @@ public:
/// compare - Return true if the other dominance frontier base matches
/// this dominance frontier base. Otherwise return false.
bool compare(DominanceFrontierBase<BlockT> &Other) const;
bool compare(DominanceFrontierBase &Other) const;
/// print - Convert to human readable form
///
@ -113,22 +113,21 @@ public:
/// used to compute a forward dominator frontiers.
///
template <class BlockT>
class ForwardDominanceFrontierBase : public DominanceFrontierBase<BlockT> {
private:
class ForwardDominanceFrontierBase
: public DominanceFrontierBase<BlockT, false> {
private:
typedef GraphTraits<BlockT *> BlockTraits;
public:
typedef DominatorTreeBase<BlockT> DomTreeT;
typedef DomTreeNodeBase<BlockT> DomTreeNodeT;
typedef typename DominanceFrontierBase<BlockT>::DomSetType DomSetType;
typedef DomTreeBase<BlockT> DomTreeT;
typedef DomTreeNodeBase<BlockT> DomTreeNodeT;
typedef typename DominanceFrontierBase<BlockT, false>::DomSetType DomSetType;
ForwardDominanceFrontierBase() : DominanceFrontierBase<BlockT>(false) {}
void analyze(DomTreeT &DT) {
this->Roots = DT.getRoots();
assert(this->Roots.size() == 1 &&
"Only one entry block for forward domfronts!");
calculate(DT, DT[this->Roots[0]]);
void analyze(DomTreeT &DT) {
this->Roots = DT.getRoots();
assert(this->Roots.size() == 1 &&
"Only one entry block for forward domfronts!");
calculate(DT, DT[this->Roots[0]]);
}
const DomSetType &calculate(const DomTreeT &DT, const DomTreeNodeT *Node);
@ -136,15 +135,16 @@ public:
class DominanceFrontier : public ForwardDominanceFrontierBase<BasicBlock> {
public:
typedef DominatorTreeBase<BasicBlock> DomTreeT;
typedef DomTreeNodeBase<BasicBlock> DomTreeNodeT;
typedef DominanceFrontierBase<BasicBlock>::DomSetType DomSetType;
typedef DominanceFrontierBase<BasicBlock>::iterator iterator;
typedef DominanceFrontierBase<BasicBlock>::const_iterator const_iterator;
typedef DomTreeBase<BasicBlock> DomTreeT;
typedef DomTreeNodeBase<BasicBlock> DomTreeNodeT;
typedef DominanceFrontierBase<BasicBlock, false>::DomSetType DomSetType;
typedef DominanceFrontierBase<BasicBlock, false>::iterator iterator;
typedef DominanceFrontierBase<BasicBlock, false>::const_iterator
const_iterator;
/// Handle invalidation explicitly.
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &);
/// Handle invalidation explicitly.
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &);
};
class DominanceFrontierWrapperPass : public FunctionPass {
@ -168,7 +168,8 @@ public:
void dump() const;
};
extern template class DominanceFrontierBase<BasicBlock>;
extern template class DominanceFrontierBase<BasicBlock, false>;
extern template class DominanceFrontierBase<BasicBlock, true>;
extern template class ForwardDominanceFrontierBase<BasicBlock>;
/// \brief Analysis pass which computes a \c DominanceFrontier.

View File

@ -39,33 +39,33 @@ public:
const DomTreeNodeT *parentNode;
};
template <class BlockT>
void DominanceFrontierBase<BlockT>::removeBlock(BlockT *BB) {
template <class BlockT, bool IsPostDom>
void DominanceFrontierBase<BlockT, IsPostDom>::removeBlock(BlockT *BB) {
assert(find(BB) != end() && "Block is not in DominanceFrontier!");
for (iterator I = begin(), E = end(); I != E; ++I)
I->second.erase(BB);
Frontiers.erase(BB);
}
template <class BlockT>
void DominanceFrontierBase<BlockT>::addToFrontier(iterator I,
BlockT *Node) {
template <class BlockT, bool IsPostDom>
void DominanceFrontierBase<BlockT, IsPostDom>::addToFrontier(iterator I,
BlockT *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
I->second.erase(Node);
}
template <class BlockT>
void DominanceFrontierBase<BlockT>::removeFromFrontier(iterator I,
BlockT *Node) {
template <class BlockT, bool IsPostDom>
void DominanceFrontierBase<BlockT, IsPostDom>::removeFromFrontier(
iterator I, BlockT *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
I->second.erase(Node);
}
template <class BlockT>
bool DominanceFrontierBase<BlockT>::compareDomSet(DomSetType &DS1,
const DomSetType &DS2) const {
template <class BlockT, bool IsPostDom>
bool DominanceFrontierBase<BlockT, IsPostDom>::compareDomSet(
DomSetType &DS1, const DomSetType &DS2) const {
std::set<BlockT *> tmpSet;
for (BlockT *BB : DS2)
tmpSet.insert(BB);
@ -88,9 +88,9 @@ bool DominanceFrontierBase<BlockT>::compareDomSet(DomSetType &DS1,
return false;
}
template <class BlockT>
bool DominanceFrontierBase<BlockT>::compare(
DominanceFrontierBase<BlockT> &Other) const {
template <class BlockT, bool IsPostDom>
bool DominanceFrontierBase<BlockT, IsPostDom>::compare(
DominanceFrontierBase<BlockT, IsPostDom> &Other) const {
DomSetMapType tmpFrontiers;
for (typename DomSetMapType::const_iterator I = Other.begin(),
E = Other.end();
@ -118,8 +118,8 @@ bool DominanceFrontierBase<BlockT>::compare(
return false;
}
template <class BlockT>
void DominanceFrontierBase<BlockT>::print(raw_ostream &OS) const {
template <class BlockT, bool IsPostDom>
void DominanceFrontierBase<BlockT, IsPostDom>::print(raw_ostream &OS) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
OS << " DomFrontier for BB ";
if (I->first)
@ -142,8 +142,8 @@ void DominanceFrontierBase<BlockT>::print(raw_ostream &OS) const {
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
template <class BlockT>
void DominanceFrontierBase<BlockT>::dump() const {
template <class BlockT, bool IsPostDom>
void DominanceFrontierBase<BlockT, IsPostDom>::dump() const {
print(dbgs());
}
#endif

View File

@ -42,11 +42,11 @@ namespace llvm {
/// By default, liveness is not used to prune the IDF computation.
/// The template parameters should be either BasicBlock* or Inverse<BasicBlock
/// *>, depending on if you want the forward or reverse IDF.
template <class NodeTy>
template <class NodeTy, bool IsPostDom>
class IDFCalculator {
public:
IDFCalculator(DominatorTreeBase<BasicBlock> &DT) : DT(DT), useLiveIn(false) {}
public:
IDFCalculator(DominatorTreeBase<BasicBlock, IsPostDom> &DT)
: DT(DT), useLiveIn(false) {}
/// \brief Give the IDF calculator the set of blocks in which the value is
/// defined. This is equivalent to the set of starting blocks it should be
@ -84,12 +84,12 @@ public:
void calculate(SmallVectorImpl<BasicBlock *> &IDFBlocks);
private:
DominatorTreeBase<BasicBlock> &DT;
bool useLiveIn;
const SmallPtrSetImpl<BasicBlock *> *LiveInBlocks;
const SmallPtrSetImpl<BasicBlock *> *DefBlocks;
DominatorTreeBase<BasicBlock, IsPostDom> &DT;
bool useLiveIn;
const SmallPtrSetImpl<BasicBlock *> *LiveInBlocks;
const SmallPtrSetImpl<BasicBlock *> *DefBlocks;
};
typedef IDFCalculator<BasicBlock *> ForwardIDFCalculator;
typedef IDFCalculator<Inverse<BasicBlock *>> ReverseIDFCalculator;
typedef IDFCalculator<BasicBlock *, false> ForwardIDFCalculator;
typedef IDFCalculator<Inverse<BasicBlock *>, true> ReverseIDFCalculator;
}
#endif

View File

@ -43,6 +43,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
@ -908,7 +909,7 @@ public:
/// This sets up the graph and computes all of the entry points of the graph.
/// No function definitions are scanned until their nodes in the graph are
/// requested during traversal.
LazyCallGraph(Module &M);
LazyCallGraph(Module &M, TargetLibraryInfo &TLI);
LazyCallGraph(LazyCallGraph &&G);
LazyCallGraph &operator=(LazyCallGraph &&RHS);
@ -966,6 +967,22 @@ public:
return insertInto(F, N);
}
/// Get the sequence of known and defined library functions.
///
/// These functions, because they are known to LLVM, can have calls
/// introduced out of thin air from arbitrary IR.
ArrayRef<Function *> getLibFunctions() const {
return LibFunctions.getArrayRef();
}
/// Test whether a function is a known and defined library function tracked by
/// the call graph.
///
/// Because these functions are known to LLVM they are specially modeled in
/// the call graph and even when all IR-level references have been removed
/// remain active and reachable.
bool isLibFunction(Function &F) const { return LibFunctions.count(&F); }
///@{
/// \name Pre-SCC Mutation API
///
@ -1100,6 +1117,11 @@ private:
/// These are all of the RefSCCs which have no children.
SmallVector<RefSCC *, 4> LeafRefSCCs;
/// Defined functions that are also known library functions which the
/// optimizer can reason about and therefore might introduce calls to out of
/// thin air.
SmallSetVector<Function *, 4> LibFunctions;
/// Helper to insert a new function, with an already looked-up entry in
/// the NodeMap.
Node &insertInto(Function &F, Node *&MappedN);
@ -1216,8 +1238,8 @@ public:
///
/// This just builds the set of entry points to the call graph. The rest is
/// built lazily as it is walked.
LazyCallGraph run(Module &M, ModuleAnalysisManager &) {
return LazyCallGraph(M);
LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) {
return LazyCallGraph(M, AM.getResult<TargetLibraryAnalysis>(M));
}
};

View File

@ -56,7 +56,8 @@ class Loop;
class MDNode;
class PHINode;
class raw_ostream;
template<class N> class DominatorTreeBase;
template <class N, bool IsPostDom>
class DominatorTreeBase;
template<class N, class M> class LoopInfoBase;
template<class N, class M> class LoopBase;
@ -663,12 +664,12 @@ public:
}
/// Create the loop forest using a stable algorithm.
void analyze(const DominatorTreeBase<BlockT> &DomTree);
void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
// Debugging
void print(raw_ostream &OS) const;
void verify(const DominatorTreeBase<BlockT> &DomTree) const;
void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
};
// Implementation in LoopInfoImpl.h
@ -683,7 +684,7 @@ class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
LoopInfo(const LoopInfo &) = delete;
public:
LoopInfo() {}
explicit LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree);
explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
LoopInfo &operator=(LoopInfo &&RHS) {

View File

@ -340,10 +340,10 @@ void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
/// Discover a subloop with the specified backedges such that: All blocks within
/// this loop are mapped to this loop or a subloop. And all subloops within this
/// loop have their parent loop set to this loop or a subloop.
template<class BlockT, class LoopT>
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
LoopInfoBase<BlockT, LoopT> *LI,
const DominatorTreeBase<BlockT> &DomTree) {
template <class BlockT, class LoopT>
static void discoverAndMapSubloop(
LoopT *L, ArrayRef<BlockT *> Backedges, LoopInfoBase<BlockT, LoopT> *LI,
const DomTreeBase<BlockT> &DomTree) {
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
unsigned NumBlocks = 0;
@ -462,10 +462,9 @@ void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
///
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
/// insertions per block.
template<class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::
analyze(const DominatorTreeBase<BlockT> &DomTree) {
template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::analyze(
const DomTreeBase<BlockT> &DomTree) {
// Postorder traversal of the dominator tree.
const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
for (auto DomNode : post_order(DomRoot)) {
@ -607,7 +606,7 @@ static void compareLoops(const LoopT *L, const LoopT *OtherL,
template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::verify(
const DominatorTreeBase<BlockT> &DomTree) const {
const DomTreeBase<BlockT> &DomTree) const {
DenseSet<const LoopT*> Loops;
for (iterator I = begin(), E = end(); I != E; ++I) {
assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");

View File

@ -22,10 +22,8 @@ namespace llvm {
/// PostDominatorTree Class - Concrete subclass of DominatorTree that is used to
/// compute the post-dominator tree.
///
struct PostDominatorTree : public DominatorTreeBase<BasicBlock> {
typedef DominatorTreeBase<BasicBlock> Base;
PostDominatorTree() : DominatorTreeBase<BasicBlock>(true) {}
struct PostDominatorTree : public PostDomTreeBase<BasicBlock> {
typedef PostDomTreeBase<BasicBlock> Base;
/// Handle invalidation explicitly.
bool invalidate(Function &F, const PreservedAnalyses &PA,

View File

@ -237,17 +237,15 @@ struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
};
/// This class represents an assumption that two SCEV expressions are equal,
/// and this can be checked at run-time. We assume that the left hand side is
/// a SCEVUnknown and the right hand side a constant.
/// and this can be checked at run-time.
class SCEVEqualPredicate final : public SCEVPredicate {
/// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
/// constant.
const SCEVUnknown *LHS;
const SCEVConstant *RHS;
/// We assume that LHS == RHS.
const SCEV *LHS;
const SCEV *RHS;
public:
SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
const SCEVConstant *RHS);
SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
const SCEV *RHS);
/// Implementation of the SCEVPredicate interface
bool implies(const SCEVPredicate *N) const override;
@ -256,10 +254,10 @@ public:
const SCEV *getExpr() const override;
/// Returns the left hand side of the equality.
const SCEVUnknown *getLHS() const { return LHS; }
const SCEV *getLHS() const { return LHS; }
/// Returns the right hand side of the equality.
const SCEVConstant *getRHS() const { return RHS; }
const SCEV *getRHS() const { return RHS; }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const SCEVPredicate *P) {
@ -1241,6 +1239,14 @@ public:
SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
return getAddRecExpr(NewOp, L, Flags);
}
/// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
/// Predicates. If successful return these <AddRecExpr, Predicates>;
/// The function is intended to be called from PSCEV (the caller will decide
/// whether to actually add the predicates and carry out the rewrites).
Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
/// Returns an expression for a GEP
///
/// \p GEP The GEP. The indices contained in the GEP itself are ignored,
@ -1675,8 +1681,7 @@ public:
return F.getParent()->getDataLayout();
}
const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
const SCEVConstant *RHS);
const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
const SCEVPredicate *
getWrapPredicate(const SCEVAddRecExpr *AR,
@ -1692,6 +1697,19 @@ public:
SmallPtrSetImpl<const SCEVPredicate *> &Preds);
private:
/// Similar to createAddRecFromPHI, but with the additional flexibility of
/// suggesting runtime overflow checks in case casts are encountered.
/// If successful, the analysis records that for this loop, \p SymbolicPHI,
/// which is the UnknownSCEV currently representing the PHI, can be rewritten
/// into an AddRec, assuming some predicates; The function then returns the
/// AddRec and the predicates as a pair, and caches this pair in
/// PredicatedSCEVRewrites.
/// If the analysis is not successful, a mapping from the \p SymbolicPHI to
/// itself (with no predicates) is recorded, and a nullptr with an empty
/// predicates vector is returned as a pair.
Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
/// Compute the backedge taken count knowing the interval difference, the
/// stride and presence of the equality in the comparison.
const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
@ -1722,6 +1740,12 @@ private:
FoldingSet<SCEVPredicate> UniquePreds;
BumpPtrAllocator SCEVAllocator;
/// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
/// they can be rewritten into under certain predicates.
DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
PredicatedSCEVRewrites;
/// The head of a linked list of all SCEVUnknown values that have been
/// allocated. This is used by releaseMemory to locate them all and call
/// their destructors.

View File

@ -155,6 +155,13 @@ public:
int getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands) const;
/// \brief Estimate the cost of a EXT operation when lowered.
///
/// The contract for this function is the same as \c getOperationCost except
/// that it supports an interface that provides extra information specific to
/// the EXT operation.
int getExtCost(const Instruction *I, const Value *Src) const;
/// \brief Estimate the cost of a function call when lowered.
///
/// The contract for this is the same as \c getOperationCost except that it
@ -849,6 +856,7 @@ public:
virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands) = 0;
virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
virtual int getCallCost(const Function *F, int NumArgs) = 0;
virtual int getCallCost(const Function *F,
@ -1022,6 +1030,9 @@ public:
ArrayRef<const Value *> Operands) override {
return Impl.getGEPCost(PointeeType, Ptr, Operands);
}
int getExtCost(const Instruction *I, const Value *Src) override {
return Impl.getExtCost(I, Src);
}
int getCallCost(FunctionType *FTy, int NumArgs) override {
return Impl.getCallCost(FTy, NumArgs);
}

View File

@ -120,6 +120,10 @@ public:
return SI.getNumCases();
}
int getExtCost(const Instruction *I, const Value *Src) {
return TTI::TCC_Basic;
}
unsigned getCallCost(FunctionType *FTy, int NumArgs) {
assert(FTy && "FunctionType must be provided to this routine.");
@ -728,6 +732,8 @@ public:
// nop on most sane targets.
if (isa<CmpInst>(CI->getOperand(0)))
return TTI::TCC_Free;
if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
return static_cast<T *>(this)->getExtCost(CI, Operands.back());
}
return static_cast<T *>(this)->getOperationCost(

View File

@ -155,6 +155,18 @@ public:
return BaseT::getGEPCost(PointeeType, Ptr, Operands);
}
int getExtCost(const Instruction *I, const Value *Src) {
if (getTLI()->isExtFree(I))
return TargetTransformInfo::TCC_Free;
if (isa<ZExtInst>(I) || isa<SExtInst>(I))
if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
if (getTLI()->isExtLoad(LI, I, DL))
return TargetTransformInfo::TCC_Free;
return TargetTransformInfo::TCC_Basic;
}
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<const Value *> Arguments) {
return BaseT::getIntrinsicCost(IID, RetTy, Arguments);

View File

@ -23,27 +23,24 @@ class MachineDominanceFrontier : public MachineFunctionPass {
ForwardDominanceFrontierBase<MachineBasicBlock> Base;
public:
using DomTreeT = DominatorTreeBase<MachineBasicBlock>;
using DomTreeNodeT = DomTreeNodeBase<MachineBasicBlock>;
using DomSetType = DominanceFrontierBase<MachineBasicBlock>::DomSetType;
using iterator = DominanceFrontierBase<MachineBasicBlock>::iterator;
using const_iterator =
DominanceFrontierBase<MachineBasicBlock>::const_iterator;
using DomTreeT = DomTreeBase<MachineBasicBlock>;
using DomTreeNodeT = DomTreeNodeBase<MachineBasicBlock>;
using DomSetType = DominanceFrontierBase<MachineBasicBlock, false>::DomSetType;
using iterator = DominanceFrontierBase<MachineBasicBlock, false>::iterator;
using const_iterator =
DominanceFrontierBase<MachineBasicBlock, false>::const_iterator;
MachineDominanceFrontier(const MachineDominanceFrontier &) = delete;
MachineDominanceFrontier &
operator=(const MachineDominanceFrontier &) = delete;
MachineDominanceFrontier(const MachineDominanceFrontier &) = delete;
MachineDominanceFrontier &operator=(const MachineDominanceFrontier &) = delete;
static char ID;
static char ID;
MachineDominanceFrontier();
MachineDominanceFrontier();
DominanceFrontierBase<MachineBasicBlock> &getBase() {
return Base;
}
DominanceFrontierBase<MachineBasicBlock, false> &getBase() { return Base; }
inline const std::vector<MachineBasicBlock*> &getRoots() const {
return Base.getRoots();
inline const std::vector<MachineBasicBlock *> &getRoots() const {
return Base.getRoots();
}
MachineBasicBlock *getRoot() const {
@ -98,7 +95,7 @@ public:
return Base.compareDomSet(DS1, DS2);
}
bool compare(DominanceFrontierBase<MachineBasicBlock> &Other) const {
bool compare(DominanceFrontierBase<MachineBasicBlock, false> &Other) const {
return Base.compare(Other);
}

View File

@ -28,13 +28,15 @@
namespace llvm {
template<>
inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
template <>
inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
MachineBasicBlock *MBB) {
this->Roots.push_back(MBB);
}
extern template class DomTreeNodeBase<MachineBasicBlock>;
extern template class DominatorTreeBase<MachineBasicBlock>;
extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
@ -65,7 +67,7 @@ class MachineDominatorTree : public MachineFunctionPass {
mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
/// The DominatorTreeBase that is used to compute a normal dominator tree
std::unique_ptr<DominatorTreeBase<MachineBasicBlock>> DT;
std::unique_ptr<DomTreeBase<MachineBasicBlock>> DT;
/// \brief Apply all the recorded critical edges to the DT.
/// This updates the underlying DT information in a way that uses
@ -79,9 +81,8 @@ public:
MachineDominatorTree();
DominatorTreeBase<MachineBasicBlock> &getBase() {
if (!DT)
DT.reset(new DominatorTreeBase<MachineBasicBlock>(false));
DomTreeBase<MachineBasicBlock> &getBase() {
if (!DT) DT.reset(new DomTreeBase<MachineBasicBlock>());
applySplitCriticalEdges();
return *DT;
}

View File

@ -26,7 +26,7 @@ namespace llvm {
///
struct MachinePostDominatorTree : public MachineFunctionPass {
private:
DominatorTreeBase<MachineBasicBlock> *DT;
PostDomTreeBase<MachineBasicBlock> *DT;
public:
static char ID;

View File

@ -17,7 +17,6 @@
namespace llvm {
namespace codeview {
class TypeCollection;
class TypeServerHandler;
class TypeVisitorCallbacks;
enum VisitorDataSource {
@ -31,11 +30,9 @@ enum VisitorDataSource {
Error visitTypeRecord(CVType &Record, TypeIndex Index,
TypeVisitorCallbacks &Callbacks,
VisitorDataSource Source = VDS_BytesPresent,
TypeServerHandler *TS = nullptr);
VisitorDataSource Source = VDS_BytesPresent);
Error visitTypeRecord(CVType &Record, TypeVisitorCallbacks &Callbacks,
VisitorDataSource Source = VDS_BytesPresent,
TypeServerHandler *TS = nullptr);
VisitorDataSource Source = VDS_BytesPresent);
Error visitMemberRecord(CVMemberRecord Record, TypeVisitorCallbacks &Callbacks,
VisitorDataSource Source = VDS_BytesPresent);
@ -46,12 +43,9 @@ Error visitMemberRecordStream(ArrayRef<uint8_t> FieldList,
TypeVisitorCallbacks &Callbacks);
Error visitTypeStream(const CVTypeArray &Types, TypeVisitorCallbacks &Callbacks,
VisitorDataSource Source = VDS_BytesPresent,
TypeServerHandler *TS = nullptr);
Error visitTypeStream(CVTypeRange Types, TypeVisitorCallbacks &Callbacks,
TypeServerHandler *TS = nullptr);
Error visitTypeStream(TypeCollection &Types, TypeVisitorCallbacks &Callbacks,
TypeServerHandler *TS = nullptr);
VisitorDataSource Source = VDS_BytesPresent);
Error visitTypeStream(CVTypeRange Types, TypeVisitorCallbacks &Callbacks);
Error visitTypeStream(TypeCollection &Types, TypeVisitorCallbacks &Callbacks);
} // end namespace codeview
} // end namespace llvm

View File

@ -84,7 +84,7 @@ public:
Error mapEncodedInteger(uint64_t &Value);
Error mapEncodedInteger(APSInt &Value);
Error mapStringZ(StringRef &Value);
Error mapGuid(StringRef &Guid);
Error mapGuid(GUID &Guid);
Error mapStringZVectorZ(std::vector<StringRef> &Value);

View File

@ -12,6 +12,7 @@
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/CodeView/GUID.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
@ -31,7 +32,7 @@ public:
explicit GuidAdapter(ArrayRef<uint8_t> Guid);
explicit GuidAdapter(StringRef Guid);
void format(raw_ostream &Stream, StringRef Style) override ;
void format(raw_ostream &Stream, StringRef Style) override;
};
} // end namespace detail
@ -60,6 +61,13 @@ public:
}
};
template <> struct format_provider<codeview::GUID> {
static void format(const codeview::GUID &V, llvm::raw_ostream &Stream,
StringRef Style) {
Stream << V;
}
};
} // end namespace llvm
#endif // LLVM_DEBUGINFO_CODEVIEW_FORMATTERS_H

View File

@ -0,0 +1,55 @@
//===- GUID.h ---------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_CODEVIEW_GUID_H
#define LLVM_DEBUGINFO_CODEVIEW_GUID_H
#include <cstdint>
#include <cstring>
namespace llvm {
class raw_ostream;
namespace codeview {
/// This represents the 'GUID' type from windows.h.
struct GUID {
uint8_t Guid[16];
};
inline bool operator==(const GUID &LHS, const GUID &RHS) {
return 0 == ::memcmp(LHS.Guid, RHS.Guid, sizeof(LHS.Guid));
}
inline bool operator<(const GUID &LHS, const GUID &RHS) {
return ::memcmp(LHS.Guid, RHS.Guid, sizeof(LHS.Guid)) < 0;
}
inline bool operator<=(const GUID &LHS, const GUID &RHS) {
return ::memcmp(LHS.Guid, RHS.Guid, sizeof(LHS.Guid)) <= 0;
}
inline bool operator>(const GUID &LHS, const GUID &RHS) {
return !(LHS <= RHS);
}
inline bool operator>=(const GUID &LHS, const GUID &RHS) {
return !(LHS < RHS);
}
inline bool operator!=(const GUID &LHS, const GUID &RHS) {
return !(LHS == RHS);
}
raw_ostream &operator<<(raw_ostream &OS, const GUID &Guid);
} // namespace codeview
} // namespace llvm
#endif

View File

@ -848,7 +848,7 @@ public:
: SymbolRecord(SymbolRecordKind::BuildInfoSym),
RecordOffset(RecordOffset) {}
uint32_t BuildId;
TypeIndex BuildId;
uint32_t RecordOffset;
};

View File

@ -18,6 +18,7 @@
#include "llvm/ADT/iterator_range.h"
#include "llvm/DebugInfo/CodeView/CVRecord.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/DebugInfo/CodeView/GUID.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/Support/BinaryStreamArray.h"
#include "llvm/Support/Endian.h"
@ -539,15 +540,17 @@ class TypeServer2Record : public TypeRecord {
public:
TypeServer2Record() = default;
explicit TypeServer2Record(TypeRecordKind Kind) : TypeRecord(Kind) {}
TypeServer2Record(StringRef Guid, uint32_t Age, StringRef Name)
: TypeRecord(TypeRecordKind::TypeServer2), Guid(Guid), Age(Age),
Name(Name) {}
TypeServer2Record(StringRef GuidStr, uint32_t Age, StringRef Name)
: TypeRecord(TypeRecordKind::TypeServer2), Age(Age), Name(Name) {
assert(GuidStr.size() == 16 && "guid isn't 16 bytes");
::memcpy(Guid.Guid, GuidStr.data(), 16);
}
StringRef getGuid() const { return Guid; }
const GUID &getGuid() const { return Guid; }
uint32_t getAge() const { return Age; }
StringRef getName() const { return Name; }
StringRef Guid;
GUID Guid;
uint32_t Age;
StringRef Name;
};

View File

@ -1,38 +0,0 @@
//===- TypeServerHandler.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_CODEVIEW_TYPESERVERHANDLER_H
#define LLVM_DEBUGINFO_CODEVIEW_TYPESERVERHANDLER_H
#include "llvm/Support/Error.h"
namespace llvm {
namespace codeview {
class TypeServer2Record;
class TypeVisitorCallbacks;
class TypeServerHandler {
public:
virtual ~TypeServerHandler() = default;
/// Handle a TypeServer record. If the implementation returns true
/// the record will not be processed by the top-level visitor. If
/// it returns false, it will be processed. If it returns an Error,
/// then the top-level visitor will fail.
virtual Expected<bool> handle(TypeServer2Record &TS,
TypeVisitorCallbacks &Callbacks) {
return false;
}
};
} // end namespace codeview
} // end namespace llvm
#endif // LLVM_DEBUGINFO_CODEVIEW_TYPESERVERHANDLER_H

View File

@ -19,7 +19,6 @@ namespace llvm {
namespace codeview {
class TypeIndex;
class TypeServerHandler;
class TypeTableBuilder;
/// \brief Merge one set of type records into another. This method assumes
@ -31,16 +30,13 @@ class TypeTableBuilder;
/// type stream, that contains the index of the corresponding type record
/// in the destination stream.
///
/// \param Handler (optional) If non-null, an interface that gets invoked
/// to handle type server records.
///
/// \param Types The collection of types to merge in.
///
/// \returns Error::success() if the operation succeeded, otherwise an
/// appropriate error code.
Error mergeTypeRecords(TypeTableBuilder &Dest,
SmallVectorImpl<TypeIndex> &SourceToDest,
TypeServerHandler *Handler, const CVTypeArray &Types);
const CVTypeArray &Types);
/// \brief Merge one set of id records into another. This method assumes
/// that all records are id records, and there are no Type records present.
@ -65,7 +61,7 @@ Error mergeTypeRecords(TypeTableBuilder &Dest,
/// appropriate error code.
Error mergeIdRecords(TypeTableBuilder &Dest, ArrayRef<TypeIndex> Types,
SmallVectorImpl<TypeIndex> &SourceToDest,
const CVTypeArray &Ids);
const CVTypeArray &Ids);
/// \brief Merge a unified set of type and id records, splitting them into
/// separate output streams.
@ -78,9 +74,6 @@ Error mergeIdRecords(TypeTableBuilder &Dest, ArrayRef<TypeIndex> Types,
/// id stream, that contains the index of the corresponding id record
/// in the destination stream.
///
/// \param Handler (optional) If non-null, an interface that gets invoked
/// to handle type server records.
///
/// \param IdsAndTypes The collection of id records to merge in.
///
/// \returns Error::success() if the operation succeeded, otherwise an
@ -88,8 +81,7 @@ Error mergeIdRecords(TypeTableBuilder &Dest, ArrayRef<TypeIndex> Types,
Error mergeTypeAndIdRecords(TypeTableBuilder &DestIds,
TypeTableBuilder &DestTypes,
SmallVectorImpl<TypeIndex> &SourceToDest,
TypeServerHandler *Handler,
const CVTypeArray &IdsAndTypes);
const CVTypeArray &IdsAndTypes);
} // end namespace codeview
} // end namespace llvm

View File

@ -238,6 +238,34 @@ public:
uint8_t getUnitType() const { return UnitType; }
static bool isValidUnitType(uint8_t UnitType) {
return UnitType == dwarf::DW_UT_compile || UnitType == dwarf::DW_UT_type ||
UnitType == dwarf::DW_UT_partial ||
UnitType == dwarf::DW_UT_skeleton ||
UnitType == dwarf::DW_UT_split_compile ||
UnitType == dwarf::DW_UT_split_type;
}
/// \brief Return the number of bytes for the header of a unit of
/// UnitType type.
///
/// This function must be called with a valid unit type which in
/// DWARF5 is defined as one of the following six types.
static uint32_t getDWARF5HeaderSize(uint8_t UnitType) {
switch (UnitType) {
case dwarf::DW_UT_compile:
case dwarf::DW_UT_partial:
return 12;
case dwarf::DW_UT_skeleton:
case dwarf::DW_UT_split_compile:
return 20;
case dwarf::DW_UT_type:
case dwarf::DW_UT_split_type:
return 24;
}
llvm_unreachable("Invalid UnitType.");
}
uint64_t getBaseAddress() const { return BaseAddr; }
void setBaseAddress(uint64_t base_addr) {

View File

@ -21,6 +21,7 @@ class DWARFContext;
class DWARFDie;
class DWARFUnit;
class DWARFAcceleratorTable;
class DWARFDataExtractor;
/// A class that verifies DWARF debug information given a DWARF Context.
class DWARFVerifier {
@ -30,10 +31,35 @@ class DWARFVerifier {
/// can verify each reference points to a valid DIE and not an offset that
/// lies between to valid DIEs.
std::map<uint64_t, std::set<uint32_t>> ReferenceToDIEOffsets;
uint32_t NumDebugInfoErrors = 0;
uint32_t NumDebugLineErrors = 0;
uint32_t NumAppleNamesErrors = 0;
/// Verifies the header of a unit in the .debug_info section.
///
/// This function currently checks for:
/// - Unit is in 32-bit DWARF format. The function can be modified to
/// support 64-bit format.
/// - The DWARF version is valid
/// - The unit type is valid (if unit is in version >=5)
/// - The unit doesn't extend beyond .debug_info section
/// - The address size is valid
/// - The offset in the .debug_abbrev section is valid
///
/// \param DebugInfoData The .debug_info section data
/// \param Offset A reference to the offset start of the unit. The offset will
/// be updated to point to the next unit in .debug_info
/// \param UnitIndex The index of the unit to be verified
/// \param UnitType A reference to the type of the unit
/// \param isUnitDWARF64 A reference to a flag that shows whether the unit is
/// in 64-bit format.
///
/// \returns true if the header is verified successfully, false otherwise.
bool verifyUnitHeader(const DWARFDataExtractor DebugInfoData,
uint32_t *Offset, unsigned UnitIndex, uint8_t &UnitType,
bool &isUnitDWARF64);
bool verifyUnitContents(DWARFUnit Unit);
/// Verifies the attribute's DWARF attribute and its value.
///
/// This function currently checks for:
@ -42,7 +68,11 @@ class DWARFVerifier {
///
/// \param Die The DWARF DIE that owns the attribute value
/// \param AttrValue The DWARF attribute value to check
void verifyDebugInfoAttribute(const DWARFDie &Die, DWARFAttribute &AttrValue);
///
/// \returns NumErrors The number of errors occured during verification of
/// attributes' values in a .debug_info section unit
unsigned verifyDebugInfoAttribute(const DWARFDie &Die,
DWARFAttribute &AttrValue);
/// Verifies the attribute's DWARF form.
///
@ -53,7 +83,10 @@ class DWARFVerifier {
///
/// \param Die The DWARF DIE that owns the attribute value
/// \param AttrValue The DWARF attribute value to check
void verifyDebugInfoForm(const DWARFDie &Die, DWARFAttribute &AttrValue);
///
/// \returns NumErrors The number of errors occured during verification of
/// attributes' forms in a .debug_info section unit
unsigned verifyDebugInfoForm(const DWARFDie &Die, DWARFAttribute &AttrValue);
/// Verifies the all valid references that were found when iterating through
/// all of the DIE attributes.
@ -62,7 +95,10 @@ class DWARFVerifier {
/// offset matches. This helps to ensure if a DWARF link phase moved things
/// around, that it doesn't create invalid references by failing to relocate
/// CU relative and absolute references.
void verifyDebugInfoReferences();
///
/// \returns NumErrors The number of errors occured during verification of
/// references for the .debug_info section
unsigned verifyDebugInfoReferences();
/// Verify the the DW_AT_stmt_list encoding and value and ensure that no
/// compile units that have the same DW_AT_stmt_list value.

View File

@ -106,7 +106,7 @@ public:
getVirtualBaseTableType() const override;
PDB_DataKind getDataKind() const override;
PDB_SymType getSymTag() const override;
PDB_UniqueId getGuid() const override;
codeview::GUID getGuid() const override;
int32_t getOffset() const override;
int32_t getThisAdjust() const override;
int32_t getVirtualBasePointerOffset() const override;

View File

@ -19,6 +19,7 @@ namespace pdb {
enum class generic_error_code {
invalid_path = 1,
dia_sdk_not_present,
type_server_not_found,
unspecified,
};

View File

@ -118,7 +118,7 @@ public:
virtual uint32_t getVirtualTableShapeId() const = 0;
virtual PDB_DataKind getDataKind() const = 0;
virtual PDB_SymType getSymTag() const = 0;
virtual PDB_UniqueId getGuid() const = 0;
virtual codeview::GUID getGuid() const = 0;
virtual int32_t getOffset() const = 0;
virtual int32_t getThisAdjust() const = 0;
virtual int32_t getVirtualBasePointerOffset() const = 0;

View File

@ -23,13 +23,6 @@
break;
namespace llvm {
template <> struct format_provider<pdb::PDB_UniqueId> {
static void format(const pdb::PDB_UniqueId &V, llvm::raw_ostream &Stream,
StringRef Style) {
codeview::fmt_guid(V.Guid).format(Stream, Style);
}
};
template <> struct format_provider<pdb::PdbRaw_ImplVer> {
static void format(const pdb::PdbRaw_ImplVer &V, llvm::raw_ostream &Stream,
StringRef Style) {

View File

@ -12,6 +12,7 @@
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/CodeView/GUID.h"
#include "llvm/DebugInfo/MSF/MappedBlockStream.h"
#include "llvm/DebugInfo/PDB/Native/NamedStreamMap.h"
#include "llvm/DebugInfo/PDB/Native/RawConstants.h"
@ -39,7 +40,7 @@ public:
PdbRaw_ImplVer getVersion() const;
uint32_t getSignature() const;
uint32_t getAge() const;
PDB_UniqueId getGuid() const;
codeview::GUID getGuid() const;
uint32_t getNamedStreamMapByteSize() const;
PdbRaw_Features getFeatures() const;
@ -71,7 +72,7 @@ private:
// Due to the aforementioned limitations with `Signature`, this is a new
// signature present on VC70 and higher PDBs which is guaranteed to be
// universally unique.
PDB_UniqueId Guid;
codeview::GUID Guid;
BinarySubstreamRef SubNamedStreams;

View File

@ -37,7 +37,7 @@ public:
void setVersion(PdbRaw_ImplVer V);
void setSignature(uint32_t S);
void setAge(uint32_t A);
void setGuid(PDB_UniqueId G);
void setGuid(codeview::GUID G);
void addFeature(PdbRaw_FeatureSig Sig);
uint32_t finalize();
@ -54,7 +54,7 @@ private:
PdbRaw_ImplVer Ver;
uint32_t Sig;
uint32_t Age;
PDB_UniqueId Guid;
codeview::GUID Guid;
NamedStreamMap &NamedStreams;
};

View File

@ -27,7 +27,7 @@ public:
uint32_t getAge() const override;
std::string getSymbolsFileName() const override;
PDB_UniqueId getGuid() const override;
codeview::GUID getGuid() const override;
bool hasCTypes() const override;
bool hasPrivateSymbols() const override;

View File

@ -111,7 +111,7 @@ public:
getVirtualBaseTableType() const override;
PDB_DataKind getDataKind() const override;
PDB_SymType getSymTag() const override;
PDB_UniqueId getGuid() const override;
codeview::GUID getGuid() const override;
int32_t getOffset() const override;
int32_t getThisAdjust() const override;
int32_t getVirtualBasePointerOffset() const override;

View File

@ -1,46 +0,0 @@
//===- PDBTypeServerHandler.h -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_PDB_PDBTYPESERVERHANDLER_H
#define LLVM_DEBUGINFO_PDB_PDBTYPESERVERHANDLER_H
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/DebugInfo/CodeView/TypeServerHandler.h"
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
#include "llvm/DebugInfo/PDB/PDBTypes.h"
#include <memory>
#include <string>
namespace llvm {
namespace pdb {
class NativeSession;
class PDBTypeServerHandler : public codeview::TypeServerHandler {
public:
PDBTypeServerHandler(bool RevisitAlways = false);
void addSearchPath(StringRef Path);
Expected<bool> handle(codeview::TypeServer2Record &TS,
codeview::TypeVisitorCallbacks &Callbacks) override;
private:
Expected<bool> handleInternal(PDBFile &File,
codeview::TypeVisitorCallbacks &Callbacks);
bool RevisitAlways;
std::unique_ptr<NativeSession> Session;
StringSet<> SearchPaths;
};
}
}
#endif

View File

@ -10,6 +10,7 @@
#ifndef LLVM_DEBUGINFO_PDB_RAW_RAWTYPES_H
#define LLVM_DEBUGINFO_PDB_RAW_RAWTYPES_H
#include "llvm/DebugInfo/CodeView/GUID.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/Support/Endian.h"
@ -268,17 +269,6 @@ struct PublicsStreamHeader {
support::ulittle32_t NumSections;
};
/// Defines a 128-bit unique identifier. This maps to a GUID on Windows, but
/// is abstracted here for the purposes of non-Windows platforms that don't have
/// the GUID structure defined.
struct PDB_UniqueId {
uint8_t Guid[16];
};
inline bool operator==(const PDB_UniqueId &LHS, const PDB_UniqueId &RHS) {
return 0 == ::memcmp(LHS.Guid, RHS.Guid, sizeof(LHS.Guid));
}
// The header preceeding the global TPI stream.
// This corresponds to `HDR` in PDB/dbi/tpi.h.
struct TpiStreamHeader {
@ -312,7 +302,7 @@ struct InfoStreamHeader {
support::ulittle32_t Version;
support::ulittle32_t Signature;
support::ulittle32_t Age;
PDB_UniqueId Guid;
codeview::GUID Guid;
};
/// The header preceeding the /names stream.

View File

@ -10,84 +10,13 @@
#ifndef LLVM_DEBUGINFO_PDB_TPIHASHING_H
#define LLVM_DEBUGINFO_PDB_TPIHASHING_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
#include "llvm/DebugInfo/PDB/Native/RawError.h"
#include "llvm/Support/BinaryStreamArray.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cstdint>
#include <string>
namespace llvm {
namespace pdb {
class TpiHashUpdater : public codeview::TypeVisitorCallbacks {
public:
TpiHashUpdater() = default;
#define TYPE_RECORD(EnumName, EnumVal, Name) \
virtual Error visitKnownRecord(codeview::CVType &CVR, \
codeview::Name##Record &Record) override { \
visitKnownRecordImpl(CVR, Record); \
return Error::success(); \
}
#define TYPE_RECORD_ALIAS(EnumName, EnumVal, Name, AliasName)
#define MEMBER_RECORD(EnumName, EnumVal, Name)
#define MEMBER_RECORD_ALIAS(EnumName, EnumVal, Name, AliasName)
#include "llvm/DebugInfo/CodeView/CodeViewTypes.def"
private:
template <typename RecordKind>
void visitKnownRecordImpl(codeview::CVType &CVR, RecordKind &Record) {
CVR.Hash = 0;
}
void visitKnownRecordImpl(codeview::CVType &CVR,
codeview::UdtSourceLineRecord &Rec);
void visitKnownRecordImpl(codeview::CVType &CVR,
codeview::UdtModSourceLineRecord &Rec);
void visitKnownRecordImpl(codeview::CVType &CVR, codeview::ClassRecord &Rec);
void visitKnownRecordImpl(codeview::CVType &CVR, codeview::EnumRecord &Rec);
void visitKnownRecordImpl(codeview::CVType &CVR, codeview::UnionRecord &Rec);
};
class TpiHashVerifier : public codeview::TypeVisitorCallbacks {
public:
TpiHashVerifier(FixedStreamArray<support::ulittle32_t> &HashValues,
uint32_t NumHashBuckets)
: HashValues(HashValues), NumHashBuckets(NumHashBuckets) {}
Error visitKnownRecord(codeview::CVType &CVR,
codeview::UdtSourceLineRecord &Rec) override;
Error visitKnownRecord(codeview::CVType &CVR,
codeview::UdtModSourceLineRecord &Rec) override;
Error visitKnownRecord(codeview::CVType &CVR,
codeview::ClassRecord &Rec) override;
Error visitKnownRecord(codeview::CVType &CVR,
codeview::EnumRecord &Rec) override;
Error visitKnownRecord(codeview::CVType &CVR,
codeview::UnionRecord &Rec) override;
Error visitTypeBegin(codeview::CVType &CVR) override;
private:
Error verifySourceLine(codeview::TypeIndex TI);
Error errorInvalidHash() {
return make_error<RawError>(
raw_error_code::invalid_tpi_hash,
"Type index is 0x" +
utohexstr(codeview::TypeIndex::FirstNonSimpleIndex + Index));
}
FixedStreamArray<support::ulittle32_t> HashValues;
codeview::CVType RawRecord;
uint32_t NumHashBuckets;
uint32_t Index = -1;
};
Expected<uint32_t> hashTypeRecord(const llvm::codeview::CVType &Type);
} // end namespace pdb
} // end namespace llvm

View File

@ -32,7 +32,6 @@ raw_ostream &operator<<(raw_ostream &OS, const PDB_Checksum &Checksum);
raw_ostream &operator<<(raw_ostream &OS, const PDB_Lang &Lang);
raw_ostream &operator<<(raw_ostream &OS, const PDB_SymType &Tag);
raw_ostream &operator<<(raw_ostream &OS, const PDB_MemberAccess &Access);
raw_ostream &operator<<(raw_ostream &OS, const PDB_UniqueId &Guid);
raw_ostream &operator<<(raw_ostream &OS, const PDB_UdtType &Type);
raw_ostream &operator<<(raw_ostream &OS, const PDB_Machine &Machine);

View File

@ -22,6 +22,7 @@
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
@ -289,21 +290,21 @@ public:
// FIXME: We should track and free associated resources (unused compile
// callbacks, uncompiled IR, and no-longer-needed/reachable function
// implementations).
// FIXME: Return Error once the JIT APIs are Errorized.
bool updatePointer(std::string FuncName, JITTargetAddress FnBodyAddr) {
Error updatePointer(std::string FuncName, JITTargetAddress FnBodyAddr) {
//Find out which logical dylib contains our symbol
auto LDI = LogicalDylibs.begin();
for (auto LDE = LogicalDylibs.end(); LDI != LDE; ++LDI) {
if (auto LMResources = LDI->getLogicalModuleResourcesForSymbol(FuncName, false)) {
if (auto LMResources =
LDI->getLogicalModuleResourcesForSymbol(FuncName, false)) {
Module &SrcM = LMResources->SourceModule->getResource();
std::string CalledFnName = mangle(FuncName, SrcM.getDataLayout());
if (auto EC = LMResources->StubsMgr->updatePointer(CalledFnName, FnBodyAddr))
return false;
else
return true;
if (auto Err = LMResources->StubsMgr->updatePointer(CalledFnName,
FnBodyAddr))
return Err;
return Error::success();
}
}
return false;
return make_error<JITSymbolNotFound>(FuncName);
}
private:
@ -363,11 +364,8 @@ private:
});
}
auto EC = LD.StubsMgr->createStubs(StubInits);
(void)EC;
// FIXME: This should be propagated back to the user. Stub creation may
// fail for remote JITs.
assert(!EC && "Error generating stubs");
if (auto Err = LD.StubsMgr->createStubs(StubInits))
return Err;
}
// If this module doesn't contain any globals, aliases, or module flags then

View File

@ -135,12 +135,13 @@ public:
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
private:
protected:
struct EHFrame {
uint8_t *Addr;
size_t Size;
};
std::vector<EHFrame> EHFrames;
typedef std::vector<EHFrame> EHFrameInfos;
EHFrameInfos EHFrames;
};
// Create wrappers for C Binding types (see CBindingWrapping.h).

View File

@ -143,11 +143,15 @@ namespace CallingConv {
/// System V ABI, used on most non-Windows systems.
X86_64_SysV = 78,
/// \brief The C convention as implemented on Windows/x86-64. This
/// convention differs from the more common \c X86_64_SysV convention
/// in a number of ways, most notably in that XMM registers used to pass
/// arguments are shadowed by GPRs, and vice versa.
X86_64_Win64 = 79,
/// \brief The C convention as implemented on Windows/x86-64 and
/// AArch64. This convention differs from the more common
/// \c X86_64_SysV convention in a number of ways, most notably in
/// that XMM registers used to pass arguments are shadowed by GPRs,
/// and vice versa.
/// On AArch64, this is identical to the normal C (AAPCS) calling
/// convention for normal functions, but floats are passed in integer
/// registers to variadic functions.
Win64 = 79,
/// \brief MSVC calling convention that passes vectors and vector aggregates
/// in SSE registers.

View File

@ -598,6 +598,10 @@ public:
/// specified element in the low bits of a uint64_t.
uint64_t getElementAsInteger(unsigned i) const;
/// If this is a sequential container of integers (of any size), return the
/// specified element as an APInt.
APInt getElementAsAPInt(unsigned i) const;
/// If this is a sequential container of floating point type, return the
/// specified element as an APFloat.
APFloat getElementAsAPFloat(unsigned i) const;
@ -761,6 +765,10 @@ public:
/// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
static Constant *getSplat(unsigned NumElts, Constant *Elt);
/// Returns true if this is a splat constant, meaning that all elements have
/// the same value.
bool isSplat() const;
/// If this is a splat constant, meaning that all of the elements have the
/// same value, return that value. Otherwise return NULL.
Constant *getSplatValue() const;

View File

@ -674,32 +674,37 @@ namespace llvm {
/// Create a descriptor for an imported module.
/// \param Context The scope this module is imported into
/// \param NS The namespace being imported here
/// \param Line Line number
/// \param NS The namespace being imported here.
/// \param File File where the declaration is located.
/// \param Line Line number of the declaration.
DIImportedEntity *createImportedModule(DIScope *Context, DINamespace *NS,
unsigned Line);
DIFile *File, unsigned Line);
/// Create a descriptor for an imported module.
/// \param Context The scope this module is imported into
/// \param NS An aliased namespace
/// \param Line Line number
/// \param Context The scope this module is imported into.
/// \param NS An aliased namespace.
/// \param File File where the declaration is located.
/// \param Line Line number of the declaration.
DIImportedEntity *createImportedModule(DIScope *Context,
DIImportedEntity *NS, unsigned Line);
DIImportedEntity *NS, DIFile *File,
unsigned Line);
/// Create a descriptor for an imported module.
/// \param Context The scope this module is imported into
/// \param M The module being imported here
/// \param Line Line number
/// \param Context The scope this module is imported into.
/// \param M The module being imported here
/// \param File File where the declaration is located.
/// \param Line Line number of the declaration.
DIImportedEntity *createImportedModule(DIScope *Context, DIModule *M,
unsigned Line);
DIFile *File, unsigned Line);
/// Create a descriptor for an imported function.
/// \param Context The scope this module is imported into
/// \param Decl The declaration (or definition) of a function, type, or
/// variable
/// \param Line Line number
/// \param Context The scope this module is imported into.
/// \param Decl The declaration (or definition) of a function, type, or
/// variable.
/// \param File File where the declaration is located.
/// \param Line Line number of the declaration.
DIImportedEntity *createImportedDeclaration(DIScope *Context, DINode *Decl,
unsigned Line,
DIFile *File, unsigned Line,
StringRef Name = "");
/// Insert a new llvm.dbg.declare intrinsic call.

View File

@ -435,10 +435,10 @@ public:
/// Return the raw underlying file.
///
/// A \a DIFile is a \a DIScope, but it doesn't point at a separate file
/// (it\em is the file). If \c this is an \a DIFile, we need to return \c
/// this. Otherwise, return the first operand, which is where all other
/// subclasses store their file pointer.
/// A \a DIFile is a \a DIScope, but it doesn't point at a separate file (it
/// \em is the file). If \c this is an \a DIFile, we need to return \c this.
/// Otherwise, return the first operand, which is where all other subclasses
/// store their file pointer.
Metadata *getRawFile() const {
return isa<DIFile>(this) ? const_cast<DIScope *>(this)
: static_cast<Metadata *>(getOperand(0));
@ -2551,32 +2551,32 @@ class DIImportedEntity : public DINode {
static DIImportedEntity *getImpl(LLVMContext &Context, unsigned Tag,
DIScope *Scope, DINodeRef Entity,
unsigned Line, StringRef Name,
DIFile *File, unsigned Line, StringRef Name,
StorageType Storage,
bool ShouldCreate = true) {
return getImpl(Context, Tag, Scope, Entity, Line,
return getImpl(Context, Tag, Scope, Entity, File, Line,
getCanonicalMDString(Context, Name), Storage, ShouldCreate);
}
static DIImportedEntity *getImpl(LLVMContext &Context, unsigned Tag,
Metadata *Scope, Metadata *Entity,
unsigned Line, MDString *Name,
StorageType Storage,
Metadata *File, unsigned Line,
MDString *Name, StorageType Storage,
bool ShouldCreate = true);
TempDIImportedEntity cloneImpl() const {
return getTemporary(getContext(), getTag(), getScope(), getEntity(),
getLine(), getName());
getFile(), getLine(), getName());
}
public:
DEFINE_MDNODE_GET(DIImportedEntity,
(unsigned Tag, DIScope *Scope, DINodeRef Entity,
unsigned Line, StringRef Name = ""),
(Tag, Scope, Entity, Line, Name))
DIFile *File, unsigned Line, StringRef Name = ""),
(Tag, Scope, Entity, File, Line, Name))
DEFINE_MDNODE_GET(DIImportedEntity,
(unsigned Tag, Metadata *Scope, Metadata *Entity,
unsigned Line, MDString *Name),
(Tag, Scope, Entity, Line, Name))
Metadata *File, unsigned Line, MDString *Name),
(Tag, Scope, Entity, File, Line, Name))
TempDIImportedEntity clone() const { return cloneImpl(); }
@ -2584,10 +2584,12 @@ public:
DIScope *getScope() const { return cast_or_null<DIScope>(getRawScope()); }
DINodeRef getEntity() const { return DINodeRef(getRawEntity()); }
StringRef getName() const { return getStringOperand(2); }
DIFile *getFile() const { return cast_or_null<DIFile>(getRawFile()); }
Metadata *getRawScope() const { return getOperand(0); }
Metadata *getRawEntity() const { return getOperand(1); }
MDString *getRawName() const { return getOperandAs<MDString>(2); }
Metadata *getRawFile() const { return getOperand(3); }
static bool classof(const Metadata *MD) {
return MD->getMetadataID() == DIImportedEntityKind;

View File

@ -34,22 +34,31 @@ class Module;
class raw_ostream;
extern template class DomTreeNodeBase<BasicBlock>;
extern template class DominatorTreeBase<BasicBlock>;
extern template class DominatorTreeBase<BasicBlock, false>; // DomTree
extern template class DominatorTreeBase<BasicBlock, true>; // PostDomTree
namespace DomTreeBuilder {
extern template void Calculate<Function, BasicBlock *>(
DominatorTreeBaseByGraphTraits<GraphTraits<BasicBlock *>> &DT, Function &F);
using BBDomTree = DomTreeBase<BasicBlock>;
using BBPostDomTree = PostDomTreeBase<BasicBlock>;
extern template void Calculate<Function, Inverse<BasicBlock *>>(
DominatorTreeBaseByGraphTraits<GraphTraits<Inverse<BasicBlock *>>> &DT,
Function &F);
extern template void Calculate<BBDomTree, Function>(BBDomTree &DT, Function &F);
extern template void Calculate<BBPostDomTree, Function>(BBPostDomTree &DT,
Function &F);
extern template bool Verify<BasicBlock *>(
const DominatorTreeBaseByGraphTraits<GraphTraits<BasicBlock *>> &DT);
extern template void InsertEdge<BBDomTree>(BBDomTree &DT, BasicBlock *From,
BasicBlock *To);
extern template void InsertEdge<BBPostDomTree>(BBPostDomTree &DT,
BasicBlock *From,
BasicBlock *To);
extern template bool Verify<Inverse<BasicBlock *>>(
const DominatorTreeBaseByGraphTraits<GraphTraits<Inverse<BasicBlock *>>>
&DT);
extern template void DeleteEdge<BBDomTree>(BBDomTree &DT, BasicBlock *From,
BasicBlock *To);
extern template void DeleteEdge<BBPostDomTree>(BBPostDomTree &DT,
BasicBlock *From,
BasicBlock *To);
extern template bool Verify<BBDomTree>(const BBDomTree &DT);
extern template bool Verify<BBPostDomTree>(const BBPostDomTree &DT);
} // namespace DomTreeBuilder
using DomTreeNode = DomTreeNodeBase<BasicBlock>;
@ -122,14 +131,12 @@ template <> struct DenseMapInfo<BasicBlockEdge> {
/// the dominator tree is initially constructed may still exist in the tree,
/// even if the tree is properly updated. Calling code should not rely on the
/// preceding statements; this is stated only to assist human understanding.
class DominatorTree : public DominatorTreeBase<BasicBlock> {
public:
using Base = DominatorTreeBase<BasicBlock>;
class DominatorTree : public DominatorTreeBase<BasicBlock, false> {
public:
using Base = DominatorTreeBase<BasicBlock, false>;
DominatorTree() : DominatorTreeBase<BasicBlock>(false) {}
explicit DominatorTree(Function &F) : DominatorTreeBase<BasicBlock>(false) {
recalculate(F);
}
DominatorTree() = default;
explicit DominatorTree(Function &F) { recalculate(F); }
/// Handle invalidation explicitly.
bool invalidate(Function &F, const PreservedAnalyses &PA,

View File

@ -32,16 +32,6 @@ class Hexagon_qi_mem_Intrinsic<string GCCIntSuffix>
: Hexagon_Intrinsic<GCCIntSuffix,
[llvm_i1_ty], [llvm_ptr_ty],
[IntrNoMem]>;
//
// DEF_FUNCTION_TYPE_1(void_ftype_SI,BT_VOID,BT_INT) ->
// Hexagon_void_si_Intrinsic<string GCCIntSuffix>
//
class Hexagon_void_si_Intrinsic<string GCCIntSuffix>
: Hexagon_Intrinsic<GCCIntSuffix,
[], [llvm_ptr_ty],
[]>;
//
// DEF_FUNCTION_TYPE_1(HI_ftype_SI,BT_I16,BT_INT) ->
// Hexagon_hi_si_Intrinsic<string GCCIntSuffix>
@ -4959,11 +4949,25 @@ Hexagon_di_di_Intrinsic<"HEXAGON_S2_interleave">;
//
def int_hexagon_S2_deinterleave :
Hexagon_di_di_Intrinsic<"HEXAGON_S2_deinterleave">;
//
// BUILTIN_INFO(HEXAGON.dcfetch_A,v_ftype_DI*,1)
//
def int_hexagon_prefetch :
Hexagon_void_si_Intrinsic<"HEXAGON_prefetch">;
Hexagon_Intrinsic<"HEXAGON_prefetch", [], [llvm_ptr_ty], []>;
def int_hexagon_Y2_dccleana :
Hexagon_Intrinsic<"HEXAGON_Y2_dccleana", [], [llvm_ptr_ty], []>;
def int_hexagon_Y2_dccleaninva :
Hexagon_Intrinsic<"HEXAGON_Y2_dccleaninva", [], [llvm_ptr_ty], []>;
def int_hexagon_Y2_dcinva :
Hexagon_Intrinsic<"HEXAGON_Y2_dcinva", [], [llvm_ptr_ty], []>;
def int_hexagon_Y2_dczeroa :
Hexagon_Intrinsic<"HEXAGON_Y2_dczeroa", [], [llvm_ptr_ty],
[IntrWriteMem, IntrArgMemOnly, IntrHasSideEffects]>;
def int_hexagon_Y4_l2fetch :
Hexagon_Intrinsic<"HEXAGON_Y4_l2fetch", [], [llvm_ptr_ty, llvm_i32_ty], []>;
def int_hexagon_Y5_l2fetch :
Hexagon_Intrinsic<"HEXAGON_Y5_l2fetch", [], [llvm_ptr_ty, llvm_i64_ty], []>;
def llvm_ptr32_ty : LLVMPointerType<llvm_i32_ty>;
def llvm_ptr64_ty : LLVMPointerType<llvm_i64_ty>;

View File

@ -373,6 +373,49 @@ let TargetPrefix = "s390" in {
def int_s390_vfidb : Intrinsic<[llvm_v2f64_ty],
[llvm_v2f64_ty, llvm_i32_ty, llvm_i32_ty],
[IntrNoMem]>;
// Instructions from the Vector Enhancements Facility 1
def int_s390_vbperm : SystemZBinaryConv<"vbperm", llvm_v2i64_ty,
llvm_v16i8_ty>;
def int_s390_vmslg : GCCBuiltin<"__builtin_s390_vmslg">,
Intrinsic<[llvm_v16i8_ty],
[llvm_v2i64_ty, llvm_v2i64_ty, llvm_v16i8_ty,
llvm_i32_ty], [IntrNoMem]>;
def int_s390_vfmaxdb : Intrinsic<[llvm_v2f64_ty],
[llvm_v2f64_ty, llvm_v2f64_ty, llvm_i32_ty],
[IntrNoMem]>;
def int_s390_vfmindb : Intrinsic<[llvm_v2f64_ty],
[llvm_v2f64_ty, llvm_v2f64_ty, llvm_i32_ty],
[IntrNoMem]>;
def int_s390_vfmaxsb : Intrinsic<[llvm_v4f32_ty],
[llvm_v4f32_ty, llvm_v4f32_ty, llvm_i32_ty],
[IntrNoMem]>;
def int_s390_vfminsb : Intrinsic<[llvm_v4f32_ty],
[llvm_v4f32_ty, llvm_v4f32_ty, llvm_i32_ty],
[IntrNoMem]>;
def int_s390_vfcesbs : SystemZBinaryConvCC<llvm_v4i32_ty, llvm_v4f32_ty>;
def int_s390_vfchsbs : SystemZBinaryConvCC<llvm_v4i32_ty, llvm_v4f32_ty>;
def int_s390_vfchesbs : SystemZBinaryConvCC<llvm_v4i32_ty, llvm_v4f32_ty>;
def int_s390_vftcisb : SystemZBinaryConvIntCC<llvm_v4i32_ty, llvm_v4f32_ty>;
def int_s390_vfisb : Intrinsic<[llvm_v4f32_ty],
[llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty],
[IntrNoMem]>;
// Instructions from the Vector Packed Decimal Facility
def int_s390_vlrl : GCCBuiltin<"__builtin_s390_vlrl">,
Intrinsic<[llvm_v16i8_ty], [llvm_i32_ty, llvm_ptr_ty],
[IntrReadMem, IntrArgMemOnly]>;
def int_s390_vstrl : GCCBuiltin<"__builtin_s390_vstrl">,
Intrinsic<[], [llvm_v16i8_ty, llvm_i32_ty, llvm_ptr_ty],
// In fact write-only but there's no property
// for that.
[IntrArgMemOnly]>;
}
//===----------------------------------------------------------------------===//

View File

@ -75,6 +75,9 @@ namespace llvm {
static LaneBitmask getNone() { return LaneBitmask(0); }
static LaneBitmask getAll() { return ~LaneBitmask(0); }
static LaneBitmask getLane(unsigned Lane) {
return LaneBitmask(Type(1) << Lane);
}
private:
Type Mask = 0;

View File

@ -69,7 +69,7 @@ class MCFixup {
/// an instruction or an assembler directive.
const MCExpr *Value;
/// The byte index of start of the relocation inside the encoded instruction.
/// The byte index of start of the relocation inside the MCFragment.
uint32_t Offset;
/// The target dependent kind of fixup item this is. The kind is used to

View File

@ -209,6 +209,15 @@ public:
/// well.
unsigned getNumOperands() const { return NumOperands; }
using const_opInfo_iterator = const MCOperandInfo *;
const_opInfo_iterator opInfo_begin() const { return OpInfo; }
const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
iterator_range<const_opInfo_iterator> operands() const {
return make_range(opInfo_begin(), opInfo_end());
}
/// \brief Return the number of MachineOperands that are register
/// definitions. Register definitions always occur at the start of the
/// machine operand list. This is the number of "outs" in the .td file,

View File

@ -95,7 +95,7 @@ struct COFFShortExport {
}
};
std::error_code writeImportLibrary(StringRef DLLName,
std::error_code writeImportLibrary(StringRef ImportName,
StringRef Path,
ArrayRef<COFFShortExport> Exports,
COFF::MachineTypes Machine);

View File

@ -16,7 +16,6 @@
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_COFF_MODULE_DEFINITION_H
#define LLVM_OBJECT_COFF_MODULE_DEFINITION_H
@ -29,6 +28,7 @@ namespace object {
struct COFFModuleDefinition {
std::vector<COFFShortExport> Exports;
std::string OutputFile;
std::string ImportName;
uint64_t ImageBase = 0;
uint64_t StackReserve = 0;
uint64_t StackCommit = 0;
@ -40,8 +40,12 @@ struct COFFModuleDefinition {
uint32_t MinorOSVersion = 0;
};
// mingw and wine def files do not mangle _ for x86 which
// is a consequence of legacy binutils' dlltool functionality.
// This MingwDef flag should be removed once mingw stops this pratice.
Expected<COFFModuleDefinition>
parseCOFFModuleDefinition(MemoryBufferRef MB, COFF::MachineTypes Machine);
parseCOFFModuleDefinition(MemoryBufferRef MB, COFF::MachineTypes Machine,
bool MingwDef = false);
} // End namespace object.
} // End namespace llvm.

View File

@ -60,6 +60,8 @@ ArrayRef<uint8_t> toDebugT(ArrayRef<LeafRecord>, BumpPtrAllocator &Alloc);
} // end namespace llvm
LLVM_YAML_DECLARE_SCALAR_TRAITS(codeview::GUID, true)
LLVM_YAML_DECLARE_MAPPING_TRAITS(CodeViewYAML::LeafRecord)
LLVM_YAML_DECLARE_MAPPING_TRAITS(CodeViewYAML::MemberRecord)

View File

@ -43,8 +43,9 @@ AARCH64_ARCH_EXT_NAME("crypto", AArch64::AEK_CRYPTO, "+crypto","-crypto")
AARCH64_ARCH_EXT_NAME("fp", AArch64::AEK_FP, "+fp-armv8", "-fp-armv8")
AARCH64_ARCH_EXT_NAME("simd", AArch64::AEK_SIMD, "+neon", "-neon")
AARCH64_ARCH_EXT_NAME("fp16", AArch64::AEK_FP16, "+fullfp16", "-fullfp16")
AARCH64_ARCH_EXT_NAME("profile", AArch64::AEK_PROFILE, "+spe", "-spe")
AARCH64_ARCH_EXT_NAME("ras", AArch64::AEK_RAS, "+ras", "-ras")
AARCH64_ARCH_EXT_NAME("profile", AArch64::AEK_PROFILE, "+spe", "-spe")
AARCH64_ARCH_EXT_NAME("ras", AArch64::AEK_RAS, "+ras", "-ras")
AARCH64_ARCH_EXT_NAME("sve", AArch64::AEK_SVE, "+sve", "-sve")
#undef AARCH64_ARCH_EXT_NAME
#ifndef AARCH64_CPU_NAME

View File

@ -62,32 +62,45 @@ public:
return Error::success();
}
void setItems(ArrayRef<T> ItemArray) { Items = ItemArray; }
void setItems(ArrayRef<T> ItemArray) {
Items = ItemArray;
computeItemOffsets();
}
uint32_t getLength() override {
uint32_t Size = 0;
for (const auto &Item : Items)
Size += Traits::length(Item);
return Size;
return ItemEndOffsets.empty() ? 0 : ItemEndOffsets.back();
}
private:
Expected<uint32_t> translateOffsetIndex(uint32_t Offset) const {
void computeItemOffsets() {
ItemEndOffsets.clear();
ItemEndOffsets.reserve(Items.size());
uint32_t CurrentOffset = 0;
uint32_t CurrentIndex = 0;
for (const auto &Item : Items) {
if (CurrentOffset >= Offset)
break;
CurrentOffset += Traits::length(Item);
++CurrentIndex;
uint32_t Len = Traits::length(Item);
assert(Len > 0 && "no empty items");
CurrentOffset += Len;
ItemEndOffsets.push_back(CurrentOffset);
}
if (CurrentOffset != Offset)
}
Expected<uint32_t> translateOffsetIndex(uint32_t Offset) {
// Make sure the offset is somewhere in our items array.
if (Offset >= getLength())
return make_error<BinaryStreamError>(stream_error_code::stream_too_short);
return CurrentIndex;
++Offset;
auto Iter =
std::lower_bound(ItemEndOffsets.begin(), ItemEndOffsets.end(), Offset);
size_t Idx = std::distance(ItemEndOffsets.begin(), Iter);
assert(Idx < Items.size() && "binary search for offset failed");
return Idx;
}
llvm::support::endianness Endian;
ArrayRef<T> Items;
// Sorted vector of offsets to accelerate lookup.
std::vector<uint32_t> ItemEndOffsets;
};
} // end namespace llvm

View File

@ -125,30 +125,39 @@ inline format_object<Ts...> format(const char *Fmt, const Ts &... Vals) {
return format_object<Ts...>(Fmt, Vals...);
}
/// This is a helper class used for left_justify() and right_justify().
/// This is a helper class for left_justify, right_justify, and center_justify.
class FormattedString {
public:
enum Justification { JustifyNone, JustifyLeft, JustifyRight, JustifyCenter };
FormattedString(StringRef S, unsigned W, Justification J)
: Str(S), Width(W), Justify(J) {}
private:
StringRef Str;
unsigned Width;
bool RightJustify;
Justification Justify;
friend class raw_ostream;
public:
FormattedString(StringRef S, unsigned W, bool R)
: Str(S), Width(W), RightJustify(R) { }
};
/// left_justify - append spaces after string so total output is
/// \p Width characters. If \p Str is larger that \p Width, full string
/// is written with no padding.
inline FormattedString left_justify(StringRef Str, unsigned Width) {
return FormattedString(Str, Width, false);
return FormattedString(Str, Width, FormattedString::JustifyLeft);
}
/// right_justify - add spaces before string so total output is
/// \p Width characters. If \p Str is larger that \p Width, full string
/// is written with no padding.
inline FormattedString right_justify(StringRef Str, unsigned Width) {
return FormattedString(Str, Width, true);
return FormattedString(Str, Width, FormattedString::JustifyRight);
}
/// center_justify - add spaces before and after string so total output is
/// \p Width characters. If \p Str is larger that \p Width, full string
/// is written with no padding.
inline FormattedString center_justify(StringRef Str, unsigned Width) {
return FormattedString(Str, Width, FormattedString::JustifyCenter);
}
/// This is a helper class used for format_hex() and format_decimal().

View File

@ -41,27 +41,21 @@
namespace llvm {
template <class NodeT> class DominatorTreeBase;
template <typename NodeT, bool IsPostDom>
class DominatorTreeBase;
namespace detail {
template <typename GT> struct DominatorTreeBaseTraits {
static_assert(std::is_pointer<typename GT::NodeRef>::value,
"Currently NodeRef must be a pointer type.");
using type = DominatorTreeBase<
typename std::remove_pointer<typename GT::NodeRef>::type>;
};
} // end namespace detail
template <typename GT>
using DominatorTreeBaseByGraphTraits =
typename detail::DominatorTreeBaseTraits<GT>::type;
namespace DomTreeBuilder {
template <class DomTreeT>
struct SemiNCAInfo;
} // namespace DomTreeBuilder
/// \brief Base class for the actual dominator tree node.
template <class NodeT> class DomTreeNodeBase {
friend struct PostDominatorTree;
template <class N> friend class DominatorTreeBase;
friend class DominatorTreeBase<NodeT, false>;
friend class DominatorTreeBase<NodeT, true>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
NodeT *TheBB;
DomTreeNodeBase *IDom;
@ -192,58 +186,69 @@ void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
}
namespace DomTreeBuilder {
template <class NodeT>
struct SemiNCAInfo;
// The routines below are provided in a separate header but referenced here.
template <typename DomTreeT, typename FuncT>
void Calculate(DomTreeT &DT, FuncT &F);
// The calculate routine is provided in a separate header but referenced here.
template <class FuncT, class N>
void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<N>> &DT, FuncT &F);
template <class DomTreeT>
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To);
// The verify function is provided in a separate header but referenced here.
template <class N>
bool Verify(const DominatorTreeBaseByGraphTraits<GraphTraits<N>> &DT);
template <class DomTreeT>
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To);
template <typename DomTreeT>
bool Verify(const DomTreeT &DT);
} // namespace DomTreeBuilder
/// \brief Core dominator tree base class.
///
/// This class is a generic template over graph nodes. It is instantiated for
/// various graphs in the LLVM IR or in the code generator.
template <class NodeT> class DominatorTreeBase {
template <typename NodeT, bool IsPostDom>
class DominatorTreeBase {
protected:
std::vector<NodeT *> Roots;
bool IsPostDominators;
using DomTreeNodeMapType =
DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
DomTreeNodeMapType DomTreeNodes;
DomTreeNodeBase<NodeT> *RootNode;
using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
ParentPtr Parent = nullptr;
mutable bool DFSInfoValid = false;
mutable unsigned int SlowQueries = 0;
friend struct DomTreeBuilder::SemiNCAInfo<NodeT>;
using SNCAInfoTy = DomTreeBuilder::SemiNCAInfo<NodeT>;
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
public:
explicit DominatorTreeBase(bool isPostDom) : IsPostDominators(isPostDom) {}
static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
"Currently DominatorTreeBase supports only pointer nodes");
using NodeType = NodeT;
using NodePtr = NodeT *;
static constexpr bool IsPostDominator = IsPostDom;
DominatorTreeBase() {}
DominatorTreeBase(DominatorTreeBase &&Arg)
: Roots(std::move(Arg.Roots)),
IsPostDominators(Arg.IsPostDominators),
DomTreeNodes(std::move(Arg.DomTreeNodes)),
RootNode(std::move(Arg.RootNode)),
DFSInfoValid(std::move(Arg.DFSInfoValid)),
SlowQueries(std::move(Arg.SlowQueries)) {
RootNode(Arg.RootNode),
Parent(Arg.Parent),
DFSInfoValid(Arg.DFSInfoValid),
SlowQueries(Arg.SlowQueries) {
Arg.wipe();
}
DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
Roots = std::move(RHS.Roots);
IsPostDominators = RHS.IsPostDominators;
DomTreeNodes = std::move(RHS.DomTreeNodes);
RootNode = std::move(RHS.RootNode);
DFSInfoValid = std::move(RHS.DFSInfoValid);
SlowQueries = std::move(RHS.SlowQueries);
RootNode = RHS.RootNode;
Parent = RHS.Parent;
DFSInfoValid = RHS.DFSInfoValid;
SlowQueries = RHS.SlowQueries;
RHS.wipe();
return *this;
}
@ -259,11 +264,12 @@ template <class NodeT> class DominatorTreeBase {
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; }
bool isPostDominator() const { return IsPostDominator; }
/// compare - Return false if the other dominator tree base matches this
/// dominator tree base. Otherwise return true.
bool compare(const DominatorTreeBase &Other) const {
if (Parent != Other.Parent) return true;
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
@ -443,10 +449,50 @@ template <class NodeT> class DominatorTreeBase {
const_cast<NodeT *>(B));
}
bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
return isPostDominator() && !A->getBlock();
}
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorTree information based on modifications to
// the CFG...
/// Inform the dominator tree about a CFG edge insertion and update the tree.
///
/// This function has to be called just before or just after making the update
/// on the actual CFG. There cannot be any other updates that the dominator
/// tree doesn't know about.
///
/// Note that for postdominators it automatically takes care of inserting
/// a reverse edge internally (so there's no need to swap the parameters).
///
void insertEdge(NodeT *From, NodeT *To) {
assert(From);
assert(To);
assert(From->getParent() == Parent);
assert(To->getParent() == Parent);
DomTreeBuilder::InsertEdge(*this, From, To);
}
/// Inform the dominator tree about a CFG edge deletion and update the tree.
///
/// This function has to be called just after making the update
/// on the actual CFG. There cannot be any other updates that the dominator
/// tree doesn't know about. The only exception is when the deletion that the
/// tree is informed about makes some (domominator) subtree unreachable -- in
/// this case, it is fine to perform deletions within this subtree.
///
/// Note that for postdominators it automatically takes care of deleting
/// a reverse edge internally (so there's no need to swap the parameters).
///
void deleteEdge(NodeT *From, NodeT *To) {
assert(From);
assert(To);
assert(From->getParent() == Parent);
assert(To->getParent() == Parent);
DomTreeBuilder::DeleteEdge(*this, From, To);
}
/// Add a new node to the dominator tree information.
///
/// This creates a new node as a child of DomBB dominator node, linking it
@ -530,7 +576,7 @@ template <class NodeT> class DominatorTreeBase {
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
void splitBlock(NodeT *NewBB) {
if (this->IsPostDominators)
if (IsPostDominator)
Split<Inverse<NodeT *>>(NewBB);
else
Split<NodeT *>(NewBB);
@ -607,37 +653,33 @@ public:
template <class FT> void recalculate(FT &F) {
using TraitsTy = GraphTraits<FT *>;
reset();
Parent = &F;
if (!this->IsPostDominators) {
if (!IsPostDominator) {
// Initialize root
NodeT *entry = TraitsTy::getEntryNode(&F);
addRoot(entry);
DomTreeBuilder::Calculate<FT, NodeT *>(*this, F);
} else {
// Initialize the roots list
for (auto *Node : nodes(&F))
if (TraitsTy::child_begin(Node) == TraitsTy::child_end(Node))
addRoot(Node);
DomTreeBuilder::Calculate<FT, Inverse<NodeT *>>(*this, F);
}
DomTreeBuilder::Calculate(*this, F);
}
/// verify - check parent and sibling property
bool verify() const {
return this->isPostDominator()
? DomTreeBuilder::Verify<Inverse<NodeT *>>(*this)
: DomTreeBuilder::Verify<NodeT *>(*this);
}
bool verify() const { return DomTreeBuilder::Verify(*this); }
protected:
void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
void reset() {
DomTreeNodes.clear();
this->Roots.clear();
Roots.clear();
RootNode = nullptr;
Parent = nullptr;
DFSInfoValid = false;
SlowQueries = 0;
}
@ -719,13 +761,21 @@ public:
void wipe() {
DomTreeNodes.clear();
RootNode = nullptr;
Parent = nullptr;
}
};
template <typename T>
using DomTreeBase = DominatorTreeBase<T, false>;
template <typename T>
using PostDomTreeBase = DominatorTreeBase<T, true>;
// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template <class NodeT>
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
template <typename NodeT, bool IsPostDom>
bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
const NodeT *B) const {
if (A == B)
return true;
@ -735,9 +785,9 @@ bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
template <class NodeT>
bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
const NodeT *B) const {
template <typename NodeT, bool IsPostDom>
bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
const NodeT *A, const NodeT *B) const {
if (A == B)
return false;

View File

@ -20,15 +20,28 @@
/// out that the theoretically slower O(n*log(n)) implementation is actually
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
///
/// The file uses the Depth Based Search algorithm to perform incremental
/// upates (insertion and deletions). The implemented algorithm is based on this
/// publication:
///
/// An Experimental Study of Dynamic Dominators
/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
/// https://arxiv.org/pdf/1604.02711.pdf
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#include <queue>
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"
#define DEBUG_TYPE "dom-tree-builder"
namespace llvm {
namespace DomTreeBuilder {
@ -46,13 +59,14 @@ struct ChildrenGetter<NodePtr, true> {
}
};
// Information record used by Semi-NCA during tree construction.
template <typename NodeT>
template <typename DomTreeT>
struct SemiNCAInfo {
using NodePtr = NodeT *;
using DomTreeT = DominatorTreeBase<NodeT>;
using NodePtr = typename DomTreeT::NodePtr;
using NodeT = typename DomTreeT::NodeType;
using TreeNodePtr = DomTreeNodeBase<NodeT> *;
static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
// Information record used by Semi-NCA during tree construction.
struct InfoRec {
unsigned DFSNum = 0;
unsigned Parent = 0;
@ -62,11 +76,13 @@ struct SemiNCAInfo {
SmallVector<NodePtr, 2> ReverseChildren;
};
std::vector<NodePtr> NumToNode;
// Number to node mapping is 1-based. Initialize the mapping to start with
// a dummy element.
std::vector<NodePtr> NumToNode = {nullptr};
DenseMap<NodePtr, InfoRec> NodeToInfo;
void clear() {
NumToNode.clear();
NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
NodeToInfo.clear();
}
@ -90,12 +106,28 @@ struct SemiNCAInfo {
// Add a new tree node for this NodeT, and link it as a child of
// IDomNode
return (DT.DomTreeNodes[BB] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
.get();
}
static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
struct BlockNamePrinter {
NodePtr N;
BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
if (!BP.N)
O << "nullptr";
else
BP.N->printAsOperand(O, false);
return O;
}
};
// Custom DFS implementation which can skip nodes based on a provided
// predicate. It also collects ReverseChildren so that we don't have to spend
// time getting predecessors in SemiNCA.
@ -177,44 +209,42 @@ struct SemiNCAInfo {
return VInInfo.Label;
}
template <typename NodeType>
void runSemiNCA(DomTreeT &DT, unsigned NumBlocks) {
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
const unsigned N = doFullDFSWalk(DT, AlwaysDescend);
// It might be that some blocks did not get a DFS number (e.g., blocks of
// infinite loops). In these cases an artificial exit node is required.
const bool MultipleRoots =
DT.Roots.size() > 1 || (DT.isPostDominator() && N != NumBlocks);
// This function requires DFS to be run before calling it.
void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
const unsigned NextDFSNum(NumToNode.size());
// Initialize IDoms to spanning tree parents.
for (unsigned i = 1; i <= N; ++i) {
for (unsigned i = 1; i < NextDFSNum; ++i) {
const NodePtr V = NumToNode[i];
auto &VInfo = NodeToInfo[V];
VInfo.IDom = NumToNode[VInfo.Parent];
}
// Step #2: Calculate the semidominators of all vertices.
for (unsigned i = N; i >= 2; --i) {
// Step #1: Calculate the semidominators of all vertices.
for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
NodePtr W = NumToNode[i];
auto &WInfo = NodeToInfo[W];
// Initialize the semi dominator to point to the parent node.
WInfo.Semi = WInfo.Parent;
for (const auto &N : WInfo.ReverseChildren)
if (NodeToInfo.count(N)) { // Only if this predecessor is reachable!
unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
for (const auto &N : WInfo.ReverseChildren) {
if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
continue;
const TreeNodePtr TN = DT.getNode(N);
// Skip predecessors whose level is above the subtree we are processing.
if (TN && TN->getLevel() < MinLevel)
continue;
unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
}
}
// Step #3: Explicitly define the immediate dominator of each vertex.
// Step #2: Explicitly define the immediate dominator of each vertex.
// IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
// Note that the parents were stored in IDoms and later got invalidated
// during path compression in Eval.
for (unsigned i = 2; i <= N; ++i) {
for (unsigned i = 2; i < NextDFSNum; ++i) {
const NodePtr W = NumToNode[i];
auto &WInfo = NodeToInfo[W];
const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
@ -224,46 +254,11 @@ struct SemiNCAInfo {
WInfo.IDom = WIDomCandidate;
}
if (DT.Roots.empty()) return;
// Add a node for the root. This node might be the actual root, if there is
// one exit block, or it may be the virtual exit (denoted by
// (BasicBlock *)0) which postdominates all real exits if there are multiple
// exit blocks, or an infinite loop.
NodePtr Root = !MultipleRoots ? DT.Roots[0] : nullptr;
DT.RootNode =
(DT.DomTreeNodes[Root] =
llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
.get();
// Loop over all of the reachable blocks in the function...
for (unsigned i = 2; i <= N; ++i) {
NodePtr W = NumToNode[i];
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W])
continue; // Haven't calculated this node yet?
NodePtr ImmDom = getIDom(W);
assert(ImmDom || DT.DomTreeNodes[nullptr]);
// Get or calculate the node for the immediate dominator
TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DT.DomTreeNodes[W] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
}
}
template <typename DescendCondition>
unsigned doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
unsigned Num = 0;
NumToNode.push_back(nullptr);
if (DT.Roots.size() > 1) {
auto &BBInfo = NodeToInfo[nullptr];
@ -283,11 +278,257 @@ struct SemiNCAInfo {
return Num;
}
static void PrintBlockOrNullptr(raw_ostream &O, NodePtr Obj) {
if (!Obj)
O << "nullptr";
void calculateFromScratch(DomTreeT &DT, const unsigned NumBlocks) {
// Step #0: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
const unsigned LastDFSNum = doFullDFSWalk(DT, AlwaysDescend);
runSemiNCA(DT);
if (DT.Roots.empty()) return;
// Add a node for the root. This node might be the actual root, if there is
// one exit block, or it may be the virtual exit (denoted by
// (BasicBlock *)0) which postdominates all real exits if there are multiple
// exit blocks, or an infinite loop.
// It might be that some blocks did not get a DFS number (e.g., blocks of
// infinite loops). In these cases an artificial exit node is required.
const bool MultipleRoots = DT.Roots.size() > 1 || (DT.isPostDominator() &&
LastDFSNum != NumBlocks);
NodePtr Root = !MultipleRoots ? DT.Roots[0] : nullptr;
DT.RootNode = (DT.DomTreeNodes[Root] =
llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
.get();
attachNewSubtree(DT, DT.RootNode);
}
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
// Attach the first unreachable block to AttachTo.
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
// Loop over all of the discovered blocks in the function...
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
NodePtr W = NumToNode[i];
DEBUG(dbgs() << "\tdiscovered a new reachable node "
<< BlockNamePrinter(W) << "\n");
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
NodePtr ImmDom = getIDom(W);
// Get or calculate the node for the immediate dominator
TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DT.DomTreeNodes[W] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
}
}
void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
const NodePtr N = NumToNode[i];
const TreeNodePtr TN = DT.getNode(N);
assert(TN);
const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
TN->setIDom(NewIDom);
}
}
// Helper struct used during edge insertions.
struct InsertionInfo {
using BucketElementTy = std::pair<unsigned, TreeNodePtr>;
struct DecreasingLevel {
bool operator()(const BucketElementTy &First,
const BucketElementTy &Second) const {
return First.first > Second.first;
}
};
std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>,
DecreasingLevel>
Bucket; // Queue of tree nodes sorted by level in descending order.
SmallDenseSet<TreeNodePtr, 8> Affected;
SmallDenseSet<TreeNodePtr, 8> Visited;
SmallVector<TreeNodePtr, 8> AffectedQueue;
SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue;
};
static void InsertEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) {
assert(From && To && "Cannot connect nullptrs");
DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
<< BlockNamePrinter(To) << "\n");
const TreeNodePtr FromTN = DT.getNode(From);
// Ignore edges from unreachable nodes.
if (!FromTN) return;
DT.DFSInfoValid = false;
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN)
InsertUnreachable(DT, FromTN, To);
else
Obj->printAsOperand(O, false);
InsertReachable(DT, FromTN, ToTN);
}
// Handles insertion to a node already in the dominator tree.
static void InsertReachable(DomTreeT &DT, const TreeNodePtr From,
const TreeNodePtr To) {
DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
<< " -> " << BlockNamePrinter(To->getBlock()) << "\n");
const NodePtr NCDBlock =
DT.findNearestCommonDominator(From->getBlock(), To->getBlock());
assert(NCDBlock || DT.isPostDominator());
const TreeNodePtr NCD = DT.getNode(NCDBlock);
assert(NCD);
DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
const TreeNodePtr ToIDom = To->getIDom();
// Nothing affected -- NCA property holds.
// (Based on the lemma 2.5 from the second paper.)
if (NCD == To || NCD == ToIDom) return;
// Identify and collect affected nodes.
InsertionInfo II;
DEBUG(dbgs() << "Marking " << BlockNamePrinter(To) << " as affected\n");
II.Affected.insert(To);
const unsigned ToLevel = To->getLevel();
DEBUG(dbgs() << "Putting " << BlockNamePrinter(To) << " into a Bucket\n");
II.Bucket.push({ToLevel, To});
while (!II.Bucket.empty()) {
const TreeNodePtr CurrentNode = II.Bucket.top().second;
II.Bucket.pop();
DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: "
<< BlockNamePrinter(CurrentNode) << "\n");
II.Visited.insert(CurrentNode);
II.AffectedQueue.push_back(CurrentNode);
// Discover and collect affected successors of the current node.
VisitInsertion(DT, CurrentNode, CurrentNode->getLevel(), NCD, II);
}
// Finish by updating immediate dominators and levels.
UpdateInsertion(DT, NCD, II);
}
// Visits an affected node and collect its affected successors.
static void VisitInsertion(DomTreeT &DT, const TreeNodePtr TN,
const unsigned RootLevel, const TreeNodePtr NCD,
InsertionInfo &II) {
const unsigned NCDLevel = NCD->getLevel();
DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << "\n");
assert(TN->getBlock());
for (const NodePtr Succ :
ChildrenGetter<NodePtr, IsPostDom>::Get(TN->getBlock())) {
const TreeNodePtr SuccTN = DT.getNode(Succ);
assert(SuccTN && "Unreachable successor found at reachable insertion");
const unsigned SuccLevel = SuccTN->getLevel();
DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
<< ", level = " << SuccLevel << "\n");
// Succ dominated by subtree From -- not affected.
// (Based on the lemma 2.5 from the second paper.)
if (SuccLevel > RootLevel) {
DEBUG(dbgs() << "\t\tDominated by subtree From\n");
if (II.Visited.count(SuccTN) != 0) continue;
DEBUG(dbgs() << "\t\tMarking visited not affected "
<< BlockNamePrinter(Succ) << "\n");
II.Visited.insert(SuccTN);
II.VisitedNotAffectedQueue.push_back(SuccTN);
VisitInsertion(DT, SuccTN, RootLevel, NCD, II);
} else if ((SuccLevel > NCDLevel + 1) && II.Affected.count(SuccTN) == 0) {
DEBUG(dbgs() << "\t\tMarking affected and adding "
<< BlockNamePrinter(Succ) << " to a Bucket\n");
II.Affected.insert(SuccTN);
II.Bucket.push({SuccLevel, SuccTN});
}
}
}
// Updates immediate dominators and levels after insertion.
static void UpdateInsertion(DomTreeT &DT, const TreeNodePtr NCD,
InsertionInfo &II) {
DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
for (const TreeNodePtr TN : II.AffectedQueue) {
DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
<< ") = " << BlockNamePrinter(NCD) << "\n");
TN->setIDom(NCD);
}
UpdateLevelsAfterInsertion(II);
}
static void UpdateLevelsAfterInsertion(InsertionInfo &II) {
DEBUG(dbgs() << "Updating levels for visited but not affected nodes\n");
for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) {
DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = ("
<< BlockNamePrinter(TN->getIDom()) << ") "
<< TN->getIDom()->getLevel() << " + 1\n");
TN->UpdateLevel();
}
}
// Handles insertion to previously unreachable nodes.
static void InsertUnreachable(DomTreeT &DT, const TreeNodePtr From,
const NodePtr To) {
DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
<< " -> (unreachable) " << BlockNamePrinter(To) << "\n");
// Collect discovered edges to already reachable nodes.
SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
// Discover and connect nodes that became reachable with the insertion.
ComputeUnreachableDominators(DT, To, From, DiscoveredEdgesToReachable);
DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
<< " -> (prev unreachable) " << BlockNamePrinter(To) << "\n");
DEBUG(DT.print(dbgs()));
// Used the discovered edges and inset discovered connecting (incoming)
// edges.
for (const auto &Edge : DiscoveredEdgesToReachable) {
DEBUG(dbgs() << "\tInserting discovered connecting edge "
<< BlockNamePrinter(Edge.first) << " -> "
<< BlockNamePrinter(Edge.second) << "\n");
InsertReachable(DT, DT.getNode(Edge.first), Edge.second);
}
}
// Connects nodes that become reachable with an insertion.
static void ComputeUnreachableDominators(
DomTreeT &DT, const NodePtr Root, const TreeNodePtr Incoming,
SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
&DiscoveredConnectingEdges) {
assert(!DT.getNode(Root) && "Root must not be reachable");
// Visit only previously unreachable nodes.
auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
NodePtr To) {
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN) return true;
DiscoveredConnectingEdges.push_back({From, ToTN});
return false;
};
SemiNCAInfo SNCA;
SNCA.runDFS<IsPostDom>(Root, 0, UnreachableDescender, 0);
SNCA.runSemiNCA(DT);
SNCA.attachNewSubtree(DT, Incoming);
DEBUG(dbgs() << "After adding unreachable nodes\n");
DEBUG(DT.print(dbgs()));
}
// Checks if the tree contains all reachable nodes in the input graph.
@ -298,12 +539,23 @@ struct SemiNCAInfo {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
if (!BB) continue;
// Virtual root has a corresponding virtual CFG node.
if (DT.isVirtualRoot(TN)) continue;
if (NodeToInfo.count(BB) == 0) {
errs() << "DomTree node ";
PrintBlockOrNullptr(errs(), BB);
errs() << " not found by DFS walk!\n";
errs() << "DomTree node " << BlockNamePrinter(BB)
<< " not found by DFS walk!\n";
errs().flush();
return false;
}
}
for (const NodePtr N : NumToNode) {
if (N && !DT.getNode(N)) {
errs() << "CFG node " << BlockNamePrinter(N)
<< " not found in the DomTree!\n";
errs().flush();
return false;
@ -313,6 +565,215 @@ struct SemiNCAInfo {
return true;
}
static void DeleteEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) {
assert(From && To && "Cannot disconnect nullptrs");
DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
<< BlockNamePrinter(To) << "\n");
#ifndef NDEBUG
// Ensure that the edge was in fact deleted from the CFG before informing
// the DomTree about it.
// The check is O(N), so run it only in debug configuration.
auto IsSuccessor = [](const NodePtr SuccCandidate, const NodePtr Of) {
auto Successors = ChildrenGetter<NodePtr, IsPostDom>::Get(Of);
return llvm::find(Successors, SuccCandidate) != Successors.end();
};
(void)IsSuccessor;
assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
#endif
const TreeNodePtr FromTN = DT.getNode(From);
// Deletion in an unreachable subtree -- nothing to do.
if (!FromTN) return;
const TreeNodePtr ToTN = DT.getNode(To);
assert(ToTN && "To already unreachable -- there is no edge to delete");
const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
const TreeNodePtr NCD = DT.getNode(NCDBlock);
// To dominates From -- nothing to do.
if (ToTN == NCD) return;
const TreeNodePtr ToIDom = ToTN->getIDom();
DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
<< BlockNamePrinter(ToIDom) << "\n");
// To remains reachable after deletion.
// (Based on the caption under Figure 4. from the second paper.)
if (FromTN != ToIDom || HasProperSupport(DT, ToTN))
DeleteReachable(DT, FromTN, ToTN);
else
DeleteUnreachable(DT, ToTN);
}
// Handles deletions that leave destination nodes reachable.
static void DeleteReachable(DomTreeT &DT, const TreeNodePtr FromTN,
const TreeNodePtr ToTN) {
DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) << " -> "
<< BlockNamePrinter(ToTN) << "\n");
DEBUG(dbgs() << "\tRebuilding subtree\n");
// Find the top of the subtree that needs to be rebuilt.
// (Based on the lemma 2.6 from the second paper.)
const NodePtr ToIDom =
DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
assert(ToIDom || DT.isPostDominator());
const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
assert(ToIDomTN);
const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
// Top of the subtree to rebuild is the root node. Rebuild the tree from
// scratch.
if (!PrevIDomSubTree) {
DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
DT.recalculate(*DT.Parent);
return;
}
// Only visit nodes in the subtree starting at To.
const unsigned Level = ToIDomTN->getLevel();
auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
return DT.getNode(To)->getLevel() > Level;
};
DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) << "\n");
SemiNCAInfo SNCA;
SNCA.runDFS<IsPostDom>(ToIDom, 0, DescendBelow, 0);
DEBUG(dbgs() << "\tRunning Semi-NCA\n");
SNCA.runSemiNCA(DT, Level);
SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
}
// Checks if a node has proper support, as defined on the page 3 and later
// explained on the page 7 of the second paper.
static bool HasProperSupport(DomTreeT &DT, const TreeNodePtr TN) {
DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) << "\n");
for (const NodePtr Pred :
ChildrenGetter<NodePtr, !IsPostDom>::Get(TN->getBlock())) {
DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
if (!DT.getNode(Pred)) continue;
const NodePtr Support =
DT.findNearestCommonDominator(TN->getBlock(), Pred);
DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
if (Support != TN->getBlock()) {
DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
<< " is reachable from support "
<< BlockNamePrinter(Support) << "\n");
return true;
}
}
return false;
}
// Handle deletions that make destination node unreachable.
// (Based on the lemma 2.7 from the second paper.)
static void DeleteUnreachable(DomTreeT &DT, const TreeNodePtr ToTN) {
DEBUG(dbgs() << "Deleting unreachable subtree " << BlockNamePrinter(ToTN)
<< "\n");
assert(ToTN);
assert(ToTN->getBlock());
SmallVector<NodePtr, 16> AffectedQueue;
const unsigned Level = ToTN->getLevel();
// Traverse destination node's descendants with greater level in the tree
// and collect visited nodes.
auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
const TreeNodePtr TN = DT.getNode(To);
assert(TN);
if (TN->getLevel() > Level) return true;
if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
AffectedQueue.push_back(To);
return false;
};
SemiNCAInfo SNCA;
unsigned LastDFSNum =
SNCA.runDFS<IsPostDom>(ToTN->getBlock(), 0, DescendAndCollect, 0);
TreeNodePtr MinNode = ToTN;
// Identify the top of the subtree to rebuilt by finding the NCD of all
// the affected nodes.
for (const NodePtr N : AffectedQueue) {
const TreeNodePtr TN = DT.getNode(N);
const NodePtr NCDBlock =
DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
assert(NCDBlock || DT.isPostDominator());
const TreeNodePtr NCD = DT.getNode(NCDBlock);
assert(NCD);
DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
<< " with NCD = " << BlockNamePrinter(NCD)
<< ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
}
// Root reached, rebuild the whole tree from scratch.
if (!MinNode->getIDom()) {
DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
DT.recalculate(*DT.Parent);
return;
}
// Erase the unreachable subtree in reverse preorder to process all children
// before deleting their parent.
for (unsigned i = LastDFSNum; i > 0; --i) {
const NodePtr N = SNCA.NumToNode[i];
const TreeNodePtr TN = DT.getNode(N);
DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
EraseNode(DT, TN);
}
// The affected subtree start at the To node -- there's no extra work to do.
if (MinNode == ToTN) return;
DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
<< BlockNamePrinter(MinNode) << "\n");
const unsigned MinLevel = MinNode->getLevel();
const TreeNodePtr PrevIDom = MinNode->getIDom();
assert(PrevIDom);
SNCA.clear();
// Identify nodes that remain in the affected subtree.
auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
const TreeNodePtr ToTN = DT.getNode(To);
return ToTN && ToTN->getLevel() > MinLevel;
};
SNCA.runDFS<IsPostDom>(MinNode->getBlock(), 0, DescendBelow, 0);
DEBUG(dbgs() << "Previous IDom(MinNode) = " << BlockNamePrinter(PrevIDom)
<< "\nRunning Semi-NCA\n");
// Rebuild the remaining part of affected subtree.
SNCA.runSemiNCA(DT, MinLevel);
SNCA.reattachExistingSubtree(DT, PrevIDom);
}
// Removes leaf tree nodes from the dominator tree.
static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
assert(TN);
assert(TN->getNumChildren() == 0 && "Not a tree leaf");
const TreeNodePtr IDom = TN->getIDom();
assert(IDom);
auto ChIt = llvm::find(IDom->Children, TN);
assert(ChIt != IDom->Children.end());
std::swap(*ChIt, IDom->Children.back());
IDom->Children.pop_back();
DT.DomTreeNodes.erase(TN->getBlock());
}
//~~
//===--------------- DomTree correctness verification ---------------------===
//~~
// Check if for every parent with a level L in the tree all of its children
// have level L + 1.
static bool VerifyLevels(const DomTreeT &DT) {
@ -323,20 +784,18 @@ struct SemiNCAInfo {
const TreeNodePtr IDom = TN->getIDom();
if (!IDom && TN->getLevel() != 0) {
errs() << "Node without an IDom ";
PrintBlockOrNullptr(errs(), BB);
errs() << " has a nonzero level " << TN->getLevel() << "!\n";
errs() << "Node without an IDom " << BlockNamePrinter(BB)
<< " has a nonzero level " << TN->getLevel() << "!\n";
errs().flush();
return false;
}
if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
errs() << "Node ";
PrintBlockOrNullptr(errs(), BB);
errs() << " has level " << TN->getLevel() << " while it's IDom ";
PrintBlockOrNullptr(errs(), IDom->getBlock());
errs() << " has level " << IDom->getLevel() << "!\n";
errs() << "Node " << BlockNamePrinter(BB) << " has level "
<< TN->getLevel() << " while its IDom "
<< BlockNamePrinter(IDom->getBlock()) << " has level "
<< IDom->getLevel() << "!\n";
errs().flush();
return false;
@ -363,18 +822,14 @@ struct SemiNCAInfo {
assert(ToTN);
const NodePtr NCD = DT.findNearestCommonDominator(From, To);
const TreeNodePtr NCDTN = NCD ? DT.getNode(NCD) : nullptr;
const TreeNodePtr NCDTN = DT.getNode(NCD);
const TreeNodePtr ToIDom = ToTN->getIDom();
if (NCDTN != ToTN && NCDTN != ToIDom) {
errs() << "NearestCommonDominator verification failed:\n\tNCD(From:";
PrintBlockOrNullptr(errs(), From);
errs() << ", To:";
PrintBlockOrNullptr(errs(), To);
errs() << ") = ";
PrintBlockOrNullptr(errs(), NCD);
errs() << ",\t (should be To or IDom[To]: ";
PrintBlockOrNullptr(errs(), ToIDom ? ToIDom->getBlock() : nullptr);
errs() << ")\n";
errs() << "NearestCommonDominator verification failed:\n\tNCD(From:"
<< BlockNamePrinter(From) << ", To:" << BlockNamePrinter(To)
<< ") = " << BlockNamePrinter(NCD)
<< ",\t (should be To or IDom[To]: " << BlockNamePrinter(ToIDom)
<< ")\n";
errs().flush();
return false;
@ -440,11 +895,9 @@ struct SemiNCAInfo {
for (TreeNodePtr Child : TN->getChildren())
if (NodeToInfo.count(Child->getBlock()) != 0) {
errs() << "Child ";
PrintBlockOrNullptr(errs(), Child->getBlock());
errs() << " reachable after its parent ";
PrintBlockOrNullptr(errs(), BB);
errs() << " is removed!\n";
errs() << "Child " << BlockNamePrinter(Child)
<< " reachable after its parent " << BlockNamePrinter(BB)
<< " is removed!\n";
errs().flush();
return false;
@ -477,11 +930,9 @@ struct SemiNCAInfo {
if (S == N) continue;
if (NodeToInfo.count(S->getBlock()) == 0) {
errs() << "Node ";
PrintBlockOrNullptr(errs(), S->getBlock());
errs() << " not reachable when its sibling ";
PrintBlockOrNullptr(errs(), N->getBlock());
errs() << " is removed!\n";
errs() << "Node " << BlockNamePrinter(S)
<< " not reachable when its sibling " << BlockNamePrinter(N)
<< " is removed!\n";
errs().flush();
return false;
@ -494,23 +945,30 @@ struct SemiNCAInfo {
}
};
template <class FuncT, class NodeT>
void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
FuncT &F) {
using NodePtr = typename GraphTraits<NodeT>::NodeRef;
static_assert(std::is_pointer<NodePtr>::value,
"NodePtr should be a pointer type");
SemiNCAInfo<typename std::remove_pointer<NodePtr>::type> SNCA;
SNCA.template runSemiNCA<NodeT>(DT, GraphTraits<FuncT *>::size(&F));
template <class DomTreeT, class FuncT>
void Calculate(DomTreeT &DT, FuncT &F) {
SemiNCAInfo<DomTreeT> SNCA;
SNCA.calculateFromScratch(DT, GraphTraits<FuncT *>::size(&F));
}
template <class NodeT>
bool Verify(const DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT) {
using NodePtr = typename GraphTraits<NodeT>::NodeRef;
static_assert(std::is_pointer<NodePtr>::value,
"NodePtr should be a pointer type");
SemiNCAInfo<typename std::remove_pointer<NodePtr>::type> SNCA;
template <class DomTreeT>
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To) {
if (DT.isPostDominator()) std::swap(From, To);
SemiNCAInfo<DomTreeT>::InsertEdge(DT, From, To);
}
template <class DomTreeT>
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To) {
if (DT.isPostDominator()) std::swap(From, To);
SemiNCAInfo<DomTreeT>::DeleteEdge(DT, From, To);
}
template <class DomTreeT>
bool Verify(const DomTreeT &DT) {
SemiNCAInfo<DomTreeT> SNCA;
return SNCA.verifyReachability(DT) && SNCA.VerifyLevels(DT) &&
SNCA.verifyNCD(DT) && SNCA.verifyParentProperty(DT) &&
SNCA.verifySiblingProperty(DT);
@ -519,4 +977,6 @@ bool Verify(const DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT) {
} // namespace DomTreeBuilder
} // namespace llvm
#undef DEBUG_TYPE
#endif

View File

@ -85,6 +85,7 @@ enum ArchExtKind : unsigned {
AEK_DSP = 0x400,
AEK_FP16 = 0x800,
AEK_RAS = 0x1000,
AEK_SVE = 0x2000,
// Unsupported extensions.
AEK_OS = 0x8000000,
AEK_IWMMXT = 0x10000000,
@ -166,7 +167,8 @@ enum ArchExtKind : unsigned {
AEK_FP16 = 0x20,
AEK_PROFILE = 0x40,
AEK_RAS = 0x80,
AEK_LSE = 0x100
AEK_LSE = 0x100,
AEK_SVE = 0x200
};
StringRef getCanonicalArchName(StringRef Arch);

View File

@ -1114,6 +1114,10 @@ public:
void *Ctxt = nullptr,
SourceMgr::DiagHandlerTy DiagHandler = nullptr,
void *DiagHandlerCtxt = nullptr);
Input(MemoryBufferRef Input,
void *Ctxt = nullptr,
SourceMgr::DiagHandlerTy DiagHandler = nullptr,
void *DiagHandlerCtxt = nullptr);
~Input() override;
// Check if there was an syntax or semantic error during parsing.

View File

@ -58,6 +58,7 @@ def : GINodeEquiv<G_SITOFP, sint_to_fp>;
def : GINodeEquiv<G_UITOFP, uint_to_fp>;
def : GINodeEquiv<G_FADD, fadd>;
def : GINodeEquiv<G_FSUB, fsub>;
def : GINodeEquiv<G_FMA, fma>;
def : GINodeEquiv<G_FMUL, fmul>;
def : GINodeEquiv<G_FDIV, fdiv>;
def : GINodeEquiv<G_FREM, frem>;

View File

@ -2012,6 +2012,35 @@ public:
return isExtFreeImpl(I);
}
/// Return true if \p Load and \p Ext can form an ExtLoad.
/// For example, in AArch64
/// %L = load i8, i8* %ptr
/// %E = zext i8 %L to i32
/// can be lowered into one load instruction
/// ldrb w0, [x0]
bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
const DataLayout &DL) const {
EVT VT = getValueType(DL, Ext->getType());
EVT LoadVT = getValueType(DL, Load->getType());
// If the load has other users and the truncate is not free, the ext
// probably isn't free.
if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
!isTruncateFree(Ext->getType(), Load->getType()))
return false;
// Check whether the target supports casts folded into loads.
unsigned LType;
if (isa<ZExtInst>(Ext))
LType = ISD::ZEXTLOAD;
else {
assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
LType = ISD::SEXTLOAD;
}
return isLoadExtLegal(LType, VT, LoadVT);
}
/// Return true if any actual instruction that defines a value of type FromTy
/// implicitly zero-extends the value to ToTy in the result register.
///

View File

@ -0,0 +1,24 @@
//===- DlltoolDriver.h - dlltool.exe-compatible driver ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Defines an interface to a dlltool.exe-compatible driver.
// Used by llvm-dlltool.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLDRIVERS_LLVM_DLLTOOL_DLLTOOLDRIVER_H
#define LLVM_TOOLDRIVERS_LLVM_DLLTOOL_DLLTOOLDRIVER_H
namespace llvm {
template <typename T> class ArrayRef;
int dlltoolDriverMain(ArrayRef<const char *> ArgsArr);
} // namespace llvm
#endif

View File

@ -433,7 +433,7 @@ LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
if (Visited.insert(C).second)
Worklist.push_back(C);
LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) {
auto VisitRef = [&](Function &Referee) {
Node &RefereeN = *G.lookup(Referee);
Edge *E = N->lookup(RefereeN);
// FIXME: Similarly to new calls, we also currently preclude
@ -444,7 +444,12 @@ LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
RetainedEdges.insert(&RefereeN);
if (E->isCall())
DemotedCallTargets.insert(&RefereeN);
});
};
LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
// Include synthetic reference edges to known, defined lib functions.
for (auto *F : G.getLibFunctions())
VisitRef(*F);
// First remove all of the edges that are no longer present in this function.
// We have to build a list of dead targets first and then remove them as the

View File

@ -14,7 +14,8 @@
using namespace llvm;
namespace llvm {
template class DominanceFrontierBase<BasicBlock>;
template class DominanceFrontierBase<BasicBlock, false>;
template class DominanceFrontierBase<BasicBlock, true>;
template class ForwardDominanceFrontierBase<BasicBlock>;
}

View File

@ -26,7 +26,6 @@ using namespace llvm;
STATISTIC(TotalInsts , "Number of instructions (of all types)");
STATISTIC(TotalBlocks, "Number of basic blocks");
STATISTIC(TotalFuncs , "Number of non-external functions");
STATISTIC(TotalMemInst, "Number of memory instructions");
#define HANDLE_INST(N, OPCODE, CLASS) \
STATISTIC(Num ## OPCODE ## Inst, "Number of " #OPCODE " insts");
@ -75,13 +74,6 @@ FunctionPass *llvm::createInstCountPass() { return new InstCount(); }
// function.
//
bool InstCount::runOnFunction(Function &F) {
unsigned StartMemInsts =
NumGetElementPtrInst + NumLoadInst + NumStoreInst + NumCallInst +
NumInvokeInst + NumAllocaInst;
visit(F);
unsigned EndMemInsts =
NumGetElementPtrInst + NumLoadInst + NumStoreInst + NumCallInst +
NumInvokeInst + NumAllocaInst;
TotalMemInst += EndMemInsts-StartMemInsts;
return false;
}

View File

@ -1745,14 +1745,11 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
return Constant::getNullValue(Op0->getType());
// (A | ?) & A = A
Value *A = nullptr, *B = nullptr;
if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
return Op1;
// A & (A | ?) = A
if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0))
if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
return Op0;
// A mask that only clears known zeros of a shifted value is a no-op.
@ -1852,26 +1849,22 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
return Constant::getAllOnesValue(Op0->getType());
// (A & ?) | A = A
Value *A = nullptr, *B = nullptr;
if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
return Op1;
// A | (A & ?) = A
if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0))
if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
return Op0;
// ~(A & ?) | A = -1
if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
(A == Op1 || B == Op1))
if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
return Constant::getAllOnesValue(Op1->getType());
// A | ~(A & ?) = -1
if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
(A == Op0 || B == Op0))
if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
return Constant::getAllOnesValue(Op0->getType());
Value *A, *B;
// (A & ~B) | (A ^ B) -> (A ^ B)
// (~B & A) | (A ^ B) -> (A ^ B)
// (A & ~B) | (B ^ A) -> (B ^ A)

Some files were not shown because too many files have changed in this diff Show More