Fix a 20+ year bug by using an appropriate constant for
the transition from one asymptotic approximation to another for the zeroth order Bessel and Neumann functions. Reviewed by: bde
This commit is contained in:
parent
26f0f92fa2
commit
668986107d
@ -62,7 +62,7 @@ __ieee754_j0f(float x)
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
|
||||
if(ix>0x54000000) z = (invsqrtpi*cc)/sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
|
||||
@ -136,7 +136,7 @@ __ieee754_y0f(float x)
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
|
||||
if(ix>0x54800000) z = (invsqrtpi*ss)/sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
|
||||
|
Loading…
Reference in New Issue
Block a user