Add a macro nan_mix() and use it to get NaN results that are (bitwise)
independent of the precision in most cases. This is mainly to simplify checking for errors. r176266 did this for e_pow[f].c using a less refined expression that often didn't work. r176276 fixes an error in the log message for r176266. The main refinement is to always expand to long double precision. See old log messages (especially these 2) and the comment on the macro for more general details. Specific details: - using nan_mix() consistently for the new and old pow*() functions was the only thing needed to make my consistency test for powl() vs pow() pass on amd64. - catrig[fl].c already had all the refinements, but open-coded. - e_atan2[fl].c, e_fmod[fl].c and s_remquo[fl] only had primitive NaN mixing. - e_hypot[fl].c already had a different refined version of r176266. Refine this further. nan_mix() is not directly usable here since we want to clear the sign bit. - e_remainder[f].c already had an earlier version of r176266. - s_ccosh[f].c,/s_csinh[f].c already had a version equivalent to r176266. Refine this further. nan_mix() is not directly usable here since the expression has to handle some non-NaN cases. - s_csqrt.[fl]: the mixing was special and mostly wrong. Partially fix the special version. - s_ctanh[f].c already had a version of r176266.
This commit is contained in:
parent
15430057b3
commit
6f1b8a0792
@ -182,7 +182,7 @@ powl(long double x, long double y)
|
||||
|| (iy > 0x7fff0000)
|
||||
|| ((iy == 0x7fff0000)
|
||||
&& ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
|
||||
return x + y;
|
||||
return nan_mix(x, y);
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
|
@ -216,9 +216,9 @@ if( x == 1.0L )
|
||||
return( 1.0L );
|
||||
|
||||
if( isnan(x) )
|
||||
return( x );
|
||||
return ( nan_mix(x, y) );
|
||||
if( isnan(y) )
|
||||
return( y );
|
||||
return ( nan_mix(x, y) );
|
||||
|
||||
if( y == 1.0L )
|
||||
return( x );
|
||||
|
@ -300,7 +300,7 @@ casinh(double complex z)
|
||||
* C99 leaves it optional whether to raise invalid if one of
|
||||
* the arguments is not NaN, so we opt not to raise it.
|
||||
*/
|
||||
return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
||||
@ -384,7 +384,7 @@ cacos(double complex z)
|
||||
* C99 leaves it optional whether to raise invalid if one of
|
||||
* the arguments is not NaN, so we opt not to raise it.
|
||||
*/
|
||||
return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
||||
@ -601,7 +601,7 @@ catanh(double complex z)
|
||||
* C99 leaves it optional whether to raise invalid if one of
|
||||
* the arguments is not NaN, so we opt not to raise it.
|
||||
*/
|
||||
return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
|
||||
|
@ -163,7 +163,7 @@ casinhf(float complex z)
|
||||
return (CMPLXF(y, x + x));
|
||||
if (y == 0)
|
||||
return (CMPLXF(x + x, y));
|
||||
return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
||||
@ -221,7 +221,7 @@ cacosf(float complex z)
|
||||
return (CMPLXF(x + x, -y));
|
||||
if (x == 0)
|
||||
return (CMPLXF(pio2_hi + pio2_lo, y + y));
|
||||
return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
||||
@ -359,7 +359,7 @@ catanhf(float complex z)
|
||||
if (isinf(y))
|
||||
return (CMPLXF(copysignf(0, x),
|
||||
copysignf(pio2_hi + pio2_lo, y)));
|
||||
return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
|
||||
|
@ -182,7 +182,7 @@ casinhl(long double complex z)
|
||||
return (CMPLXL(y, x + x));
|
||||
if (y == 0)
|
||||
return (CMPLXL(x + x, y));
|
||||
return (CMPLXL(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLXL(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
||||
@ -241,7 +241,7 @@ cacosl(long double complex z)
|
||||
return (CMPLXL(x + x, -y));
|
||||
if (x == 0)
|
||||
return (CMPLXL(pio2_hi + pio2_lo, y + y));
|
||||
return (CMPLXL(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLXL(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
|
||||
@ -380,7 +380,7 @@ catanhl(long double complex z)
|
||||
if (isinf(y))
|
||||
return (CMPLXL(copysignl(0, x),
|
||||
copysignl(pio2_hi + pio2_lo, y)));
|
||||
return (CMPLXL(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
|
||||
return (CMPLXL(nan_mix(x, y), nan_mix(x, y)));
|
||||
}
|
||||
|
||||
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
|
||||
|
@ -70,7 +70,7 @@ __ieee754_atan2(double y, double x)
|
||||
iy = hy&0x7fffffff;
|
||||
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
|
||||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
|
||||
return x+y;
|
||||
return nan_mix(x, y);
|
||||
if(hx==0x3ff00000&&lx==0) return atan(y); /* x=1.0 */
|
||||
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
|
||||
|
||||
|
@ -41,7 +41,7 @@ __ieee754_atan2f(float y, float x)
|
||||
iy = hy&0x7fffffff;
|
||||
if((ix>0x7f800000)||
|
||||
(iy>0x7f800000)) /* x or y is NaN */
|
||||
return x+y;
|
||||
return nan_mix(x, y);
|
||||
if(hx==0x3f800000) return atanf(y); /* x=1.0 */
|
||||
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
|
||||
|
||||
|
@ -62,7 +62,7 @@ atan2l(long double y, long double x)
|
||||
((ux.bits.manh&~LDBL_NBIT)|ux.bits.manl)!=0) || /* x is NaN */
|
||||
(expty==BIAS+LDBL_MAX_EXP &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* y is NaN */
|
||||
return x+y;
|
||||
return nan_mix(x, y);
|
||||
if (expsignx==BIAS && ((ux.bits.manh&~LDBL_NBIT)|ux.bits.manl)==0)
|
||||
return atanl(y); /* x=1.0 */
|
||||
m = ((expsigny>>15)&1)|((expsignx>>14)&2); /* 2*sign(x)+sign(y) */
|
||||
|
@ -42,7 +42,7 @@ __ieee754_fmod(double x, double y)
|
||||
/* purge off exception values */
|
||||
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
|
||||
((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
|
||||
return (x*y)/(x*y);
|
||||
return nan_mix(x, y)/nan_mix(x, y);
|
||||
if(hx<=hy) {
|
||||
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
|
||||
if(lx==ly)
|
||||
|
@ -41,7 +41,7 @@ __ieee754_fmodf(float x, float y)
|
||||
/* purge off exception values */
|
||||
if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */
|
||||
(hy>0x7f800000)) /* or y is NaN */
|
||||
return (x*y)/(x*y);
|
||||
return nan_mix(x, y)/nan_mix(x, y);
|
||||
if(hx<hy) return x; /* |x|<|y| return x */
|
||||
if(hx==hy)
|
||||
return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/
|
||||
|
@ -79,7 +79,7 @@ fmodl(long double x, long double y)
|
||||
(ux.bits.exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */
|
||||
(uy.bits.exp == BIAS + LDBL_MAX_EXP &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* or y is NaN */
|
||||
return (x*y)/(x*y);
|
||||
return nan_mix(x, y)/nan_mix(x, y);
|
||||
if(ux.bits.exp<=uy.bits.exp) {
|
||||
if((ux.bits.exp<uy.bits.exp) ||
|
||||
(ux.bits.manh<=uy.bits.manh &&
|
||||
|
@ -70,7 +70,7 @@ __ieee754_hypot(double x, double y)
|
||||
if(ha >= 0x7ff00000) { /* Inf or NaN */
|
||||
u_int32_t low;
|
||||
/* Use original arg order iff result is NaN; quieten sNaNs. */
|
||||
w = fabs(x+0.0)-fabs(y+0.0);
|
||||
w = fabsl(x+0.0L)-fabs(y+0);
|
||||
GET_LOW_WORD(low,a);
|
||||
if(((ha&0xfffff)|low)==0) w = a;
|
||||
GET_LOW_WORD(low,b);
|
||||
|
@ -37,7 +37,7 @@ __ieee754_hypotf(float x, float y)
|
||||
if(ha > 0x58800000) { /* a>2**50 */
|
||||
if(ha >= 0x7f800000) { /* Inf or NaN */
|
||||
/* Use original arg order iff result is NaN; quieten sNaNs. */
|
||||
w = fabsf(x+0.0F)-fabsf(y+0.0F);
|
||||
w = fabsl(x+0.0L)-fabsf(y+0);
|
||||
if(ha == 0x7f800000) w = a;
|
||||
if(hb == 0x7f800000) w = b;
|
||||
return w;
|
||||
|
@ -64,7 +64,7 @@ hypotl(long double x, long double y)
|
||||
if(ha >= ESW(MAX_EXP)) { /* Inf or NaN */
|
||||
man_t manh, manl;
|
||||
/* Use original arg order iff result is NaN; quieten sNaNs. */
|
||||
w = fabsl(x+0.0)-fabsl(y+0.0);
|
||||
w = fabsl(x+0.0L)-fabsl(y+0);
|
||||
GET_LDBL_MAN(manh,manl,a);
|
||||
if (manh == LDBL_NBIT && manl == 0) w = a;
|
||||
GET_LDBL_MAN(manh,manl,b);
|
||||
|
@ -119,7 +119,7 @@ __ieee754_pow(double x, double y)
|
||||
/* y!=zero: result is NaN if either arg is NaN */
|
||||
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
||||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
||||
return (x+0.0)+(y+0.0);
|
||||
return nan_mix(x, y);
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
|
@ -76,7 +76,7 @@ __ieee754_powf(float x, float y)
|
||||
/* y!=zero: result is NaN if either arg is NaN */
|
||||
if(ix > 0x7f800000 ||
|
||||
iy > 0x7f800000)
|
||||
return (x+0.0F)+(y+0.0F);
|
||||
return nan_mix(x, y);
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
|
@ -45,11 +45,11 @@ __ieee754_remainder(double x, double p)
|
||||
hx &= 0x7fffffff;
|
||||
|
||||
/* purge off exception values */
|
||||
if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
|
||||
if((hx>=0x7ff00000)|| /* x not finite */
|
||||
if(((hp|lp)==0)|| /* p = 0 */
|
||||
(hx>=0x7ff00000)|| /* x not finite */
|
||||
((hp>=0x7ff00000)&& /* p is NaN */
|
||||
(((hp-0x7ff00000)|lp)!=0)))
|
||||
return ((long double)x*p)/((long double)x*p);
|
||||
return nan_mix(x, p)/nan_mix(x, p);
|
||||
|
||||
|
||||
if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
|
||||
|
@ -36,10 +36,10 @@ __ieee754_remainderf(float x, float p)
|
||||
hx &= 0x7fffffff;
|
||||
|
||||
/* purge off exception values */
|
||||
if(hp==0) return (x*p)/(x*p); /* p = 0 */
|
||||
if((hx>=0x7f800000)|| /* x not finite */
|
||||
if((hp==0)|| /* p = 0 */
|
||||
(hx>=0x7f800000)|| /* x not finite */
|
||||
((hp>0x7f800000))) /* p is NaN */
|
||||
return ((long double)x*p)/((long double)x*p);
|
||||
return nan_mix(x, p)/nan_mix(x, p);
|
||||
|
||||
|
||||
if (hp<=0x7effffff) x = __ieee754_fmodf(x,p+p); /* now x < 2p */
|
||||
|
@ -478,6 +478,24 @@ do { \
|
||||
*/
|
||||
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
|
||||
|
||||
/*
|
||||
* Mix 1 or 2 NaNs. First add 0 to each arg. This normally just turns
|
||||
* signaling NaNs into quiet NaNs by setting a quiet bit. We do this
|
||||
* because we want to never return a signaling NaN, and also because we
|
||||
* don't want the quiet bit to affect the result. Then mix the converted
|
||||
* args using addition. The result is typically the arg whose mantissa
|
||||
* bits (considered as in integer) are largest.
|
||||
*
|
||||
* Technical complications: the result in bits might depend on the precision
|
||||
* and/or on compiler optimizations, especially when different register sets
|
||||
* are used for different precisions. Try to make the result not depend on
|
||||
* at least the precision by always doing the main mixing step in long double
|
||||
* precision. Try to reduce dependencies on optimizations by adding the
|
||||
* the 0's in different precisions (unless everything is in long double
|
||||
* precision).
|
||||
*/
|
||||
#define nan_mix(x, y) (((x) + 0.0L) + ((y) + 0))
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
|
||||
/*
|
||||
|
@ -146,7 +146,8 @@ ccosh(double complex z)
|
||||
* Optionally raises the invalid floating-point exception for finite
|
||||
* nonzero y. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
return (CMPLX((x * x) * (y - y), (x + x) * (y - y)));
|
||||
return (CMPLX(((long double)x * x) * (y - y),
|
||||
((long double)x + x) * (y - y)));
|
||||
}
|
||||
|
||||
double complex
|
||||
|
@ -92,7 +92,8 @@ ccoshf(float complex z)
|
||||
return (CMPLXF(INFINITY * cosf(y), x * sinf(y)));
|
||||
}
|
||||
|
||||
return (CMPLXF((x * x) * (y - y), (x + x) * (y - y)));
|
||||
return (CMPLXF(((long double)x * x) * (y - y),
|
||||
((long double)x + x) * (y - y)));
|
||||
}
|
||||
|
||||
float complex
|
||||
|
@ -145,7 +145,8 @@ csinh(double complex z)
|
||||
* Optionally raises the invalid floating-point exception for finite
|
||||
* nonzero y. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
return (CMPLX((x + x) * (y - y), (x * x) * (y - y)));
|
||||
return (CMPLX(((long double)x + x) * (y - y),
|
||||
((long double)x * x) * (y - y)));
|
||||
}
|
||||
|
||||
double complex
|
||||
|
@ -92,7 +92,8 @@ csinhf(float complex z)
|
||||
return (CMPLXF(x * cosf(y), INFINITY * sinf(y)));
|
||||
}
|
||||
|
||||
return (CMPLXF((x + x) * (y - y), (x * x) * (y - y)));
|
||||
return (CMPLXF(((long double)x + x) * (y - y),
|
||||
((long double)x * x) * (y - y)));
|
||||
}
|
||||
|
||||
float complex
|
||||
|
@ -65,7 +65,7 @@ csqrt(double complex z)
|
||||
return (CMPLX(INFINITY, b));
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return (CMPLX(a, t)); /* return NaN + NaN i */
|
||||
return (CMPLX(a + 0.0L + t, a + 0.0L + t)); /* NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
@ -79,10 +79,10 @@ csqrt(double complex z)
|
||||
else
|
||||
return (CMPLX(a, copysign(b - b, b)));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
* the normal code path below.
|
||||
*/
|
||||
if (isnan(b)) {
|
||||
t = (a - a) / (a - a); /* raise invalid */
|
||||
return (CMPLX(b + 0.0L + t, b + 0.0L + t)); /* NaN + NaN i */
|
||||
}
|
||||
|
||||
/* Scale to avoid overflow. */
|
||||
if (fabs(a) >= THRESH || fabs(b) >= THRESH) {
|
||||
|
@ -56,7 +56,7 @@ csqrtf(float complex z)
|
||||
return (CMPLXF(INFINITY, b));
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return (CMPLXF(a, t)); /* return NaN + NaN i */
|
||||
return (CMPLXF(a + 0.0L + t, a + 0.0L + t)); /* NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
@ -70,10 +70,10 @@ csqrtf(float complex z)
|
||||
else
|
||||
return (CMPLXF(a, copysignf(b - b, b)));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
* the normal code path below.
|
||||
*/
|
||||
if (isnan(b)) {
|
||||
t = (a - a) / (a - a); /* raise invalid */
|
||||
return (CMPLXF(b + 0.0L + t, b + 0.0L + t)); /* NaN + NaN i */
|
||||
}
|
||||
|
||||
/*
|
||||
* We compute t in double precision to avoid overflow and to
|
||||
|
@ -73,7 +73,7 @@ csqrtl(long double complex z)
|
||||
return (CMPLXL(INFINITY, b));
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return (CMPLXL(a, t)); /* return NaN + NaN i */
|
||||
return (CMPLXL(a + 0.0L + t, a + 0.0L + t)); /* NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
@ -87,10 +87,10 @@ csqrtl(long double complex z)
|
||||
else
|
||||
return (CMPLXL(a, copysignl(b - b, b)));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
* the normal code path below.
|
||||
*/
|
||||
if (isnan(b)) {
|
||||
t = (a - a) / (a - a); /* raise invalid */
|
||||
return (CMPLXL(b + 0.0L + t, b + 0.0L + t)); /* NaN + NaN i */
|
||||
}
|
||||
|
||||
/* Scale to avoid overflow. */
|
||||
if (fabsl(a) >= THRESH || fabsl(b) >= THRESH) {
|
||||
|
@ -104,8 +104,8 @@ ctanh(double complex z)
|
||||
*/
|
||||
if (ix >= 0x7ff00000) {
|
||||
if ((ix & 0xfffff) | lx) /* x is NaN */
|
||||
return (CMPLX((x + 0) * (y + 0),
|
||||
y == 0 ? y : (x + 0) * (y + 0)));
|
||||
return (CMPLX(nan_mix(x, y),
|
||||
y == 0 ? y : nan_mix(x, y)));
|
||||
SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */
|
||||
return (CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
|
||||
}
|
||||
|
@ -53,8 +53,8 @@ ctanhf(float complex z)
|
||||
|
||||
if (ix >= 0x7f800000) {
|
||||
if (ix & 0x7fffff)
|
||||
return (CMPLXF((x + 0) * (y + 0),
|
||||
y == 0 ? y : (x + 0) * (y + 0)));
|
||||
return (CMPLXF(nan_mix(x, y),
|
||||
y == 0 ? y : nan_mix(x, y)));
|
||||
SET_FLOAT_WORD(x, hx - 0x40000000);
|
||||
return (CMPLXF(x,
|
||||
copysignf(0, isinf(y) ? y : sinf(y) * cosf(y))));
|
||||
|
@ -44,7 +44,7 @@ remquo(double x, double y, int *quo)
|
||||
/* purge off exception values */
|
||||
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
|
||||
((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
|
||||
return (x*y)/(x*y);
|
||||
return nan_mix(x, y)/nan_mix(x, y);
|
||||
if(hx<=hy) {
|
||||
if((hx<hy)||(lx<ly)) {
|
||||
q = 0;
|
||||
|
@ -41,7 +41,7 @@ remquof(float x, float y, int *quo)
|
||||
|
||||
/* purge off exception values */
|
||||
if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */
|
||||
return (x*y)/(x*y);
|
||||
return nan_mix(x, y)/nan_mix(x, y);
|
||||
if(hx<hy) {
|
||||
q = 0;
|
||||
goto fixup; /* |x|<|y| return x or x-y */
|
||||
|
@ -86,7 +86,7 @@ remquol(long double x, long double y, int *quo)
|
||||
(ux.bits.exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */
|
||||
(uy.bits.exp == BIAS + LDBL_MAX_EXP &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* or y is NaN */
|
||||
return (x*y)/(x*y);
|
||||
return nan_mix(x, y)/nan_mix(x, y);
|
||||
if(ux.bits.exp<=uy.bits.exp) {
|
||||
if((ux.bits.exp<uy.bits.exp) ||
|
||||
(ux.bits.manh<=uy.bits.manh &&
|
||||
|
Loading…
Reference in New Issue
Block a user