Tests for complex trig and hyperbolic functions.

This commit is contained in:
David Schultz 2011-10-21 06:34:38 +00:00
parent 417f648842
commit 6fcec4dd2b
3 changed files with 552 additions and 1 deletions

View File

@ -1,6 +1,7 @@
# $FreeBSD$
TESTS= test-cexp test-conj test-csqrt test-exponential test-fenv test-fma \
TESTS= test-cexp test-conj test-csqrt test-ctrig \
test-exponential test-fenv test-fma \
test-fmaxmin test-ilogb test-invtrig test-logarithm test-lrint \
test-lround test-nan test-nearbyint test-next test-rem test-trig
CFLAGS+= -O0 -lm

View File

@ -0,0 +1,540 @@
/*-
* Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Tests for csin[h](), ccos[h](), and ctan[h]().
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <assert.h>
#include <complex.h>
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
FE_OVERFLOW | FE_UNDERFLOW)
#define OPT_INVALID (ALL_STD_EXCEPT & ~FE_INVALID)
#define OPT_INEXACT (ALL_STD_EXCEPT & ~FE_INEXACT)
#define FLT_ULP() ldexpl(1.0, 1 - FLT_MANT_DIG)
#define DBL_ULP() ldexpl(1.0, 1 - DBL_MANT_DIG)
#define LDBL_ULP() ldexpl(1.0, 1 - LDBL_MANT_DIG)
#pragma STDC FENV_ACCESS ON
#pragma STDC CX_LIMITED_RANGE OFF
/*
* XXX gcc implements complex multiplication incorrectly. In
* particular, it implements it as if the CX_LIMITED_RANGE pragma
* were ON. Consequently, we need this function to form numbers
* such as x + INFINITY * I, since gcc evalutes INFINITY * I as
* NaN + INFINITY * I.
*/
static inline long double complex
cpackl(long double x, long double y)
{
long double complex z;
__real__ z = x;
__imag__ z = y;
return (z);
}
/* Flags that determine whether to check the signs of the result. */
#define CS_REAL 1
#define CS_IMAG 2
#define CS_BOTH (CS_REAL | CS_IMAG)
#ifdef DEBUG
#define debug(...) printf(__VA_ARGS__)
#else
#define debug(...) (void)0
#endif
/*
* Test that a function returns the correct value and sets the
* exception flags correctly. The exceptmask specifies which
* exceptions we should check. We need to be lenient for several
* reasons, but mainly because on some architectures it's impossible
* to raise FE_OVERFLOW without raising FE_INEXACT.
*
* These are macros instead of functions so that assert provides more
* meaningful error messages.
*
* XXX The volatile here is to avoid gcc's bogus constant folding and work
* around the lack of support for the FENV_ACCESS pragma.
*/
#define test_p(func, z, result, exceptmask, excepts, checksign) do { \
volatile long double complex _d = z; \
debug(" testing %s(%Lg + %Lg I) == %Lg + %Lg I\n", #func, \
creall(_d), cimagl(_d), creall(result), cimagl(result)); \
assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
assert(cfpequal((func)(_d), (result), (checksign))); \
assert(((func), fetestexcept(exceptmask) == (excepts))); \
} while (0)
/*
* Test within a given tolerance. The tolerance indicates relative error
* in ulps. If result is 0, however, it measures absolute error in units
* of <format>_EPSILON.
*/
#define test_p_tol(func, z, result, tol) do { \
volatile long double complex _d = z; \
debug(" testing %s(%Lg + %Lg I) ~= %Lg + %Lg I\n", #func, \
creall(_d), cimagl(_d), creall(result), cimagl(result)); \
assert(cfpequal_tol((func)(_d), (result), (tol))); \
} while (0)
/* These wrappers apply the identities f(conj(z)) = conj(f(z)). */
#define test(func, z, result, exceptmask, excepts, checksign) do { \
test_p(func, z, result, exceptmask, excepts, checksign); \
test_p(func, conjl(z), conjl(result), exceptmask, excepts, checksign); \
} while (0)
#define test_tol(func, z, result, tol) do { \
test_p_tol(func, z, result, tol); \
test_p_tol(func, conjl(z), conjl(result), tol); \
} while (0)
/* Test the given function in all precisions. */
#define testall(func, x, result, exceptmask, excepts, checksign) do { \
test(func, x, result, exceptmask, excepts, checksign); \
test(func##f, x, result, exceptmask, excepts, checksign); \
} while (0)
#define testall_odd(func, x, result, exceptmask, excepts, checksign) do { \
testall(func, x, result, exceptmask, excepts, checksign); \
testall(func, -x, -result, exceptmask, excepts, checksign); \
} while (0)
#define testall_even(func, x, result, exceptmask, excepts, checksign) do { \
testall(func, x, result, exceptmask, excepts, checksign); \
testall(func, -x, result, exceptmask, excepts, checksign); \
} while (0)
/*
* Test the given function in all precisions, within a given tolerance.
* The tolerance is specified in ulps.
*/
#define testall_tol(func, x, result, tol) do { \
test_tol(func, x, result, tol * DBL_ULP()); \
test_tol(func##f, x, result, tol * FLT_ULP()); \
} while (0)
#define testall_odd_tol(func, x, result, tol) do { \
test_tol(func, x, result, tol * DBL_ULP()); \
test_tol(func, -x, -result, tol * DBL_ULP()); \
} while (0)
#define testall_even_tol(func, x, result, tol) do { \
test_tol(func, x, result, tol * DBL_ULP()); \
test_tol(func, -x, result, tol * DBL_ULP()); \
} while (0)
/*
* Determine whether x and y are equal, with two special rules:
* +0.0 != -0.0
* NaN == NaN
* If checksign is 0, we compare the absolute values instead.
*/
static int
fpequal(long double x, long double y, int checksign)
{
if (isnan(x) && isnan(y))
return (1);
if (checksign)
return (x == y && !signbit(x) == !signbit(y));
else
return (fabsl(x) == fabsl(y));
}
static int
fpequal_tol(long double x, long double y, long double tol)
{
fenv_t env;
int ret;
if (isnan(x) && isnan(y))
return (1);
if (!signbit(x) != !signbit(y) && tol == 0)
return (0);
if (x == y)
return (1);
if (tol == 0)
return (0);
/* Hard case: need to check the tolerance. */
feholdexcept(&env);
/*
* For our purposes here, if y=0, we interpret tol as an absolute
* tolerance. This is to account for roundoff in the input, e.g.,
* cos(Pi/2) ~= 0.
*/
if (y == 0.0)
ret = fabsl(x - y) <= fabsl(tol);
else
ret = fabsl(x - y) <= fabsl(y * tol);
fesetenv(&env);
return (ret);
}
static int
cfpequal(long double complex x, long double complex y, int checksign)
{
return (fpequal(creal(x), creal(y), checksign & CS_REAL)
&& fpequal(cimag(x), cimag(y), checksign & CS_IMAG));
}
static int
cfpequal_tol(long double complex x, long double complex y, long double tol)
{
return (fpequal_tol(creal(x), creal(y), tol)
&& fpequal_tol(cimag(x), cimag(y), tol));
}
/* Tests for 0 */
void
test_zero(void)
{
long double complex zero = cpackl(0.0, 0.0);
/* csinh(0) = ctanh(0) = 0; ccosh(0) = 1 (no exceptions raised) */
testall_odd(csinh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
testall_odd(csin, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
testall_even(ccosh, zero, 1.0, ALL_STD_EXCEPT, 0, CS_BOTH);
testall_even(ccos, zero, cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, CS_BOTH);
testall_odd(ctanh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
testall_odd(ctan, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
}
/*
* Tests for NaN inputs.
*/
void
test_nan()
{
long double complex nan_nan = cpackl(NAN, NAN);
long double complex z;
/*
* IN CSINH CCOSH CTANH
* NaN,NaN NaN,NaN NaN,NaN NaN,NaN
* finite,NaN NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
* NaN,finite NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
* NaN,Inf NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
* Inf,NaN +-Inf,NaN Inf,NaN 1,+-0
* 0,NaN +-0,NaN NaN,+-0 NaN,NaN [inval]
* NaN,0 NaN,0 NaN,+-0 NaN,0
*/
z = nan_nan;
testall_odd(csinh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
testall_even(ccosh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
testall_odd(ctanh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
testall_odd(csin, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
testall_even(ccos, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
testall_odd(ctan, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
z = cpackl(42, NAN);
testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
/* XXX We allow a spurious inexact exception here. */
testall_odd(ctanh, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
z = cpackl(NAN, 42);
testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
/* XXX We allow a spurious inexact exception here. */
testall_odd(ctan, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
z = cpackl(NAN, INFINITY);
testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
testall_odd(csin, z, cpackl(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0);
testall_even(ccos, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0,
CS_IMAG);
testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_IMAG);
z = cpackl(INFINITY, NAN);
testall_odd(csinh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0);
testall_even(ccosh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0,
CS_REAL);
testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL);
testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
z = cpackl(0, NAN);
testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, 0);
testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
testall_odd(csin, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
testall_odd(ctan, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
z = cpackl(NAN, 0);
testall_odd(csinh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
testall_odd(ctanh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
}
void
test_inf(void)
{
static const long double finites[] = {
0, M_PI / 4, 3 * M_PI / 4, 5 * M_PI / 4,
};
long double complex z, c, s;
int i;
/*
* IN CSINH CCOSH CTANH
* Inf,Inf +-Inf,NaN inval +-Inf,NaN inval 1,+-0
* Inf,finite Inf cis(finite) Inf cis(finite) 1,0 sin(2 finite)
* 0,Inf +-0,NaN inval NaN,+-0 inval NaN,NaN inval
* finite,Inf NaN,NaN inval NaN,NaN inval NaN,NaN inval
*/
z = cpackl(INFINITY, INFINITY);
testall_odd(csinh, z, cpackl(INFINITY, NAN),
ALL_STD_EXCEPT, FE_INVALID, 0);
testall_even(ccosh, z, cpackl(INFINITY, NAN),
ALL_STD_EXCEPT, FE_INVALID, 0);
testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL);
testall_odd(csin, z, cpackl(NAN, INFINITY),
ALL_STD_EXCEPT, FE_INVALID, 0);
testall_even(ccos, z, cpackl(INFINITY, NAN),
ALL_STD_EXCEPT, FE_INVALID, 0);
testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_REAL);
/* XXX We allow spurious inexact exceptions here (hard to avoid). */
for (i = 0; i < sizeof(finites) / sizeof(finites[0]); i++) {
z = cpackl(INFINITY, finites[i]);
c = INFINITY * cosl(finites[i]);
s = finites[i] == 0 ? finites[i] : INFINITY * sinl(finites[i]);
testall_odd(csinh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH);
testall_even(ccosh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH);
testall_odd(ctanh, z, cpackl(1, 0 * sin(finites[i] * 2)),
OPT_INEXACT, 0, CS_BOTH);
z = cpackl(finites[i], INFINITY);
testall_odd(csin, z, cpackl(s, c), OPT_INEXACT, 0, CS_BOTH);
testall_even(ccos, z, cpackl(c, -s), OPT_INEXACT, 0, CS_BOTH);
testall_odd(ctan, z, cpackl(0 * sin(finites[i] * 2), 1),
OPT_INEXACT, 0, CS_BOTH);
}
z = cpackl(0, INFINITY);
testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
testall_odd(ctanh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
z = cpackl(INFINITY, 0);
testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
testall_odd(ctan, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
z = cpackl(42, INFINITY);
testall_odd(csinh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
testall_even(ccosh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
/* XXX We allow a spurious inexact exception here. */
testall_odd(ctanh, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0);
z = cpackl(INFINITY, 42);
testall_odd(csin, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
testall_even(ccos, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
/* XXX We allow a spurious inexact exception here. */
testall_odd(ctan, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0);
}
/* Tests along the real and imaginary axes. */
void
test_axes(void)
{
static const long double nums[] = {
M_PI / 4, M_PI / 2, 3 * M_PI / 4,
5 * M_PI / 4, 3 * M_PI / 2, 7 * M_PI / 4,
};
long double complex z;
int i;
for (i = 0; i < sizeof(nums) / sizeof(nums[0]); i++) {
/* Real axis */
z = cpackl(nums[i], 0.0);
testall_odd_tol(csinh, z, cpackl(sinh(nums[i]), 0), 0);
testall_even_tol(ccosh, z, cpackl(cosh(nums[i]), 0), 0);
testall_odd_tol(ctanh, z, cpackl(tanh(nums[i]), 0), 1);
testall_odd_tol(csin, z, cpackl(sin(nums[i]),
copysign(0, cos(nums[i]))), 0);
testall_even_tol(ccos, z, cpackl(cos(nums[i]),
-copysign(0, sin(nums[i]))), 0);
testall_odd_tol(ctan, z, cpackl(tan(nums[i]), 0), 1);
/* Imaginary axis */
z = cpackl(0.0, nums[i]);
testall_odd_tol(csinh, z, cpackl(copysign(0, cos(nums[i])),
sin(nums[i])), 0);
testall_even_tol(ccosh, z, cpackl(cos(nums[i]),
copysign(0, sin(nums[i]))), 0);
testall_odd_tol(ctanh, z, cpackl(0, tan(nums[i])), 1);
testall_odd_tol(csin, z, cpackl(0, sinh(nums[i])), 0);
testall_even_tol(ccos, z, cpackl(cosh(nums[i]), -0.0), 0);
testall_odd_tol(ctan, z, cpackl(0, tanh(nums[i])), 1);
}
}
void
test_small(void)
{
/*
* z = 0.5 + i Pi/4
* sinh(z) = (sinh(0.5) + i cosh(0.5)) * sqrt(2)/2
* cosh(z) = (cosh(0.5) + i sinh(0.5)) * sqrt(2)/2
* tanh(z) = (2cosh(0.5)sinh(0.5) + i) / (2 cosh(0.5)**2 - 1)
* z = -0.5 + i Pi/2
* sinh(z) = cosh(0.5)
* cosh(z) = -i sinh(0.5)
* tanh(z) = -coth(0.5)
* z = 1.0 + i 3Pi/4
* sinh(z) = (-sinh(1) + i cosh(1)) * sqrt(2)/2
* cosh(z) = (-cosh(1) + i sinh(1)) * sqrt(2)/2
* tanh(z) = (2cosh(1)sinh(1) - i) / (2cosh(1)**2 - 1)
*/
static const struct {
long double a, b;
long double sinh_a, sinh_b;
long double cosh_a, cosh_b;
long double tanh_a, tanh_b;
} tests[] = {
{ 0.5L,
0.78539816339744830961566084581987572L,
0.36847002415910435172083660522240710L,
0.79735196663945774996093142586179334L,
0.79735196663945774996093142586179334L,
0.36847002415910435172083660522240710L,
0.76159415595576488811945828260479359L,
0.64805427366388539957497735322615032L },
{ -0.5L,
1.57079632679489661923132169163975144L,
0.0L,
1.12762596520638078522622516140267201L,
0.0L,
-0.52109530549374736162242562641149156L,
-2.16395341373865284877000401021802312L,
0.0L },
{ 1.0L,
2.35619449019234492884698253745962716L,
-0.83099273328405698212637979852748608L,
1.09112278079550143030545602018565236L,
-1.09112278079550143030545602018565236L,
0.83099273328405698212637979852748609L,
0.96402758007581688394641372410092315L,
-0.26580222883407969212086273981988897L }
};
long double complex z;
int i;
for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++) {
z = cpackl(tests[i].a, tests[i].b);
testall_odd_tol(csinh, z,
cpackl(tests[i].sinh_a, tests[i].sinh_b), 1.1);
testall_even_tol(ccosh, z,
cpackl(tests[i].cosh_a, tests[i].cosh_b), 1.1);
testall_odd_tol(ctanh, z,
cpackl(tests[i].tanh_a, tests[i].tanh_b), 1.1);
}
}
/* Test inputs that might cause overflow in a sloppy implementation. */
void
test_large(void)
{
long double complex z;
/* tanh() uses a threshold around x=22, so check both sides. */
z = cpackl(21, 0.78539816339744830961566084581987572L);
testall_odd_tol(ctanh, z,
cpackl(1.0, 1.14990445285871196133287617611468468e-18L), 1);
z++;
testall_odd_tol(ctanh, z,
cpackl(1.0, 1.55622644822675930314266334585597964e-19L), 1);
z = cpackl(355, 0.78539816339744830961566084581987572L);
testall_odd_tol(ctanh, z,
cpackl(1.0, 8.95257245135025991216632140458264468e-309L), 1);
z = cpackl(30, 0x1p1023L);
testall_odd_tol(ctanh, z,
cpackl(1.0, -1.62994325413993477997492170229268382e-26L), 1);
z = cpackl(1, 0x1p1023L);
testall_odd_tol(ctanh, z,
cpackl(0.878606311888306869546254022621986509L,
-0.225462792499754505792678258169527424L), 1);
z = cpackl(710.6, 0.78539816339744830961566084581987572L);
testall_odd_tol(csinh, z,
cpackl(1.43917579766621073533185387499658944e308L,
1.43917579766621073533185387499658944e308L), 1);
testall_even_tol(ccosh, z,
cpackl(1.43917579766621073533185387499658944e308L,
1.43917579766621073533185387499658944e308L), 1);
z = cpackl(1500, 0.78539816339744830961566084581987572L);
testall_odd(csinh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT,
FE_OVERFLOW, CS_BOTH);
testall_even(ccosh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT,
FE_OVERFLOW, CS_BOTH);
}
int
main(int argc, char *argv[])
{
printf("1..6\n");
test_zero();
printf("ok 1 - ctrig zero\n");
test_nan();
printf("ok 2 - ctrig nan\n");
test_inf();
printf("ok 3 - ctrig inf\n");
test_axes();
printf("ok 4 - ctrig axes\n");
test_small();
printf("ok 5 - ctrig small\n");
test_large();
printf("ok 6 - ctrig large\n");
return (0);
}

View File

@ -0,0 +1,10 @@
#!/bin/sh
# $FreeBSD$
cd `dirname $0`
executable=`basename $0 .t`
make $executable 2>&1 > /dev/null
exec ./$executable