lib/msun: add more csqrt unit tests for precision and overflow

Reviewed by:	bde
Approved by:	markj (mentor)
Sponsored by:	Dell EMC Isilon
This commit is contained in:
rlibby 2017-08-29 22:37:24 +00:00
parent 965d0458ac
commit 77c4ecfe11

View File

@ -214,28 +214,94 @@ test_nans(void)
/*
* Test whether csqrt(a + bi) works for inputs that are large enough to
* cause overflow in hypot(a, b) + a. In this case we are using
* csqrt(115 + 252*I) == 14 + 9*I
* scaled up to near MAX_EXP.
* cause overflow in hypot(a, b) + a. Each of the tests is scaled up to
* near MAX_EXP.
*/
static void
test_overflow(int maxexp)
{
long double a, b;
long double complex result;
int exp, i;
a = ldexpl(115 * 0x1p-8, maxexp);
b = ldexpl(252 * 0x1p-8, maxexp);
result = t_csqrt(CMPLXL(a, b));
assert(creall(result) == ldexpl(14 * 0x1p-4, maxexp / 2));
assert(cimagl(result) == ldexpl(9 * 0x1p-4, maxexp / 2));
assert(maxexp > 0 && maxexp % 2 == 0);
for (i = 0; i < 4; i++) {
exp = maxexp - 2 * i;
/* csqrt(115 + 252*I) == 14 + 9*I */
a = ldexpl(115 * 0x1p-8, exp);
b = ldexpl(252 * 0x1p-8, exp);
result = t_csqrt(CMPLXL(a, b));
assert(creall(result) == ldexpl(14 * 0x1p-4, exp / 2));
assert(cimagl(result) == ldexpl(9 * 0x1p-4, exp / 2));
/* csqrt(-11 + 60*I) = 5 + 6*I */
a = ldexpl(-11 * 0x1p-6, exp);
b = ldexpl(60 * 0x1p-6, exp);
result = t_csqrt(CMPLXL(a, b));
assert(creall(result) == ldexpl(5 * 0x1p-3, exp / 2));
assert(cimagl(result) == ldexpl(6 * 0x1p-3, exp / 2));
/* csqrt(225 + 0*I) == 15 + 0*I */
a = ldexpl(225 * 0x1p-8, exp);
b = 0;
result = t_csqrt(CMPLXL(a, b));
assert(creall(result) == ldexpl(15 * 0x1p-4, exp / 2));
assert(cimagl(result) == 0);
}
}
/*
* Test that precision is maintained for some large squares. Set all or
* some bits in the lower mantdig/2 bits, square the number, and try to
* recover the sqrt. Note:
* (x + xI)**2 = 2xxI
*/
static void
test_precision(int maxexp, int mantdig)
{
long double b, x;
long double complex result;
uint64_t mantbits, sq_mantbits;
int exp, i;
assert(maxexp > 0 && maxexp % 2 == 0);
assert(mantdig <= 64);
mantdig = rounddown(mantdig, 2);
for (exp = 0; exp <= maxexp; exp += 2) {
mantbits = ((uint64_t)1 << (mantdig / 2 )) - 1;
for (i = 0;
i < 100 && mantbits > ((uint64_t)1 << (mantdig / 2 - 1));
i++, mantbits--) {
sq_mantbits = mantbits * mantbits;
/*
* sq_mantibts is a mantdig-bit number. Divide by
* 2**mantdig to normalize it to [0.5, 1), where,
* note, the binary power will be -1. Raise it by
* 2**exp for the test. exp is even. Lower it by
* one to reach a final binary power which is also
* even. The result should be exactly
* representable, given that mantdig is less than or
* equal to the available precision.
*/
b = ldexpl((long double)sq_mantbits,
exp - 1 - mantdig);
x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
assert(b == x * x * 2);
result = t_csqrt(CMPLXL(0, b));
assert(creall(result) == x);
assert(cimagl(result) == x);
}
}
}
int
main(void)
{
printf("1..15\n");
printf("1..18\n");
/* Test csqrt() */
t_csqrt = _csqrt;
@ -255,41 +321,56 @@ main(void)
test_overflow(DBL_MAX_EXP);
printf("ok 5 - csqrt\n");
test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
printf("ok 6 - csqrt\n");
/* Now test csqrtf() */
t_csqrt = _csqrtf;
test_finite();
printf("ok 6 - csqrt\n");
test_zeros();
printf("ok 7 - csqrt\n");
test_infinities();
test_zeros();
printf("ok 8 - csqrt\n");
test_nans();
test_infinities();
printf("ok 9 - csqrt\n");
test_overflow(FLT_MAX_EXP);
test_nans();
printf("ok 10 - csqrt\n");
test_overflow(FLT_MAX_EXP);
printf("ok 11 - csqrt\n");
test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
printf("ok 12 - csqrt\n");
/* Now test csqrtl() */
t_csqrt = csqrtl;
test_finite();
printf("ok 11 - csqrt\n");
test_zeros();
printf("ok 12 - csqrt\n");
test_infinities();
printf("ok 13 - csqrt\n");
test_nans();
test_zeros();
printf("ok 14 - csqrt\n");
test_overflow(LDBL_MAX_EXP);
test_infinities();
printf("ok 15 - csqrt\n");
test_nans();
printf("ok 16 - csqrt\n");
test_overflow(LDBL_MAX_EXP);
printf("ok 17 - csqrt\n");
test_precision(LDBL_MAX_EXP,
#ifndef __i386__
LDBL_MANT_DIG
#else
DBL_MANT_DIG
#endif
);
printf("ok 18 - csqrt\n");
return (0);
}