Fix a double-rounding bug in fma{,f,l}. The bug would occur in

round-to-nearest mode when the result, rounded to twice machine
precision, was exactly halfway between two machine-precision
values.  The essence of the fix is to simulate a "sticky bit" in
the pathological cases, which is how hardware implementations
break the ties.

MFC after:	1 month
This commit is contained in:
das 2011-10-15 04:16:58 +00:00
parent 4daad241b3
commit 7c947eee25
3 changed files with 231 additions and 125 deletions

View File

@ -31,6 +31,8 @@ __FBSDID("$FreeBSD$");
#include <float.h>
#include <math.h>
#include "math_private.h"
/*
* A struct dd represents a floating-point number with twice the precision
* of a double. We maintain the invariant that "hi" stores the 53 high-order
@ -58,6 +60,73 @@ dd_add(double a, double b)
return (ret);
}
/*
* Compute a+b, with a small tweak: The least significant bit of the
* result is adjusted into a sticky bit summarizing all the bits that
* were lost to rounding. This adjustment negates the effects of double
* rounding when the result is added to another number with a higher
* exponent. For an explanation of round and sticky bits, see any reference
* on FPU design, e.g.,
*
* J. Coonen. An Implementation Guide to a Proposed Standard for
* Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
*/
static inline double
add_adjusted(double a, double b)
{
struct dd sum;
uint64_t hibits, lobits;
sum = dd_add(a, b);
if (sum.lo != 0) {
EXTRACT_WORD64(hibits, sum.hi);
if ((hibits & 1) == 0) {
/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
EXTRACT_WORD64(lobits, sum.lo);
hibits += 1 - ((hibits ^ lobits) >> 62);
INSERT_WORD64(sum.hi, hibits);
}
}
return (sum.hi);
}
/*
* Compute ldexp(a+b, scale) with a single rounding error. It is assumed
* that the result will be subnormal, and care is taken to ensure that
* double rounding does not occur.
*/
static inline double
add_and_denormalize(double a, double b, int scale)
{
struct dd sum;
uint64_t hibits, lobits;
int bits_lost;
sum = dd_add(a, b);
/*
* If we are losing at least two bits of accuracy to denormalization,
* then the first lost bit becomes a round bit, and we adjust the
* lowest bit of sum.hi to make it a sticky bit summarizing all the
* bits in sum.lo. With the sticky bit adjusted, the hardware will
* break any ties in the correct direction.
*
* If we are losing only one bit to denormalization, however, we must
* break the ties manually.
*/
if (sum.lo != 0) {
EXTRACT_WORD64(hibits, sum.hi);
bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
if (bits_lost != 1 ^ (int)(hibits & 1)) {
/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
EXTRACT_WORD64(lobits, sum.lo);
hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
INSERT_WORD64(sum.hi, hibits);
}
}
return (ldexp(sum.hi, scale));
}
/*
* Compute a*b exactly, returning the exact result in a struct dd. We assume
* that both a and b are normalized, so no underflow or overflow will occur.
@ -105,14 +174,11 @@ dd_mul(double a, double b)
* Hardware instructions should be used on architectures that support it,
* since this implementation will likely be several times slower.
*/
#if LDBL_MANT_DIG != 113
double
fma(double x, double y, double z)
{
double xs, ys, zs;
struct dd xy, r, r2;
double p;
double s;
double xs, ys, zs, adj;
struct dd xy, r;
int oround;
int ex, ey, ez;
int spread;
@ -142,41 +208,6 @@ fma(double x, double y, double z)
* will overflow, so we handle these cases specially. Rounding
* modes other than FE_TONEAREST are painful.
*/
if (spread > DBL_MANT_DIG * 2) {
fenv_t env;
feraiseexcept(FE_INEXACT);
switch(oround) {
case FE_TONEAREST:
return (x * y);
case FE_TOWARDZERO:
if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
return (x * y);
feholdexcept(&env);
s = x * y;
if (!fetestexcept(FE_INEXACT))
s = nextafter(s, 0);
feupdateenv(&env);
return (s);
case FE_DOWNWARD:
if (z > 0.0)
return (x * y);
feholdexcept(&env);
s = x * y;
if (!fetestexcept(FE_INEXACT))
s = nextafter(s, -INFINITY);
feupdateenv(&env);
return (s);
default: /* FE_UPWARD */
if (z < 0.0)
return (x * y);
feholdexcept(&env);
s = x * y;
if (!fetestexcept(FE_INEXACT))
s = nextafter(s, INFINITY);
feupdateenv(&env);
return (s);
}
}
if (spread < -DBL_MANT_DIG) {
feraiseexcept(FE_INEXACT);
if (!isnormal(z))
@ -201,42 +232,52 @@ fma(double x, double y, double z)
return (z);
}
}
if (spread <= DBL_MANT_DIG * 2)
zs = ldexp(zs, -spread);
else
zs = copysign(DBL_MIN, zs);
fesetround(FE_TONEAREST);
/*
* Basic approach for round-to-nearest:
*
* (xy.hi, xy.lo) = x * y (exact)
* (r.hi, r.lo) = xy.hi + z (exact)
* adj = xy.lo + r.lo (inexact; low bit is sticky)
* result = r.hi + adj (correctly rounded)
*/
xy = dd_mul(xs, ys);
zs = ldexp(zs, -spread);
r = dd_add(xy.hi, zs);
r.lo += xy.lo;
if (r.hi == 0.0) {
/*
* When the addends cancel to 0, ensure that the result has
* the correct sign.
*/
fesetround(oround);
volatile double vzs = zs; /* XXX gcc CSE bug workaround */
return (xy.hi + vzs);
}
spread = ex + ey;
if (spread + ilogb(r.hi) > -1023) {
fesetround(oround);
r.hi = r.hi + r.lo;
} else {
if (oround != FE_TONEAREST) {
/*
* The result is subnormal, so we round before scaling to
* avoid double rounding.
* There is no need to worry about double rounding in directed
* rounding modes.
*/
p = ldexp(copysign(0x1p-1022, r.hi), -spread);
r2 = dd_add(r.hi, p);
r2.lo += r.lo;
fesetround(oround);
r.hi = (r2.hi + r2.lo) - p;
adj = r.lo + xy.lo;
return (ldexp(r.hi + adj, spread));
}
return (ldexp(r.hi, spread));
adj = add_adjusted(r.lo, xy.lo);
if (spread + ilogb(r.hi) > -1023)
return (ldexp(r.hi + adj, spread));
else
return (add_and_denormalize(r.hi, adj, spread));
}
#else /* LDBL_MANT_DIG == 113 */
/*
* 113 bits of precision is more than twice the precision of a double,
* so it is enough to represent the intermediate product exactly.
*/
double
fma(double x, double y, double z)
{
return ((long double)x * y + z);
}
#endif /* LDBL_MANT_DIG != 113 */
#if (LDBL_MANT_DIG == 53)
__weak_reference(fma, fmal);

View File

@ -1,5 +1,5 @@
/*-
* Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
* Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -27,23 +27,43 @@
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <fenv.h>
#include "math.h"
#include "math_private.h"
/*
* Fused multiply-add: Compute x * y + z with a single rounding error.
*
* A double has more than twice as much precision than a float, so
* direct double-precision arithmetic suffices.
*
* XXX We are relying on the compiler to convert from double to float
* using the current rounding mode and with the appropriate
* side-effects. But on at least one platform (gcc 3.4.2/sparc64),
* this appears to be too much to ask for. The precision
* reduction should be done manually.
* direct double-precision arithmetic suffices, except where double
* rounding occurs.
*/
float
fmaf(float x, float y, float z)
{
double xy, result;
uint32_t hr, lr;
return ((double)x * y + z);
xy = (double)x * y;
result = xy + z;
EXTRACT_WORDS(hr, lr, result);
/* Common case: The double precision result is fine. */
if ((lr & 0x1fffffff) != 0x10000000 || /* not a halfway case */
(hr & 0x7ff00000) == 0x7ff00000 || /* NaN */
result - xy == z || /* exact */
fegetround() != FE_TONEAREST) /* not round-to-nearest */
return (result);
/*
* If result is inexact, and exactly halfway between two float values,
* we need to adjust the low-order bit in the direction of the error.
*/
fesetround(FE_TOWARDZERO);
volatile double vxy = xy; /* XXX work around gcc CSE bug */
double adjusted_result = vxy + z;
fesetround(FE_TONEAREST);
if (result == adjusted_result)
SET_LOW_WORD(adjusted_result, lr + 1);
return (adjusted_result);
}

View File

@ -31,6 +31,8 @@ __FBSDID("$FreeBSD$");
#include <float.h>
#include <math.h>
#include "fpmath.h"
/*
* A struct dd represents a floating-point number with twice the precision
* of a long double. We maintain the invariant that "hi" stores the high-order
@ -58,6 +60,65 @@ dd_add(long double a, long double b)
return (ret);
}
/*
* Compute a+b, with a small tweak: The least significant bit of the
* result is adjusted into a sticky bit summarizing all the bits that
* were lost to rounding. This adjustment negates the effects of double
* rounding when the result is added to another number with a higher
* exponent. For an explanation of round and sticky bits, see any reference
* on FPU design, e.g.,
*
* J. Coonen. An Implementation Guide to a Proposed Standard for
* Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
*/
static inline long double
add_adjusted(long double a, long double b)
{
struct dd sum;
union IEEEl2bits u;
sum = dd_add(a, b);
if (sum.lo != 0) {
u.e = sum.hi;
if ((u.bits.manl & 1) == 0)
sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
}
return (sum.hi);
}
/*
* Compute ldexp(a+b, scale) with a single rounding error. It is assumed
* that the result will be subnormal, and care is taken to ensure that
* double rounding does not occur.
*/
static inline long double
add_and_denormalize(long double a, long double b, int scale)
{
struct dd sum;
int bits_lost;
union IEEEl2bits u;
sum = dd_add(a, b);
/*
* If we are losing at least two bits of accuracy to denormalization,
* then the first lost bit becomes a round bit, and we adjust the
* lowest bit of sum.hi to make it a sticky bit summarizing all the
* bits in sum.lo. With the sticky bit adjusted, the hardware will
* break any ties in the correct direction.
*
* If we are losing only one bit to denormalization, however, we must
* break the ties manually.
*/
if (sum.lo != 0) {
u.e = sum.hi;
bits_lost = -u.bits.exp - scale + 1;
if (bits_lost != 1 ^ (int)(u.bits.manl & 1))
sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
}
return (ldexp(sum.hi, scale));
}
/*
* Compute a*b exactly, returning the exact result in a struct dd. We assume
* that both a and b are normalized, so no underflow or overflow will occur.
@ -104,10 +165,8 @@ dd_mul(long double a, long double b)
long double
fmal(long double x, long double y, long double z)
{
long double xs, ys, zs;
struct dd xy, r, r2;
long double p;
long double s;
long double xs, ys, zs, adj;
struct dd xy, r;
int oround;
int ex, ey, ez;
int spread;
@ -137,41 +196,6 @@ fmal(long double x, long double y, long double z)
* will overflow, so we handle these cases specially. Rounding
* modes other than FE_TONEAREST are painful.
*/
if (spread > LDBL_MANT_DIG * 2) {
fenv_t env;
feraiseexcept(FE_INEXACT);
switch(oround) {
case FE_TONEAREST:
return (x * y);
case FE_TOWARDZERO:
if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
return (x * y);
feholdexcept(&env);
s = x * y;
if (!fetestexcept(FE_INEXACT))
s = nextafterl(s, 0);
feupdateenv(&env);
return (s);
case FE_DOWNWARD:
if (z > 0.0)
return (x * y);
feholdexcept(&env);
s = x * y;
if (!fetestexcept(FE_INEXACT))
s = nextafterl(s, -INFINITY);
feupdateenv(&env);
return (s);
default: /* FE_UPWARD */
if (z < 0.0)
return (x * y);
feholdexcept(&env);
s = x * y;
if (!fetestexcept(FE_INEXACT))
s = nextafterl(s, INFINITY);
feupdateenv(&env);
return (s);
}
}
if (spread < -LDBL_MANT_DIG) {
feraiseexcept(FE_INEXACT);
if (!isnormal(z))
@ -196,28 +220,49 @@ fmal(long double x, long double y, long double z)
return (z);
}
}
if (spread <= LDBL_MANT_DIG * 2)
zs = ldexpl(zs, -spread);
else
zs = copysignl(LDBL_MIN, zs);
fesetround(FE_TONEAREST);
/*
* Basic approach for round-to-nearest:
*
* (xy.hi, xy.lo) = x * y (exact)
* (r.hi, r.lo) = xy.hi + z (exact)
* adj = xy.lo + r.lo (inexact; low bit is sticky)
* result = r.hi + adj (correctly rounded)
*/
xy = dd_mul(xs, ys);
zs = ldexpl(zs, -spread);
r = dd_add(xy.hi, zs);
r.lo += xy.lo;
if (r.hi == 0.0) {
/*
* When the addends cancel to 0, ensure that the result has
* the correct sign.
*/
fesetround(oround);
volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
return (xy.hi + vzs);
}
spread = ex + ey;
if (spread + ilogbl(r.hi) > -16383) {
fesetround(oround);
r.hi = r.hi + r.lo;
} else {
if (oround != FE_TONEAREST) {
/*
* The result is subnormal, so we round before scaling to
* avoid double rounding.
* There is no need to worry about double rounding in directed
* rounding modes.
*/
p = ldexpl(copysignl(0x1p-16382L, r.hi), -spread);
r2 = dd_add(r.hi, p);
r2.lo += r.lo;
fesetround(oround);
r.hi = (r2.hi + r2.lo) - p;
adj = r.lo + xy.lo;
return (ldexpl(r.hi + adj, spread));
}
return (ldexpl(r.hi, spread));
adj = add_adjusted(r.lo, xy.lo);
if (spread + ilogbl(r.hi) > -16383)
return (ldexpl(r.hi + adj, spread));
else
return (add_and_denormalize(r.hi, adj, spread));
}