stand: gptboot: fix build with xtoolchain-llvm90

ufsread.c grows a dependency on __ashldi3 with llvm90. For gptboot, just
start pulling in ashldi3.c ashrdi3.c lshrdi3.c into libsa for all archs as
the number of archs requiring one or more of them keeps growing. qdivrem.c
and quad.h can be trivially kicked out of libsa if we start pulling these
from compiler-rt as qdivrem was only used to implement umoddi3, divdi3,
moddi3 (also in qdivrem.c).

Reviewed by:	imp
MFC after:	1 week
Differential Revision:	https://reviews.freebsd.org/D21291
This commit is contained in:
Kyle Evans 2019-08-16 20:09:20 +00:00
parent 37ac567ea7
commit 80746f9f83
3 changed files with 10 additions and 478 deletions

View File

@ -28,7 +28,7 @@ SRCS+= ntoh.c
.PATH: ${LIBCSRC}/string
SRCS+= bcmp.c bcopy.c bzero.c ffs.c fls.c \
memccpy.c memchr.c memcmp.c memcpy.c memmove.c memset.c \
qdivrem.c strcat.c strchr.c strcmp.c strcpy.c stpcpy.c stpncpy.c \
strcat.c strchr.c strcmp.c strcpy.c stpcpy.c stpncpy.c \
strcspn.c strlcat.c strlcpy.c strlen.c strncat.c strncmp.c strncpy.c \
strnlen.c strpbrk.c strrchr.c strsep.c strspn.c strstr.c strtok.c swab.c
@ -53,14 +53,6 @@ CFLAGS.clang+= -mno-movt
.endif
CFLAGS.clang+= -mfpu=none
# Compiler support functions
.PATH: ${SRCTOP}/contrib/compiler-rt/lib/builtins/
# __clzsi2 and ctzsi2 for various builtin functions
SRCS+= clzsi2.c ctzsi2.c
# Divide and modulus functions called by the compiler
SRCS+= divmoddi4.c divmodsi4.c divdi3.c divsi3.c moddi3.c modsi3.c
SRCS+= udivmoddi4.c udivmodsi4.c udivdi3.c udivsi3.c umoddi3.c umodsi3.c
.PATH: ${SRCTOP}/contrib/compiler-rt/lib/builtins/arm/
SRCS+= aeabi_idivmod.S aeabi_ldivmod.S aeabi_uidivmod.S aeabi_uldivmod.S
SRCS+= aeabi_memcmp.S aeabi_memcpy.S aeabi_memmove.S aeabi_memset.S
@ -70,15 +62,17 @@ SRCS+= aeabi_memcmp.S aeabi_memcpy.S aeabi_memmove.S aeabi_memset.S
.PATH: ${LIBCSRC}/${MACHINE_CPUARCH}/gen
.endif
.if ${MACHINE_CPUARCH} == "powerpc"
.PATH: ${LIBCSRC}/quad
# Compiler support functions
.PATH: ${SRCTOP}/contrib/compiler-rt/lib/builtins/
# __clzsi2 and ctzsi2 for various builtin functions
SRCS+= clzsi2.c ctzsi2.c
# Divide and modulus functions called by the compiler
SRCS+= divmoddi4.c divmodsi4.c divdi3.c divsi3.c moddi3.c modsi3.c
SRCS+= udivmoddi4.c udivmodsi4.c udivdi3.c udivsi3.c umoddi3.c umodsi3.c
SRCS+= ashldi3.c ashrdi3.c lshrdi3.c
SRCS+= syncicache.c
.endif
.if ${MACHINE_CPUARCH} == "mips"
.PATH: ${LIBCSRC}/quad
SRCS+= ashldi3.c ashrdi3.c lshrdi3.c
.if ${MACHINE_CPUARCH} == "powerpc"
SRCS+= syncicache.c
.endif
# uuid functions from libc

View File

@ -1,348 +0,0 @@
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From: Id: qdivrem.c,v 1.7 1997/11/07 09:20:40 phk Exp
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
* section 4.3.1, pp. 257--259.
*/
#include "quad.h"
#define B (1 << HALF_BITS) /* digit base */
/* Combine two `digits' to make a single two-digit number. */
#define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
_Static_assert(sizeof(int) / 2 == sizeof(short),
"Bitwise functions in libstand are broken on this architecture\n");
/* select a type for digits in base B: use unsigned short if they fit */
typedef unsigned short digit;
/*
* Shift p[0]..p[len] left `sh' bits, ignoring any bits that
* `fall out' the left (there never will be any such anyway).
* We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
*/
static void
shl(digit *p, int len, int sh)
{
int i;
for (i = 0; i < len; i++)
p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
p[i] = LHALF(p[i] << sh);
}
/*
* __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
*
* We do this in base 2-sup-HALF_BITS, so that all intermediate products
* fit within u_int. As a consequence, the maximum length dividend and
* divisor are 4 `digits' in this base (they are shorter if they have
* leading zeros).
*/
u_quad_t
__qdivrem(uq, vq, arq)
u_quad_t uq, vq, *arq;
{
union uu tmp;
digit *u, *v, *q;
digit v1, v2;
u_int qhat, rhat, t;
int m, n, d, j, i;
digit uspace[5], vspace[5], qspace[5];
/*
* Take care of special cases: divide by zero, and u < v.
*/
if (vq == 0) {
/* divide by zero. */
static volatile const unsigned int zero = 0;
tmp.ul[H] = tmp.ul[L] = 1 / zero;
if (arq)
*arq = uq;
return (tmp.q);
}
if (uq < vq) {
if (arq)
*arq = uq;
return (0);
}
u = &uspace[0];
v = &vspace[0];
q = &qspace[0];
/*
* Break dividend and divisor into digits in base B, then
* count leading zeros to determine m and n. When done, we
* will have:
* u = (u[1]u[2]...u[m+n]) sub B
* v = (v[1]v[2]...v[n]) sub B
* v[1] != 0
* 1 < n <= 4 (if n = 1, we use a different division algorithm)
* m >= 0 (otherwise u < v, which we already checked)
* m + n = 4
* and thus
* m = 4 - n <= 2
*/
tmp.uq = uq;
u[0] = 0;
u[1] = HHALF(tmp.ul[H]);
u[2] = LHALF(tmp.ul[H]);
u[3] = HHALF(tmp.ul[L]);
u[4] = LHALF(tmp.ul[L]);
tmp.uq = vq;
v[1] = HHALF(tmp.ul[H]);
v[2] = LHALF(tmp.ul[H]);
v[3] = HHALF(tmp.ul[L]);
v[4] = LHALF(tmp.ul[L]);
for (n = 4; v[1] == 0; v++) {
if (--n == 1) {
u_int rbj; /* r*B+u[j] (not root boy jim) */
digit q1, q2, q3, q4;
/*
* Change of plan, per exercise 16.
* r = 0;
* for j = 1..4:
* q[j] = floor((r*B + u[j]) / v),
* r = (r*B + u[j]) % v;
* We unroll this completely here.
*/
t = v[2]; /* nonzero, by definition */
q1 = u[1] / t;
rbj = COMBINE(u[1] % t, u[2]);
q2 = rbj / t;
rbj = COMBINE(rbj % t, u[3]);
q3 = rbj / t;
rbj = COMBINE(rbj % t, u[4]);
q4 = rbj / t;
if (arq)
*arq = rbj % t;
tmp.ul[H] = COMBINE(q1, q2);
tmp.ul[L] = COMBINE(q3, q4);
return (tmp.q);
}
}
/*
* By adjusting q once we determine m, we can guarantee that
* there is a complete four-digit quotient at &qspace[1] when
* we finally stop.
*/
for (m = 4 - n; u[1] == 0; u++)
m--;
for (i = 4 - m; --i >= 0;)
q[i] = 0;
q += 4 - m;
/*
* Here we run Program D, translated from MIX to C and acquiring
* a few minor changes.
*
* D1: choose multiplier 1 << d to ensure v[1] >= B/2.
*/
d = 0;
for (t = v[1]; t < B / 2; t <<= 1)
d++;
if (d > 0) {
shl(&u[0], m + n, d); /* u <<= d */
shl(&v[1], n - 1, d); /* v <<= d */
}
/*
* D2: j = 0.
*/
j = 0;
v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
v2 = v[2]; /* for D3 */
do {
digit uj0, uj1, uj2;
/*
* D3: Calculate qhat (\^q, in TeX notation).
* Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
* let rhat = (u[j]*B + u[j+1]) mod v[1].
* While rhat < B and v[2]*qhat > rhat*B+u[j+2],
* decrement qhat and increase rhat correspondingly.
* Note that if rhat >= B, v[2]*qhat < rhat*B.
*/
uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
uj1 = u[j + 1]; /* for D3 only */
uj2 = u[j + 2]; /* for D3 only */
if (uj0 == v1) {
qhat = B;
rhat = uj1;
goto qhat_too_big;
} else {
u_int nn = COMBINE(uj0, uj1);
qhat = nn / v1;
rhat = nn % v1;
}
while (v2 * qhat > COMBINE(rhat, uj2)) {
qhat_too_big:
qhat--;
if ((rhat += v1) >= B)
break;
}
/*
* D4: Multiply and subtract.
* The variable `t' holds any borrows across the loop.
* We split this up so that we do not require v[0] = 0,
* and to eliminate a final special case.
*/
for (t = 0, i = n; i > 0; i--) {
t = u[i + j] - v[i] * qhat - t;
u[i + j] = LHALF(t);
t = (B - HHALF(t)) & (B - 1);
}
t = u[j] - t;
u[j] = LHALF(t);
/*
* D5: test remainder.
* There is a borrow if and only if HHALF(t) is nonzero;
* in that (rare) case, qhat was too large (by exactly 1).
* Fix it by adding v[1..n] to u[j..j+n].
*/
if (HHALF(t)) {
qhat--;
for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
t += u[i + j] + v[i];
u[i + j] = LHALF(t);
t = HHALF(t);
}
u[j] = LHALF(u[j] + t);
}
q[j] = qhat;
} while (++j <= m); /* D7: loop on j. */
/*
* If caller wants the remainder, we have to calculate it as
* u[m..m+n] >> d (this is at most n digits and thus fits in
* u[m+1..m+n], but we may need more source digits).
*/
if (arq) {
if (d) {
for (i = m + n; i > m; --i)
u[i] = (u[i] >> d) |
LHALF(u[i - 1] << (HALF_BITS - d));
u[i] = 0;
}
tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
*arq = tmp.q;
}
tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
return (tmp.q);
}
/*
* Divide two unsigned quads.
*/
u_quad_t
__udivdi3(a, b)
u_quad_t a, b;
{
return (__qdivrem(a, b, (u_quad_t *)0));
}
/*
* Return remainder after dividing two unsigned quads.
*/
u_quad_t
__umoddi3(a, b)
u_quad_t a, b;
{
u_quad_t r;
(void)__qdivrem(a, b, &r);
return (r);
}
/*
* Divide two signed quads.
* ??? if -1/2 should produce -1 on this machine, this code is wrong
*/
quad_t
__divdi3(a, b)
quad_t a, b;
{
u_quad_t ua, ub, uq;
int neg;
if (a < 0)
ua = -(u_quad_t)a, neg = 1;
else
ua = a, neg = 0;
if (b < 0)
ub = -(u_quad_t)b, neg ^= 1;
else
ub = b;
uq = __qdivrem(ua, ub, (u_quad_t *)0);
return (neg ? -uq : uq);
}
/*
* Return remainder after dividing two signed quads.
*
* XXX
* If -1/2 should produce -1 on this machine, this code is wrong.
*/
quad_t
__moddi3(a, b)
quad_t a, b;
{
u_quad_t ua, ub, ur;
int neg;
if (a < 0)
ua = -(u_quad_t)a, neg = 1;
else
ua = a, neg = 0;
if (b < 0)
ub = -(u_quad_t)b;
else
ub = b;
(void)__qdivrem(ua, ub, &ur);
return (neg ? -ur : ur);
}

View File

@ -1,114 +0,0 @@
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)quad.h 8.1 (Berkeley) 6/4/93
* $FreeBSD$
*/
/*
* Quad arithmetic.
*
* This library makes the following assumptions:
*
* - The type long long (aka quad_t) exists.
*
* - A quad variable is exactly twice as long as `long'.
*
* - The machine's arithmetic is two's complement.
*
* This library can provide 128-bit arithmetic on a machine with 128-bit
* quads and 64-bit longs, for instance, or 96-bit arithmetic on machines
* with 48-bit longs.
*/
#include <sys/cdefs.h>
#include <sys/types.h>
#include <limits.h>
_Static_assert(sizeof(quad_t) == sizeof(int) * 2,
"Bitwise function in libstand are broken on this architecture\n");
/*
* Depending on the desired operation, we view a `long long' (aka quad_t) in
* one or more of the following formats.
*/
union uu {
quad_t q; /* as a (signed) quad */
quad_t uq; /* as an unsigned quad */
int sl[2]; /* as two signed ints */
u_int ul[2]; /* as two unsigned ints */
};
/*
* Define high and low longwords.
*/
#define H _QUAD_HIGHWORD
#define L _QUAD_LOWWORD
/*
* Total number of bits in a quad_t and in the pieces that make it up.
* These are used for shifting, and also below for halfword extraction
* and assembly.
*/
#define QUAD_BITS (sizeof(quad_t) * CHAR_BIT)
#define HALF_BITS (sizeof(int) * CHAR_BIT / 2)
/*
* Extract high and low shortwords from longword, and move low shortword of
* longword to upper half of long, i.e., produce the upper longword of
* ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.)
*
* These are used in the multiply code, to split a longword into upper
* and lower halves, and to reassemble a product as a quad_t, shifted left
* (sizeof(long)*CHAR_BIT/2).
*/
#define HHALF(x) ((x) >> HALF_BITS)
#define LHALF(x) ((x) & ((1 << HALF_BITS) - 1))
#define LHUP(x) ((x) << HALF_BITS)
quad_t __divdi3(quad_t a, quad_t b);
quad_t __moddi3(quad_t a, quad_t b);
u_quad_t __qdivrem(u_quad_t u, u_quad_t v, u_quad_t *rem);
u_quad_t __udivdi3(u_quad_t a, u_quad_t b);
u_quad_t __umoddi3(u_quad_t a, u_quad_t b);
/*
* XXX
* Compensate for gcc 1 vs gcc 2. Gcc 1 defines ?sh?di3's second argument
* as u_quad_t, while gcc 2 correctly uses int. Unfortunately, we still use
* both compilers.
*/
#if __GNUC__ >= 2
typedef unsigned int qshift_t;
#else
typedef u_quad_t qshift_t;
#endif