Don't keep cpu interrupts enabled during the lookup in vm_page_zero_idle().
Lookup isn't done every time the system goes idle now, but it can still take > 1800 instructions in the worst case, so if cpu interrupts are kept disabled then it might lose 20 characters of sio input at 115200 bps. Fixed style in vm_page_zero_idle().
This commit is contained in:
parent
1c8af87873
commit
83eab616cf
@ -38,7 +38,7 @@
|
|||||||
*
|
*
|
||||||
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
|
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
|
||||||
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
|
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
|
||||||
* $Id: vm_machdep.c,v 1.75 1997/02/22 09:33:01 peter Exp $
|
* $Id: vm_machdep.c,v 1.76 1997/03/22 04:28:16 dyson Exp $
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "npx.h"
|
#include "npx.h"
|
||||||
@ -847,41 +847,51 @@ grow(p, sp)
|
|||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* prototype routine to implement the pre-zeroed page mechanism
|
* Implement the pre-zeroed page mechanism.
|
||||||
* this routine is called from the idle loop.
|
* This routine is called from the idle loop.
|
||||||
*/
|
*/
|
||||||
int
|
int
|
||||||
vm_page_zero_idle() {
|
vm_page_zero_idle()
|
||||||
|
{
|
||||||
|
static int free_rover;
|
||||||
vm_page_t m;
|
vm_page_t m;
|
||||||
static int free_rover = 0;
|
int s;
|
||||||
/* XXX
|
|
||||||
* We stop zeroing pages when there are sufficent prezeroed pages.
|
#ifdef WRONG
|
||||||
* This threshold isn't really needed, except we want to
|
if (cnt.v_free_count <= cnt.v_interrupt_free_min)
|
||||||
* bypass unneeded calls to vm_page_list_find, and the
|
return (0);
|
||||||
* associated cache flush and latency. The pre-zero will
|
|
||||||
* still be called when there are significantly more
|
|
||||||
* non-prezeroed pages than zeroed pages. The threshold
|
|
||||||
* of half the number of reserved pages is arbitrary, but
|
|
||||||
* approximately the right amount. Eventually, we should
|
|
||||||
* perhaps interrupt the zero operation when a process
|
|
||||||
* is found to be ready to run.
|
|
||||||
*/
|
|
||||||
if (((cnt.v_free_count - vm_page_zero_count) > (cnt.v_free_reserved / 2)) &&
|
|
||||||
#ifdef NOT_NEEDED
|
|
||||||
(cnt.v_free_count > cnt.v_interrupt_free_min) &&
|
|
||||||
#endif
|
#endif
|
||||||
(m = vm_page_list_find(PQ_FREE, free_rover))) {
|
/*
|
||||||
|
* XXX
|
||||||
|
* We stop zeroing pages when there are sufficent prezeroed pages.
|
||||||
|
* This threshold isn't really needed, except we want to
|
||||||
|
* bypass unneeded calls to vm_page_list_find, and the
|
||||||
|
* associated cache flush and latency. The pre-zero will
|
||||||
|
* still be called when there are significantly more
|
||||||
|
* non-prezeroed pages than zeroed pages. The threshold
|
||||||
|
* of half the number of reserved pages is arbitrary, but
|
||||||
|
* approximately the right amount. Eventually, we should
|
||||||
|
* perhaps interrupt the zero operation when a process
|
||||||
|
* is found to be ready to run.
|
||||||
|
*/
|
||||||
|
if (cnt.v_free_count - vm_page_zero_count <= cnt.v_free_reserved / 2)
|
||||||
|
return (0);
|
||||||
|
s = splvm();
|
||||||
|
enable_intr();
|
||||||
|
m = vm_page_list_find(PQ_FREE, free_rover);
|
||||||
|
if (m != NULL) {
|
||||||
--(*vm_page_queues[m->queue].lcnt);
|
--(*vm_page_queues[m->queue].lcnt);
|
||||||
TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
|
TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
|
||||||
enable_intr();
|
splx(s);
|
||||||
pmap_zero_page(VM_PAGE_TO_PHYS(m));
|
pmap_zero_page(VM_PAGE_TO_PHYS(m));
|
||||||
disable_intr();
|
(void)splvm();
|
||||||
m->queue = PQ_ZERO + m->pc;
|
m->queue = PQ_ZERO + m->pc;
|
||||||
++(*vm_page_queues[m->queue].lcnt);
|
++(*vm_page_queues[m->queue].lcnt);
|
||||||
TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, pageq);
|
TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, pageq);
|
||||||
free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK;
|
free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK;
|
||||||
++vm_page_zero_count;
|
++vm_page_zero_count;
|
||||||
return 1;
|
|
||||||
}
|
}
|
||||||
return 0;
|
splx(s);
|
||||||
|
disable_intr();
|
||||||
|
return (1);
|
||||||
}
|
}
|
||||||
|
@ -38,7 +38,7 @@
|
|||||||
*
|
*
|
||||||
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
|
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
|
||||||
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
|
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
|
||||||
* $Id: vm_machdep.c,v 1.75 1997/02/22 09:33:01 peter Exp $
|
* $Id: vm_machdep.c,v 1.76 1997/03/22 04:28:16 dyson Exp $
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "npx.h"
|
#include "npx.h"
|
||||||
@ -847,41 +847,51 @@ grow(p, sp)
|
|||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* prototype routine to implement the pre-zeroed page mechanism
|
* Implement the pre-zeroed page mechanism.
|
||||||
* this routine is called from the idle loop.
|
* This routine is called from the idle loop.
|
||||||
*/
|
*/
|
||||||
int
|
int
|
||||||
vm_page_zero_idle() {
|
vm_page_zero_idle()
|
||||||
|
{
|
||||||
|
static int free_rover;
|
||||||
vm_page_t m;
|
vm_page_t m;
|
||||||
static int free_rover = 0;
|
int s;
|
||||||
/* XXX
|
|
||||||
* We stop zeroing pages when there are sufficent prezeroed pages.
|
#ifdef WRONG
|
||||||
* This threshold isn't really needed, except we want to
|
if (cnt.v_free_count <= cnt.v_interrupt_free_min)
|
||||||
* bypass unneeded calls to vm_page_list_find, and the
|
return (0);
|
||||||
* associated cache flush and latency. The pre-zero will
|
|
||||||
* still be called when there are significantly more
|
|
||||||
* non-prezeroed pages than zeroed pages. The threshold
|
|
||||||
* of half the number of reserved pages is arbitrary, but
|
|
||||||
* approximately the right amount. Eventually, we should
|
|
||||||
* perhaps interrupt the zero operation when a process
|
|
||||||
* is found to be ready to run.
|
|
||||||
*/
|
|
||||||
if (((cnt.v_free_count - vm_page_zero_count) > (cnt.v_free_reserved / 2)) &&
|
|
||||||
#ifdef NOT_NEEDED
|
|
||||||
(cnt.v_free_count > cnt.v_interrupt_free_min) &&
|
|
||||||
#endif
|
#endif
|
||||||
(m = vm_page_list_find(PQ_FREE, free_rover))) {
|
/*
|
||||||
|
* XXX
|
||||||
|
* We stop zeroing pages when there are sufficent prezeroed pages.
|
||||||
|
* This threshold isn't really needed, except we want to
|
||||||
|
* bypass unneeded calls to vm_page_list_find, and the
|
||||||
|
* associated cache flush and latency. The pre-zero will
|
||||||
|
* still be called when there are significantly more
|
||||||
|
* non-prezeroed pages than zeroed pages. The threshold
|
||||||
|
* of half the number of reserved pages is arbitrary, but
|
||||||
|
* approximately the right amount. Eventually, we should
|
||||||
|
* perhaps interrupt the zero operation when a process
|
||||||
|
* is found to be ready to run.
|
||||||
|
*/
|
||||||
|
if (cnt.v_free_count - vm_page_zero_count <= cnt.v_free_reserved / 2)
|
||||||
|
return (0);
|
||||||
|
s = splvm();
|
||||||
|
enable_intr();
|
||||||
|
m = vm_page_list_find(PQ_FREE, free_rover);
|
||||||
|
if (m != NULL) {
|
||||||
--(*vm_page_queues[m->queue].lcnt);
|
--(*vm_page_queues[m->queue].lcnt);
|
||||||
TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
|
TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
|
||||||
enable_intr();
|
splx(s);
|
||||||
pmap_zero_page(VM_PAGE_TO_PHYS(m));
|
pmap_zero_page(VM_PAGE_TO_PHYS(m));
|
||||||
disable_intr();
|
(void)splvm();
|
||||||
m->queue = PQ_ZERO + m->pc;
|
m->queue = PQ_ZERO + m->pc;
|
||||||
++(*vm_page_queues[m->queue].lcnt);
|
++(*vm_page_queues[m->queue].lcnt);
|
||||||
TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, pageq);
|
TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, pageq);
|
||||||
free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK;
|
free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK;
|
||||||
++vm_page_zero_count;
|
++vm_page_zero_count;
|
||||||
return 1;
|
|
||||||
}
|
}
|
||||||
return 0;
|
splx(s);
|
||||||
|
disable_intr();
|
||||||
|
return (1);
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user