Import the softfloat emulation library, needed for FreeBSD/arm right now.
It should become useless when gcc 3.4 will be imported, as libgcc from gcc 3.4 contains this bits for arm.
This commit is contained in:
parent
bb6bbd6342
commit
85aab3336e
18
lib/libc/softfloat/Makefile.inc
Normal file
18
lib/libc/softfloat/Makefile.inc
Normal file
@ -0,0 +1,18 @@
|
||||
# $NetBSD: Makefile.inc,v 1.3 2003/05/06 08:58:20 rearnsha Exp $
|
||||
# $FreeBSD$
|
||||
|
||||
SOFTFLOAT_BITS?=64
|
||||
.PATH: ${MACHINE_ARCH}/softfloat \
|
||||
${.CURDIR}/softfloat/bits${SOFTFLOAT_BITS} ${.CURDIR}/softfloat
|
||||
|
||||
CFLAGS+= -I${.CURDIR}/${MACHINE_ARCH}/softfloat -I${.CURDIR}/softfloat
|
||||
CFLAGS+= -DSOFTFLOAT_FOR_GCC
|
||||
|
||||
SRCS+= softfloat.c
|
||||
|
||||
SRCS+= fpgetround.c fpsetround.c fpgetmask.c fpsetmask.c \
|
||||
fpgetsticky.c fpsetsticky.c
|
||||
|
||||
SRCS+= eqsf2.c nesf2.c gtsf2.c gesf2.c ltsf2.c lesf2.c negsf2.c \
|
||||
eqdf2.c nedf2.c gtdf2.c gedf2.c ltdf2.c ledf2.c negdf2.c \
|
||||
unordsf2.c unorddf2.c
|
9
lib/libc/softfloat/README.NetBSD
Normal file
9
lib/libc/softfloat/README.NetBSD
Normal file
@ -0,0 +1,9 @@
|
||||
$NetBSD: README.NetBSD,v 1.2 2002/05/21 23:51:05 bjh21 Exp $
|
||||
$FreeBSD$
|
||||
|
||||
This is a modified version of part of John Hauser's SoftFloat 2a package.
|
||||
This version has been heavily modified to support its use with GCC to
|
||||
implement built-in floating-point operations, but compiling
|
||||
softfloat.c without SOFTFLOAT_FOR_GCC defined should get you the same
|
||||
results as from the original.
|
||||
|
40
lib/libc/softfloat/README.txt
Normal file
40
lib/libc/softfloat/README.txt
Normal file
@ -0,0 +1,40 @@
|
||||
$NetBSD: README.txt,v 1.1 2000/06/06 08:15:02 bjh21 Exp $
|
||||
$FreeBSD$
|
||||
|
||||
Package Overview for SoftFloat Release 2a
|
||||
|
||||
John R. Hauser
|
||||
1998 December 13
|
||||
|
||||
|
||||
SoftFloat is a software implementation of floating-point that conforms to
|
||||
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat is
|
||||
distributed in the form of C source code. Compiling the SoftFloat sources
|
||||
generates two things:
|
||||
|
||||
-- A SoftFloat object file (typically `softfloat.o') containing the complete
|
||||
set of IEC/IEEE floating-point routines.
|
||||
|
||||
-- A `timesoftfloat' program for evaluating the speed of the SoftFloat
|
||||
routines. (The SoftFloat module is linked into this program.)
|
||||
|
||||
The SoftFloat package is documented in four text files:
|
||||
|
||||
softfloat.txt Documentation for using the SoftFloat functions.
|
||||
softfloat-source.txt Documentation for compiling SoftFloat.
|
||||
softfloat-history.txt History of major changes to SoftFloat.
|
||||
timesoftfloat.txt Documentation for using `timesoftfloat'.
|
||||
|
||||
Other files in the package comprise the source code for SoftFloat.
|
||||
|
||||
Please be aware that some work is involved in porting this software to other
|
||||
targets. It is not just a matter of getting `make' to complete without
|
||||
error messages. I would have written the code that way if I could, but
|
||||
there are fundamental differences between systems that I can't make go away.
|
||||
You should not attempt to compile SoftFloat without first reading both
|
||||
`softfloat.txt' and `softfloat-source.txt'.
|
||||
|
||||
At the time of this writing, the most up-to-date information about
|
||||
SoftFloat and the latest release can be found at the Web page `http://
|
||||
HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'.
|
||||
|
649
lib/libc/softfloat/bits32/softfloat-macros
Normal file
649
lib/libc/softfloat/bits32/softfloat-macros
Normal file
@ -0,0 +1,649 @@
|
||||
/* $FreeBSD$ */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
the result by setting the least significant bit to 1. The value of `count'
|
||||
can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
The result is stored in the location pointed to by `zPtr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
than 64, the result will be 0. The result is broken into two 32-bit pieces
|
||||
which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64Right(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z0, z1;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
are ``jammed'' into the least significant bit of the result by setting the
|
||||
least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
in particular, if `count' is greater than 64, the result will be either 0
|
||||
or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
nonzero. The result is broken into two 32-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64RightJamming(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z0, z1;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 32 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
by 32 _plus_ the number of bits given in `count'. The shifted result is
|
||||
at most 64 nonzero bits; these are broken into two 32-bit pieces which are
|
||||
stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
off form a third 32-bit result as follows: The _last_ bit shifted off is
|
||||
the most-significant bit of the extra result, and the other 31 bits of the
|
||||
extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
were all zero. This extra result is stored in the location pointed to by
|
||||
`z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
(This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
fixed-point value is shifted right by the number of bits given in `count',
|
||||
and the integer part of the result is returned at the locations pointed to
|
||||
by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
corrupted as described above, and is returned at the location pointed to by
|
||||
`z2Ptr'.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64ExtraRightJamming(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
int16 count,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 32 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 32 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 64 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 31 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' must be less than 32. The result is broken into two 32-bit
|
||||
pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift64Left(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
The value of `count' must be less than 32. The result is broken into three
|
||||
32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift96Left(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
int16 count,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 31 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
|
||||
value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
|
||||
any carry out is lost. The result is broken into two 32-bit pieces which
|
||||
are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add64(
|
||||
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
modulo 2^96, so any carry out is lost. The result is broken into three
|
||||
32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 b2,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
|
||||
64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
2^64, so any borrow out (carry out) is lost. The result is broken into two
|
||||
32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
`z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub64(
|
||||
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
|
||||
the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
|
||||
is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
|
||||
into three 32-bit pieces which are stored at the locations pointed to by
|
||||
`z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 b2,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
|
||||
into two 32-bit pieces which are stored at the locations pointed to by
|
||||
`z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits16 aHigh, aLow, bHigh, bLow;
|
||||
bits32 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>16;
|
||||
bLow = b;
|
||||
bHigh = b>>16;
|
||||
z1 = ( (bits32) aLow ) * bLow;
|
||||
zMiddleA = ( (bits32) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits32) aHigh ) * bLow;
|
||||
z0 = ( (bits32) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
|
||||
zMiddleA <<= 16;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
|
||||
to obtain a 96-bit product. The product is broken into three 32-bit pieces
|
||||
which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
`z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul64By32To96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 b,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2, more1;
|
||||
|
||||
mul32To64( a1, b, &z1, &z2 );
|
||||
mul32To64( a0, b, &z0, &more1 );
|
||||
add64( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
|
||||
64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
|
||||
product. The product is broken into four 32-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul64To128(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr,
|
||||
bits32 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2, z3;
|
||||
bits32 more1, more2;
|
||||
|
||||
mul32To64( a1, b1, &z2, &z3 );
|
||||
mul32To64( a1, b0, &z1, &more2 );
|
||||
add64( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul32To64( a0, b0, &z0, &more1 );
|
||||
add64( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul32To64( a0, b1, &more1, &more2 );
|
||||
add64( more1, more2, 0, z2, &more1, &z2 );
|
||||
add64( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the 32-bit integer quotient obtained by dividing
|
||||
`b' into the 64-bit value formed by concatenating `a0' and `a1'. The
|
||||
divisor `b' must be at least 2^31. If q is the exact quotient truncated
|
||||
toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
|
||||
unsigned integer is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
|
||||
{
|
||||
bits32 b0, b1;
|
||||
bits32 rem0, rem1, term0, term1;
|
||||
bits32 z;
|
||||
|
||||
if ( b <= a0 ) return 0xFFFFFFFF;
|
||||
b0 = b>>16;
|
||||
z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
|
||||
mul32To64( b, z, &term0, &term1 );
|
||||
sub64( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits32) rem0 ) < 0 ) {
|
||||
z -= 0x10000;
|
||||
b1 = b<<16;
|
||||
add64( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<16 ) | ( rem1>>16 );
|
||||
z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
#ifndef SOFTFLOAT_FOR_GCC
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the square root of the 32-bit significand given
|
||||
by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
`aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
case, the approximation returned lies strictly within +/-2 of the exact
|
||||
value.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 index;
|
||||
bits32 z;
|
||||
|
||||
index = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
`a'. If `a' is zero, 32 is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
|
||||
equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
||||
than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
||||
than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
|
||||
equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
2347
lib/libc/softfloat/bits32/softfloat.c
Normal file
2347
lib/libc/softfloat/bits32/softfloat.c
Normal file
File diff suppressed because it is too large
Load Diff
746
lib/libc/softfloat/bits64/softfloat-macros
Normal file
746
lib/libc/softfloat/bits64/softfloat-macros
Normal file
@ -0,0 +1,746 @@
|
||||
/* $NetBSD: softfloat-macros,v 1.1 2002/05/21 23:51:08 bjh21 Exp $ */
|
||||
/* $FreeBSD$ */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
the result by setting the least significant bit to 1. The value of `count'
|
||||
can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
The result is stored in the location pointed to by `zPtr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
the result by setting the least significant bit to 1. The value of `count'
|
||||
can be arbitrarily large; in particular, if `count' is greater than 64, the
|
||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
The result is stored in the location pointed to by `zPtr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
|
||||
{
|
||||
bits64 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
|
||||
_plus_ the number of bits given in `count'. The shifted result is at most
|
||||
64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
|
||||
bits shifted off form a second 64-bit result as follows: The _last_ bit
|
||||
shifted off is the most-significant bit of the extra result, and the other
|
||||
63 bits of the extra result are all zero if and only if _all_but_the_last_
|
||||
bits shifted off were all zero. This extra result is stored in the location
|
||||
pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
|
||||
(This routine makes more sense if `a0' and `a1' are considered to form a
|
||||
fixed-point value with binary point between `a0' and `a1'. This fixed-point
|
||||
value is shifted right by the number of bits given in `count', and the
|
||||
integer part of the result is returned at the location pointed to by
|
||||
`z0Ptr'. The fractional part of the result may be slightly corrupted as
|
||||
described above, and is returned at the location pointed to by `z1Ptr'.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift64ExtraRightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1 != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
than 128, the result will be 0. The result is broken into two 64-bit pieces
|
||||
which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift128Right(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
are ``jammed'' into the least significant bit of the result by setting the
|
||||
least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
in particular, if `count' is greater than 128, the result will be either
|
||||
0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
nonzero. The result is broken into two 64-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift128RightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 128 ) {
|
||||
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
by 64 _plus_ the number of bits given in `count'. The shifted result is
|
||||
at most 128 nonzero bits; these are broken into two 64-bit pieces which are
|
||||
stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
off form a third 64-bit result as follows: The _last_ bit shifted off is
|
||||
the most-significant bit of the extra result, and the other 63 bits of the
|
||||
extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
were all zero. This extra result is stored in the location pointed to by
|
||||
`z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
(This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
fixed-point value is shifted right by the number of bits given in `count',
|
||||
and the integer part of the result is returned at the locations pointed to
|
||||
by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
corrupted as described above, and is returned at the location pointed to by
|
||||
`z2Ptr'.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shift128ExtraRightJamming(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 64 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 128 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 63 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
|
||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
of `count' must be less than 64. The result is broken into two 64-bit
|
||||
pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift128Left(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
The value of `count' must be less than 64. The result is broken into three
|
||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
shortShift192Left(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 63 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
|
||||
value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
|
||||
any carry out is lost. The result is broken into two 64-bit pieces which
|
||||
are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
modulo 2^192, so any carry out is lost. The result is broken into three
|
||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
`z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
add192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
|
||||
128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
2^128, so any borrow out (carry out) is lost. The result is broken into two
|
||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
`z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
|
||||
from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
|
||||
Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
|
||||
result is broken into three 64-bit pieces which are stored at the locations
|
||||
pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
sub192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
|
||||
into two 64-bit pieces which are stored at the locations pointed to by
|
||||
`z0Ptr' and `z1Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits32 aHigh, aLow, bHigh, bLow;
|
||||
bits64 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>32;
|
||||
bLow = b;
|
||||
bHigh = b>>32;
|
||||
z1 = ( (bits64) aLow ) * bLow;
|
||||
zMiddleA = ( (bits64) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits64) aHigh ) * bLow;
|
||||
z0 = ( (bits64) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
|
||||
zMiddleA <<= 32;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
|
||||
`b' to obtain a 192-bit product. The product is broken into three 64-bit
|
||||
pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
`z2Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul128By64To192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, more1;
|
||||
|
||||
mul64To128( a1, b, &z1, &z2 );
|
||||
mul64To128( a0, b, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
|
||||
128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
|
||||
product. The product is broken into four 64-bit pieces which are stored at
|
||||
the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE void
|
||||
mul128To256(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr,
|
||||
bits64 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, z3;
|
||||
bits64 more1, more2;
|
||||
|
||||
mul64To128( a1, b1, &z2, &z3 );
|
||||
mul64To128( a1, b0, &z1, &more2 );
|
||||
add128( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul64To128( a0, b0, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul64To128( a0, b1, &more1, &more2 );
|
||||
add128( more1, more2, 0, z2, &more1, &z2 );
|
||||
add128( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the 64-bit integer quotient obtained by dividing
|
||||
`b' into the 128-bit value formed by concatenating `a0' and `a1'. The
|
||||
divisor `b' must be at least 2^63. If q is the exact quotient truncated
|
||||
toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
|
||||
unsigned integer is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
|
||||
{
|
||||
bits64 b0, b1;
|
||||
bits64 rem0, rem1, term0, term1;
|
||||
bits64 z;
|
||||
|
||||
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
|
||||
b0 = b>>32;
|
||||
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
|
||||
mul64To128( b, z, &term0, &term1 );
|
||||
sub128( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits64) rem0 ) < 0 ) {
|
||||
z -= LIT64( 0x100000000 );
|
||||
b1 = b<<32;
|
||||
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<32 ) | ( rem1>>32 );
|
||||
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
#if !defined(SOFTFLOAT_FOR_GCC) || defined(FLOATX80) || defined(FLOAT128)
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns an approximation to the square root of the 32-bit significand given
|
||||
by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
`aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
case, the approximation returned lies strictly within +/-2 of the exact
|
||||
value.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 idx;
|
||||
bits32 z;
|
||||
|
||||
idx = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ idx ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ idx ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
`a'. If `a' is zero, 32 is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
`a'. If `a' is zero, 64 is returned.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static int8 countLeadingZeros64( bits64 a )
|
||||
{
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < ( (bits64) 1 )<<32 ) {
|
||||
shiftCount += 32;
|
||||
}
|
||||
else {
|
||||
a >>= 32;
|
||||
}
|
||||
shiftCount += countLeadingZeros32( a );
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
|
||||
is equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
|
||||
not equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
Otherwise, returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
5500
lib/libc/softfloat/bits64/softfloat.c
Normal file
5500
lib/libc/softfloat/bits64/softfloat.c
Normal file
File diff suppressed because it is too large
Load Diff
22
lib/libc/softfloat/eqdf2.c
Normal file
22
lib/libc/softfloat/eqdf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: eqdf2.c,v 1.1 2000/06/06 08:15:02 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
flag __eqdf2(float64, float64);
|
||||
|
||||
flag
|
||||
__eqdf2(float64 a, float64 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says !(a == b) */
|
||||
return !float64_eq(a, b);
|
||||
}
|
22
lib/libc/softfloat/eqsf2.c
Normal file
22
lib/libc/softfloat/eqsf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: eqsf2.c,v 1.1 2000/06/06 08:15:03 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
flag __eqsf2(float32, float32);
|
||||
|
||||
flag
|
||||
__eqsf2(float32 a, float32 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says !(a == b) */
|
||||
return !float32_eq(a, b);
|
||||
}
|
60
lib/libc/softfloat/fpgetmask.c
Normal file
60
lib/libc/softfloat/fpgetmask.c
Normal file
@ -0,0 +1,60 @@
|
||||
/* $NetBSD: fpgetmask.c,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by Neil A. Carson and Mark Brinicombe
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the NetBSD
|
||||
* Foundation, Inc. and its contributors.
|
||||
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "namespace.h"
|
||||
|
||||
#include <ieeefp.h>
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
#include "softfloat-for-gcc.h"
|
||||
#endif
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#ifdef __weak_alias
|
||||
__weak_alias(fpgetmask,_fpgetmask)
|
||||
#endif
|
||||
|
||||
fp_except
|
||||
fpgetmask(void)
|
||||
{
|
||||
|
||||
return float_exception_mask;
|
||||
}
|
60
lib/libc/softfloat/fpgetround.c
Normal file
60
lib/libc/softfloat/fpgetround.c
Normal file
@ -0,0 +1,60 @@
|
||||
/* $NetBSD: fpgetround.c,v 1.2 2002/01/13 21:45:53 thorpej Exp $ */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by Neil A. Carson and Mark Brinicombe
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the NetBSD
|
||||
* Foundation, Inc. and its contributors.
|
||||
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "namespace.h"
|
||||
|
||||
#include <ieeefp.h>
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
#include "softfloat-for-gcc.h"
|
||||
#endif
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#ifdef __weak_alias
|
||||
__weak_alias(fpgetround,_fpgetround)
|
||||
#endif
|
||||
|
||||
fp_rnd_t
|
||||
fpgetround(void)
|
||||
{
|
||||
|
||||
return float_rounding_mode;
|
||||
}
|
60
lib/libc/softfloat/fpgetsticky.c
Normal file
60
lib/libc/softfloat/fpgetsticky.c
Normal file
@ -0,0 +1,60 @@
|
||||
/* $NetBSD: fpgetsticky.c,v 1.2 2002/01/13 21:45:53 thorpej Exp $ */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by Neil A. Carson and Mark Brinicombe
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the NetBSD
|
||||
* Foundation, Inc. and its contributors.
|
||||
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "namespace.h"
|
||||
|
||||
#include <ieeefp.h>
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
#include "softfloat-for-gcc.h"
|
||||
#endif
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#ifdef __weak_alias
|
||||
__weak_alias(fpgetsticky,_fpgetsticky)
|
||||
#endif
|
||||
|
||||
fp_except
|
||||
fpgetsticky(void)
|
||||
{
|
||||
|
||||
return float_exception_flags;
|
||||
}
|
63
lib/libc/softfloat/fpsetmask.c
Normal file
63
lib/libc/softfloat/fpsetmask.c
Normal file
@ -0,0 +1,63 @@
|
||||
/* $NetBSD: fpsetmask.c,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by Neil A. Carson and Mark Brinicombe
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the NetBSD
|
||||
* Foundation, Inc. and its contributors.
|
||||
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "namespace.h"
|
||||
|
||||
#include <ieeefp.h>
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
#include "softfloat-for-gcc.h"
|
||||
#endif
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#ifdef __weak_alias
|
||||
__weak_alias(fpsetmask,_fpsetmask)
|
||||
#endif
|
||||
|
||||
fp_except
|
||||
fpsetmask(fp_except mask)
|
||||
{
|
||||
fp_except old;
|
||||
|
||||
old = float_exception_mask;
|
||||
float_exception_mask = mask;
|
||||
return old;
|
||||
}
|
63
lib/libc/softfloat/fpsetround.c
Normal file
63
lib/libc/softfloat/fpsetround.c
Normal file
@ -0,0 +1,63 @@
|
||||
/* $NetBSD: fpsetround.c,v 1.2 2002/01/13 21:45:53 thorpej Exp $ */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by Neil A. Carson and Mark Brinicombe
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the NetBSD
|
||||
* Foundation, Inc. and its contributors.
|
||||
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "namespace.h"
|
||||
|
||||
#include <ieeefp.h>
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
#include "softfloat-for-gcc.h"
|
||||
#endif
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#ifdef __weak_alias
|
||||
__weak_alias(fpsetround,_fpsetround)
|
||||
#endif
|
||||
|
||||
fp_rnd_t
|
||||
fpsetround(fp_rnd_t rnd_dir)
|
||||
{
|
||||
fp_rnd_t old;
|
||||
|
||||
old = float_rounding_mode;
|
||||
float_rounding_mode = rnd_dir;
|
||||
return old;
|
||||
}
|
63
lib/libc/softfloat/fpsetsticky.c
Normal file
63
lib/libc/softfloat/fpsetsticky.c
Normal file
@ -0,0 +1,63 @@
|
||||
/* $NetBSD: fpsetsticky.c,v 1.2 2002/01/13 21:45:54 thorpej Exp $ */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by Neil A. Carson and Mark Brinicombe
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the NetBSD
|
||||
* Foundation, Inc. and its contributors.
|
||||
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "namespace.h"
|
||||
|
||||
#include <ieeefp.h>
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
#include "softfloat-for-gcc.h"
|
||||
#endif
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#ifdef __weak_alias
|
||||
__weak_alias(fpsetsticky,_fpsetsticky)
|
||||
#endif
|
||||
|
||||
fp_except
|
||||
fpsetsticky(fp_except except)
|
||||
{
|
||||
fp_except old;
|
||||
|
||||
old = float_exception_flags;
|
||||
float_exception_flags = except;
|
||||
return old;
|
||||
}
|
22
lib/libc/softfloat/gedf2.c
Normal file
22
lib/libc/softfloat/gedf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: gedf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __gedf2(float64, float64);
|
||||
|
||||
flag
|
||||
__gedf2(float64 a, float64 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says (a >= b) - 1 */
|
||||
return float64_le(b, a) - 1;
|
||||
}
|
22
lib/libc/softfloat/gesf2.c
Normal file
22
lib/libc/softfloat/gesf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: gesf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __gesf2(float32, float32);
|
||||
|
||||
flag
|
||||
__gesf2(float32 a, float32 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says (a >= b) - 1 */
|
||||
return float32_le(b, a) - 1;
|
||||
}
|
22
lib/libc/softfloat/gtdf2.c
Normal file
22
lib/libc/softfloat/gtdf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: gtdf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __gtdf2(float64, float64);
|
||||
|
||||
flag
|
||||
__gtdf2(float64 a, float64 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says a > b */
|
||||
return float64_lt(b, a);
|
||||
}
|
22
lib/libc/softfloat/gtsf2.c
Normal file
22
lib/libc/softfloat/gtsf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: gtsf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __gtsf2(float32, float32);
|
||||
|
||||
flag
|
||||
__gtsf2(float32 a, float32 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says a > b */
|
||||
return float32_lt(b, a);
|
||||
}
|
22
lib/libc/softfloat/ledf2.c
Normal file
22
lib/libc/softfloat/ledf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: ledf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __ledf2(float64, float64);
|
||||
|
||||
flag
|
||||
__ledf2(float64 a, float64 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says 1 - (a <= b) */
|
||||
return 1 - float64_le(a, b);
|
||||
}
|
22
lib/libc/softfloat/lesf2.c
Normal file
22
lib/libc/softfloat/lesf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: lesf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __lesf2(float32, float32);
|
||||
|
||||
flag
|
||||
__lesf2(float32 a, float32 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says 1 - (a <= b) */
|
||||
return 1 - float32_le(a, b);
|
||||
}
|
22
lib/libc/softfloat/ltdf2.c
Normal file
22
lib/libc/softfloat/ltdf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: ltdf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __ltdf2(float64, float64);
|
||||
|
||||
flag
|
||||
__ltdf2(float64 a, float64 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says -(a < b) */
|
||||
return -float64_lt(a, b);
|
||||
}
|
22
lib/libc/softfloat/ltsf2.c
Normal file
22
lib/libc/softfloat/ltsf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: ltsf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __ltsf2(float32, float32);
|
||||
|
||||
flag
|
||||
__ltsf2(float32 a, float32 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says -(a < b) */
|
||||
return -float32_lt(a, b);
|
||||
}
|
22
lib/libc/softfloat/nedf2.c
Normal file
22
lib/libc/softfloat/nedf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: nedf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __nedf2(float64, float64);
|
||||
|
||||
flag
|
||||
__nedf2(float64 a, float64 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says a != b */
|
||||
return !float64_eq(a, b);
|
||||
}
|
22
lib/libc/softfloat/negdf2.c
Normal file
22
lib/libc/softfloat/negdf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: negdf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
float64 __negdf2(float64);
|
||||
|
||||
float64
|
||||
__negdf2(float64 a)
|
||||
{
|
||||
|
||||
/* libgcc1.c says -a */
|
||||
return a ^ FLOAT64_MANGLE(0x8000000000000000ULL);
|
||||
}
|
22
lib/libc/softfloat/negsf2.c
Normal file
22
lib/libc/softfloat/negsf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: negsf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
float32 __negsf2(float32);
|
||||
|
||||
float32
|
||||
__negsf2(float32 a)
|
||||
{
|
||||
|
||||
/* libgcc1.c says INTIFY(-a) */
|
||||
return a ^ 0x80000000;
|
||||
}
|
22
lib/libc/softfloat/nesf2.c
Normal file
22
lib/libc/softfloat/nesf2.c
Normal file
@ -0,0 +1,22 @@
|
||||
/* $NetBSD: nesf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Ben Harris, 2000. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __nesf2(float32, float32);
|
||||
|
||||
flag
|
||||
__nesf2(float32 a, float32 b)
|
||||
{
|
||||
|
||||
/* libgcc1.c says a != b */
|
||||
return !float32_eq(a, b);
|
||||
}
|
43
lib/libc/softfloat/softfloat-for-gcc.h
Normal file
43
lib/libc/softfloat/softfloat-for-gcc.h
Normal file
@ -0,0 +1,43 @@
|
||||
/* $NetBSD: softfloat-for-gcc.h,v 1.6 2003/07/26 19:24:51 salo Exp $ */
|
||||
/* $FreeBSD$ */
|
||||
|
||||
/*
|
||||
* Move private identifiers with external linkage into implementation
|
||||
* namespace. -- Klaus Klein <kleink@NetBSD.org>, May 5, 1999
|
||||
*/
|
||||
#define float_exception_flags _softfloat_float_exception_flags
|
||||
#define float_exception_mask _softfloat_float_exception_mask
|
||||
#define float_rounding_mode _softfloat_float_rounding_mode
|
||||
#define float_raise _softfloat_float_raise
|
||||
/* The following batch are called by GCC through wrappers */
|
||||
#define float32_eq _softfloat_float32_eq
|
||||
#define float32_le _softfloat_float32_le
|
||||
#define float32_lt _softfloat_float32_lt
|
||||
#define float64_eq _softfloat_float64_eq
|
||||
#define float64_le _softfloat_float64_le
|
||||
#define float64_lt _softfloat_float64_lt
|
||||
|
||||
/*
|
||||
* Macros to define functions with the GCC expected names
|
||||
*/
|
||||
|
||||
#define float32_add __addsf3
|
||||
#define float64_add __adddf3
|
||||
#define float32_sub __subsf3
|
||||
#define float64_sub __subdf3
|
||||
#define float32_mul __mulsf3
|
||||
#define float64_mul __muldf3
|
||||
#define float32_div __divsf3
|
||||
#define float64_div __divdf3
|
||||
#define int32_to_float32 __floatsisf
|
||||
#define int32_to_float64 __floatsidf
|
||||
#define int64_to_float32 __floatdisf
|
||||
#define int64_to_float64 __floatdidf
|
||||
#define float32_to_int32_round_to_zero __fixsfsi
|
||||
#define float64_to_int32_round_to_zero __fixdfsi
|
||||
#define float32_to_int64_round_to_zero __fixsfdi
|
||||
#define float64_to_int64_round_to_zero __fixdfdi
|
||||
#define float32_to_uint32_round_to_zero __fixunssfsi
|
||||
#define float64_to_uint32_round_to_zero __fixunsdfsi
|
||||
#define float32_to_float64 __extendsfdf2
|
||||
#define float64_to_float32 __truncdfsf2
|
53
lib/libc/softfloat/softfloat-history.txt
Normal file
53
lib/libc/softfloat/softfloat-history.txt
Normal file
@ -0,0 +1,53 @@
|
||||
$NetBSD: softfloat-history.txt,v 1.1 2000/06/06 08:15:08 bjh21 Exp $
|
||||
$FreeBSD$
|
||||
|
||||
History of Major Changes to SoftFloat, up to Release 2a
|
||||
|
||||
John R. Hauser
|
||||
1998 December 16
|
||||
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 2a (1998 December)
|
||||
|
||||
-- Added functions to convert between 64-bit integers (int64) and all
|
||||
supported floating-point formats.
|
||||
|
||||
-- Fixed a bug in all 64-bit-version square root functions except
|
||||
`float32_sqrt' that caused the result sometimes to be off by 1 unit in
|
||||
the last place (1 ulp) from what it should be. (Bug discovered by Paul
|
||||
Donahue.)
|
||||
|
||||
-- Improved the makefiles.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 2 (1997 June)
|
||||
|
||||
-- Created the 64-bit (bits64) version, adding the floatx80 and float128
|
||||
formats.
|
||||
|
||||
-- Changed the source directory structure, splitting the sources into a
|
||||
`bits32' and a `bits64' version. Renamed `environment.h' to `milieu.h'
|
||||
(to avoid confusion with environment variables).
|
||||
|
||||
-- Fixed a small error that caused `float64_round_to_int' often to round the
|
||||
wrong way in nearest/even mode when the operand was between 2^20 and 2^21
|
||||
and halfway between two integers.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 1a (1996 July)
|
||||
|
||||
-- Corrected a mistake that caused borderline underflow cases not to raise
|
||||
the underflow flag when they should have. (Problem reported by Doug
|
||||
Priest.)
|
||||
|
||||
-- Added the `float_detect_tininess' variable to control whether tininess is
|
||||
detected before or after rounding.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 1 (1996 July)
|
||||
|
||||
-- Original release.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
384
lib/libc/softfloat/softfloat-source.txt
Normal file
384
lib/libc/softfloat/softfloat-source.txt
Normal file
@ -0,0 +1,384 @@
|
||||
$NetBSD: softfloat-source.txt,v 1.1 2000/06/06 08:15:10 bjh21 Exp $
|
||||
$FreeBSD$
|
||||
|
||||
SoftFloat Release 2a Source Documentation
|
||||
|
||||
John R. Hauser
|
||||
1998 December 14
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Introduction
|
||||
|
||||
SoftFloat is a software implementation of floating-point that conforms to
|
||||
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat can
|
||||
support four floating-point formats: single precision, double precision,
|
||||
extended double precision, and quadruple precision. All operations required
|
||||
by the IEEE Standard are implemented, except for conversions to and from
|
||||
decimal. SoftFloat is distributed in the form of C source code, so a
|
||||
C compiler is needed to compile the code. Support for the extended double-
|
||||
precision and quadruple-precision formats is dependent on the C compiler
|
||||
implementing a 64-bit integer type.
|
||||
|
||||
This document gives information needed for compiling and/or porting
|
||||
SoftFloat.
|
||||
|
||||
The source code for SoftFloat is intended to be relatively machine-
|
||||
independent and should be compilable using any ISO/ANSI C compiler. At the
|
||||
time of this writing, SoftFloat has been successfully compiled with the GNU
|
||||
C Compiler (`gcc') for several platforms.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Limitations
|
||||
|
||||
SoftFloat as written requires an ISO/ANSI-style C compiler. No attempt has
|
||||
been made to accomodate compilers that are not ISO-conformant. Older ``K&R-
|
||||
style'' compilers are not adequate for compiling SoftFloat. All testing I
|
||||
have done so far has been with the GNU C Compiler. Compilation with other
|
||||
compilers should be possible but has not been tested.
|
||||
|
||||
The SoftFloat sources assume that source code file names can be longer than
|
||||
8 characters. In order to compile under an MS-DOS-type system, many of the
|
||||
source files will need to be renamed, and the source and makefiles edited
|
||||
appropriately. Once compiled, the SoftFloat binary does not depend on the
|
||||
existence of long file names.
|
||||
|
||||
The underlying machine is assumed to be binary with a word size that is a
|
||||
power of 2. Bytes are 8 bits. Support for the extended double-precision
|
||||
and quadruple-precision formats depends on the C compiler implementing
|
||||
a 64-bit integer type. If the largest integer type supported by the
|
||||
C compiler is 32 bits, SoftFloat is limited to the single- and double-
|
||||
precision formats.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Contents
|
||||
|
||||
Introduction
|
||||
Limitations
|
||||
Contents
|
||||
Legal Notice
|
||||
SoftFloat Source Directory Structure
|
||||
SoftFloat Source Files
|
||||
processors/*.h
|
||||
softfloat/bits*/*/softfloat.h
|
||||
softfloat/bits*/*/milieu.h
|
||||
softfloat/bits*/*/softfloat-specialize
|
||||
softfloat/bits*/softfloat-macros
|
||||
softfloat/bits*/softfloat.c
|
||||
Steps to Creating a `softfloat.o'
|
||||
Making `softfloat.o' a Library
|
||||
Testing SoftFloat
|
||||
Timing SoftFloat
|
||||
Compiler Options and Efficiency
|
||||
Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'
|
||||
Contact Information
|
||||
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
SoftFloat was written by John R. Hauser. This work was made possible in
|
||||
part by the International Computer Science Institute, located at Suite 600,
|
||||
1947 Center Street, Berkeley, California 94704. Funding was partially
|
||||
provided by the National Science Foundation under grant MIP-9311980. The
|
||||
original version of this code was written as part of a project to build
|
||||
a fixed-point vector processor in collaboration with the University of
|
||||
California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
SoftFloat Source Directory Structure
|
||||
|
||||
Because SoftFloat is targeted to multiple platforms, its source code
|
||||
is slightly scattered between target-specific and target-independent
|
||||
directories and files. The directory structure is as follows:
|
||||
|
||||
processors
|
||||
softfloat
|
||||
bits64
|
||||
templates
|
||||
386-Win32-gcc
|
||||
SPARC-Solaris-gcc
|
||||
bits32
|
||||
templates
|
||||
386-Win32-gcc
|
||||
SPARC-Solaris-gcc
|
||||
|
||||
The two topmost directories and their contents are:
|
||||
|
||||
softfloat - Most of the source code needed for SoftFloat.
|
||||
processors - Target-specific header files that are not specific to
|
||||
SoftFloat.
|
||||
|
||||
The `softfloat' directory is further split into two parts:
|
||||
|
||||
bits64 - SoftFloat implementation using 64-bit integers.
|
||||
bits32 - SoftFloat implementation using only 32-bit integers.
|
||||
|
||||
Within these directories are subdirectories for each of the targeted
|
||||
platforms. The SoftFloat source code is distributed with targets
|
||||
`386-Win32-gcc' and `SPARC-Solaris-gcc' (and perhaps others) already
|
||||
prepared for both the 32-bit and 64-bit implementations. Source files that
|
||||
are not within these target-specific subdirectories are intended to be
|
||||
target-independent.
|
||||
|
||||
The naming convention used for the target-specific directories is
|
||||
`<processor>-<executable-type>-<compiler>'. The names of the supplied
|
||||
target directories should be interpreted as follows:
|
||||
|
||||
<processor>:
|
||||
386 - Intel 386-compatible processor.
|
||||
SPARC - SPARC processor (as used by Sun machines).
|
||||
<executable-type>:
|
||||
Win32 - Microsoft Win32 executable.
|
||||
Solaris - Sun Solaris executable.
|
||||
<compiler>:
|
||||
gcc - GNU C Compiler.
|
||||
|
||||
You do not need to maintain this convention if you do not want to.
|
||||
|
||||
Alongside the supplied target-specific directories is a `templates'
|
||||
directory containing a set of ``generic'' target-specific source files. A
|
||||
new target directory can be created by copying the `templates' directory and
|
||||
editing the files inside. (Complete instructions for porting SoftFloat to a
|
||||
new target are in the section _Steps_to_Creating_a_`softfloat.o'_.) Note
|
||||
that the `templates' directory will not work as a target directory without
|
||||
some editing. To avoid confusion, it would be wise to refrain from editing
|
||||
the files inside `templates' directly.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
SoftFloat Source Files
|
||||
|
||||
The purpose of each source file is described below. In the following,
|
||||
the `*' symbol is used in place of the name of a specific target, such as
|
||||
`386-Win32-gcc' or `SPARC-Solaris-gcc', or in place of some other text, as
|
||||
in `bits*' for either `bits32' or `bits64'.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
processors/*.h
|
||||
|
||||
The target-specific `processors' header file defines integer types
|
||||
of various sizes, and also defines certain C preprocessor macros that
|
||||
characterize the target. The two examples supplied are `386-gcc.h' and
|
||||
`SPARC-gcc.h'. The naming convention used for processor header files is
|
||||
`<processor>-<compiler>.h'.
|
||||
|
||||
If 64-bit integers are supported by the compiler, the macro name `BITS64'
|
||||
should be defined here along with the corresponding 64-bit integer
|
||||
types. In addition, the function-like macro `LIT64' must be defined for
|
||||
constructing 64-bit integer literals (constants). The `LIT64' macro is used
|
||||
consistently in the SoftFloat code to annotate 64-bit literals.
|
||||
|
||||
If `BITS64' is not defined, only the 32-bit version of SoftFloat can be
|
||||
compiled. If `BITS64' _is_ defined, either can be compiled.
|
||||
|
||||
If an inlining attribute (such as an `inline' keyword) is provided by the
|
||||
compiler, the macro `INLINE' should be defined to the appropriate keyword.
|
||||
If not, `INLINE' can be set to the keyword `static'. The `INLINE' macro
|
||||
appears in the SoftFloat source code before every function that should
|
||||
be inlined by the compiler. SoftFloat depends on inlining to obtain
|
||||
good speed. Even if inlining cannot be forced with a language keyword,
|
||||
the compiler may still be able to perform inlining on its own as an
|
||||
optimization. If a command-line option is needed to convince the compiler
|
||||
to perform this optimization, this should be assured in the makefile. (See
|
||||
the section _Compiler_Options_and_Efficiency_ below.)
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/*/softfloat.h
|
||||
|
||||
The target-specific `softfloat.h' header file defines the SoftFloat
|
||||
interface as seen by clients.
|
||||
|
||||
Unlike the actual function definitions in `softfloat.c', the declarations
|
||||
in `softfloat.h' do not use any of the types defined by the `processors'
|
||||
header file. This is done so that clients will not have to include the
|
||||
`processors' header file in order to use SoftFloat. Nevertheless, the
|
||||
target-specific declarations in `softfloat.h' must match what `softfloat.c'
|
||||
expects. For example, if `int32' is defined as `int' in the `processors'
|
||||
header file, then in `softfloat.h' the output of `float32_to_int32' should
|
||||
be stated as `int', although in `softfloat.c' it is given in target-
|
||||
independent form as `int32'.
|
||||
|
||||
For the `bits64' implementation of SoftFloat, the macro names `FLOATX80' and
|
||||
`FLOAT128' must be defined in order for the extended double-precision and
|
||||
quadruple-precision formats to be enabled in the code. Conversely, either
|
||||
or both of the extended formats can be disabled by simply removing the
|
||||
`#define' of the respective macro. When an extended format is not enabled,
|
||||
none of the functions that either input or output the format are defined,
|
||||
and no space is taken up in `softfloat.o' by such functions. There is no
|
||||
provision for disabling the usual single- and double-precision formats.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/*/milieu.h
|
||||
|
||||
The target-specific `milieu.h' header file provides declarations that are
|
||||
needed to compile SoftFloat. In addition, deviations from ISO/ANSI C by
|
||||
the compiler (such as names not properly declared in system header files)
|
||||
are corrected in this header if possible.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/*/softfloat-specialize
|
||||
|
||||
This target-specific C source fragment defines:
|
||||
|
||||
-- whether tininess for underflow is detected before or after rounding by
|
||||
default;
|
||||
-- what (if anything) special happens when exceptions are raised;
|
||||
-- how signaling NaNs are distinguished from quiet NaNs;
|
||||
-- the default generated quiet NaNs; and
|
||||
-- how NaNs are propagated from function inputs to output.
|
||||
|
||||
These details are not decided by the IEC/IEEE Standard. This fragment is
|
||||
included verbatim within `softfloat.c' when SoftFloat is compiled.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/softfloat-macros
|
||||
|
||||
This target-independent C source fragment defines a number of arithmetic
|
||||
functions used as primitives within the `softfloat.c' source. Most of the
|
||||
functions defined here are intended to be inlined for efficiency. This
|
||||
fragment is included verbatim within `softfloat.c' when SoftFloat is
|
||||
compiled.
|
||||
|
||||
Target-specific variations on this file are possible. See the section
|
||||
_Processor-Specific_Optimization_of_`softfloat.c'_Using_`softfloat-macros'_
|
||||
below.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/softfloat.c
|
||||
|
||||
The target-independent `softfloat.c' source file contains the body of the
|
||||
SoftFloat implementation.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
The inclusion of the files above within each other (using `#include') can be
|
||||
shown graphically as follows:
|
||||
|
||||
softfloat/bits*/softfloat.c
|
||||
softfloat/bits*/*/milieu.h
|
||||
processors/*.h
|
||||
softfloat/bits*/*/softfloat.h
|
||||
softfloat/bits*/*/softfloat-specialize
|
||||
softfloat/bits*/softfloat-macros
|
||||
|
||||
Note in particular that `softfloat.c' does not include the `processors'
|
||||
header file directly. Rather, `softfloat.c' includes the target-specific
|
||||
`milieu.h' header file, which in turn includes the processor header file.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Steps to Creating a `softfloat.o'
|
||||
|
||||
Porting and/or compiling SoftFloat involves the following steps:
|
||||
|
||||
1. If one does not already exist, create an appropriate `.h' file in the
|
||||
`processors' directory.
|
||||
|
||||
2. If `BITS64' is defined in the `processors' header file, choose whether
|
||||
to compile the 32-bit or 64-bit implementation of SoftFloat. If
|
||||
`BITS64' is not defined, your only choice is the 32-bit implementation.
|
||||
The remaining steps occur within either the `bits32' or `bits64'
|
||||
subdirectories.
|
||||
|
||||
3. If one does not already exist, create an appropriate target-specific
|
||||
subdirectory by copying the given `templates' directory.
|
||||
|
||||
4. In the target-specific subdirectory, edit the files `softfloat-specialize'
|
||||
and `softfloat.h' to define the desired exception handling functions
|
||||
and mode control values. In the `softfloat.h' header file, ensure also
|
||||
that all declarations give the proper target-specific type (such as
|
||||
`int' or `long') corresponding to the target-independent type used in
|
||||
`softfloat.c' (such as `int32'). None of the type names declared in the
|
||||
`processors' header file should appear in `softfloat.h'.
|
||||
|
||||
5. In the target-specific subdirectory, edit the files `milieu.h' and
|
||||
`Makefile' to reflect the current environment.
|
||||
|
||||
6. In the target-specific subdirectory, execute `make'.
|
||||
|
||||
For the targets that are supplied, if the expected compiler is available
|
||||
(usually `gcc'), it should only be necessary to execute `make' in the
|
||||
target-specific subdirectory.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Making `softfloat.o' a Library
|
||||
|
||||
SoftFloat is not made into a software library by the supplied makefile.
|
||||
If desired, `softfloat.o' can easily be put into its own library (in Unix,
|
||||
`softfloat.a') using the usual system tool (in Unix, `ar').
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Testing SoftFloat
|
||||
|
||||
SoftFloat can be tested using the `testsoftfloat' program by the same
|
||||
author. The `testsoftfloat' program is part of the TestFloat package
|
||||
available at the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/
|
||||
TestFloat.html'.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Timing SoftFloat
|
||||
|
||||
A program called `timesoftfloat' for timing the SoftFloat functions is
|
||||
included with the SoftFloat source code. Compiling `timesoftfloat' should
|
||||
pose no difficulties once `softfloat.o' exists. The supplied makefile
|
||||
will create a `timesoftfloat' executable by default after generating
|
||||
`softfloat.o'. See `timesoftfloat.txt' for documentation about using
|
||||
`timesoftfloat'.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Compiler Options and Efficiency
|
||||
|
||||
In order to get good speed with SoftFloat, it is important that the compiler
|
||||
inline the routines that have been marked `INLINE' in the code. Even if
|
||||
inlining cannot be forced by an appropriate definition of the `INLINE'
|
||||
macro, the compiler may still be able to perform inlining on its own as
|
||||
an optimization. In that case, the makefile should be edited to give the
|
||||
compiler whatever option is required to cause it to inline small functions.
|
||||
|
||||
The ability of the processor to do fast shifts has been assumed. Efficiency
|
||||
will not be as good on processors for which this is not the case (such as
|
||||
the original Motorola 68000 or Intel 8086 processors).
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'
|
||||
|
||||
The `softfloat-macros' source fragment defines arithmetic functions used
|
||||
as primitives by `softfloat.c'. This file has been written in a target-
|
||||
independent form. For a given target, it may be possible to improve on
|
||||
these functions using target-specific and/or non-ISO-C features (such
|
||||
as `asm' statements). For example, one of the ``macro'' functions takes
|
||||
two word-size integers and returns their full product in two words.
|
||||
This operation can be done directly in hardware on many processors; but
|
||||
because it is not available through standard C, the function defined in
|
||||
`softfloat-macros' uses four multiplies to achieve the same result.
|
||||
|
||||
To address these shortcomings, a customized version of `softfloat-macros'
|
||||
can be created in any of the target-specific subdirectories. A simple
|
||||
modification to the target's makefile should be sufficient to ensure that
|
||||
the custom version is used instead of the generic one.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Contact Information
|
||||
|
||||
At the time of this writing, the most up-to-date information about
|
||||
SoftFloat and the latest release can be found at the Web page `http://
|
||||
HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'.
|
||||
|
||||
|
490
lib/libc/softfloat/softfloat-specialize
Normal file
490
lib/libc/softfloat/softfloat-specialize
Normal file
@ -0,0 +1,490 @@
|
||||
/* $NetBSD: softfloat-specialize,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */
|
||||
/* $FreeBSD$ */
|
||||
|
||||
/* This is a derivative work. */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
#include <signal.h>
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Underflow tininess-detection mode, statically initialized to default value.
|
||||
(The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
static
|
||||
#endif
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
defined here if desired. It is currently not possible for such a trap to
|
||||
substitute a result value. If traps are not implemented, this routine
|
||||
should be simply `float_exception_flags |= flags;'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
fp_except float_exception_mask = 0;
|
||||
void float_raise( fp_except flags )
|
||||
{
|
||||
|
||||
float_exception_flags |= flags;
|
||||
|
||||
if ( flags & float_exception_mask ) {
|
||||
raise( SIGFPE );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Internal canonical NaN format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated single-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float32_default_nan 0xFFFFFFFF
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
static
|
||||
#endif
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
|
||||
static
|
||||
#endif
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the single-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the single-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two single-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated double-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef SOFTFLOAT_FOR_GCC
|
||||
static
|
||||
#endif
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) <
|
||||
(bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
|
||||
static
|
||||
#endif
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the double-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = FLOAT64_DEMANGLE(a)>>63;
|
||||
z.low = 0;
|
||||
z.high = FLOAT64_DEMANGLE(a)<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the double-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return FLOAT64_MANGLE(
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two double-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
|
||||
b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated extended double-precision NaN. The
|
||||
`high' and `low' values hold the most- and least-significant bits,
|
||||
respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
signaling NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the extended double-precision floating-
|
||||
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the extended
|
||||
double-precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two extended double-precision floating-point values `a' and `b', one
|
||||
of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
`b' is a signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
`low' values hold the most- and least-significant bits, respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
signaling NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the quadruple-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float128ToCommonNaN( float128 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>63;
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
`b' is a signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
373
lib/libc/softfloat/softfloat.txt
Normal file
373
lib/libc/softfloat/softfloat.txt
Normal file
@ -0,0 +1,373 @@
|
||||
$NetBSD: softfloat.txt,v 1.1 2000/06/06 08:15:10 bjh21 Exp $
|
||||
$FreeBSD$
|
||||
|
||||
SoftFloat Release 2a General Documentation
|
||||
|
||||
John R. Hauser
|
||||
1998 December 13
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Introduction
|
||||
|
||||
SoftFloat is a software implementation of floating-point that conforms to
|
||||
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. As many as four
|
||||
formats are supported: single precision, double precision, extended double
|
||||
precision, and quadruple precision. All operations required by the standard
|
||||
are implemented, except for conversions to and from decimal.
|
||||
|
||||
This document gives information about the types defined and the routines
|
||||
implemented by SoftFloat. It does not attempt to define or explain the
|
||||
IEC/IEEE Floating-Point Standard. Details about the standard are available
|
||||
elsewhere.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Limitations
|
||||
|
||||
SoftFloat is written in C and is designed to work with other C code. The
|
||||
SoftFloat header files assume an ISO/ANSI-style C compiler. No attempt
|
||||
has been made to accomodate compilers that are not ISO-conformant. In
|
||||
particular, the distributed header files will not be acceptable to any
|
||||
compiler that does not recognize function prototypes.
|
||||
|
||||
Support for the extended double-precision and quadruple-precision formats
|
||||
depends on a C compiler that implements 64-bit integer arithmetic. If the
|
||||
largest integer format supported by the C compiler is 32 bits, SoftFloat is
|
||||
limited to only single and double precisions. When that is the case, all
|
||||
references in this document to the extended double precision, quadruple
|
||||
precision, and 64-bit integers should be ignored.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Contents
|
||||
|
||||
Introduction
|
||||
Limitations
|
||||
Contents
|
||||
Legal Notice
|
||||
Types and Functions
|
||||
Rounding Modes
|
||||
Extended Double-Precision Rounding Precision
|
||||
Exceptions and Exception Flags
|
||||
Function Details
|
||||
Conversion Functions
|
||||
Standard Arithmetic Functions
|
||||
Remainder Functions
|
||||
Round-to-Integer Functions
|
||||
Comparison Functions
|
||||
Signaling NaN Test Functions
|
||||
Raise-Exception Function
|
||||
Contact Information
|
||||
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
SoftFloat was written by John R. Hauser. This work was made possible in
|
||||
part by the International Computer Science Institute, located at Suite 600,
|
||||
1947 Center Street, Berkeley, California 94704. Funding was partially
|
||||
provided by the National Science Foundation under grant MIP-9311980. The
|
||||
original version of this code was written as part of a project to build
|
||||
a fixed-point vector processor in collaboration with the University of
|
||||
California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Types and Functions
|
||||
|
||||
When 64-bit integers are supported by the compiler, the `softfloat.h' header
|
||||
file defines four types: `float32' (single precision), `float64' (double
|
||||
precision), `floatx80' (extended double precision), and `float128'
|
||||
(quadruple precision). The `float32' and `float64' types are defined in
|
||||
terms of 32-bit and 64-bit integer types, respectively, while the `float128'
|
||||
type is defined as a structure of two 64-bit integers, taking into account
|
||||
the byte order of the particular machine being used. The `floatx80' type
|
||||
is defined as a structure containing one 16-bit and one 64-bit integer, with
|
||||
the machine's byte order again determining the order of the `high' and `low'
|
||||
fields.
|
||||
|
||||
When 64-bit integers are _not_ supported by the compiler, the `softfloat.h'
|
||||
header file defines only two types: `float32' and `float64'. Because
|
||||
ISO/ANSI C guarantees at least one built-in integer type of 32 bits,
|
||||
the `float32' type is identified with an appropriate integer type. The
|
||||
`float64' type is defined as a structure of two 32-bit integers, with the
|
||||
machine's byte order determining the order of the fields.
|
||||
|
||||
In either case, the types in `softfloat.h' are defined such that if a system
|
||||
implements the usual C `float' and `double' types according to the IEC/IEEE
|
||||
Standard, then the `float32' and `float64' types should be indistinguishable
|
||||
in memory from the native `float' and `double' types. (On the other hand,
|
||||
when `float32' or `float64' values are placed in processor registers by
|
||||
the compiler, the type of registers used may differ from those used for the
|
||||
native `float' and `double' types.)
|
||||
|
||||
SoftFloat implements the following arithmetic operations:
|
||||
|
||||
-- Conversions among all the floating-point formats, and also between
|
||||
integers (32-bit and 64-bit) and any of the floating-point formats.
|
||||
|
||||
-- The usual add, subtract, multiply, divide, and square root operations
|
||||
for all floating-point formats.
|
||||
|
||||
-- For each format, the floating-point remainder operation defined by the
|
||||
IEC/IEEE Standard.
|
||||
|
||||
-- For each floating-point format, a ``round to integer'' operation that
|
||||
rounds to the nearest integer value in the same format. (The floating-
|
||||
point formats can hold integer values, of course.)
|
||||
|
||||
-- Comparisons between two values in the same floating-point format.
|
||||
|
||||
The only functions required by the IEC/IEEE Standard that are not provided
|
||||
are conversions to and from decimal.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Rounding Modes
|
||||
|
||||
All four rounding modes prescribed by the IEC/IEEE Standard are implemented
|
||||
for all operations that require rounding. The rounding mode is selected
|
||||
by the global variable `float_rounding_mode'. This variable may be set
|
||||
to one of the values `float_round_nearest_even', `float_round_to_zero',
|
||||
`float_round_down', or `float_round_up'. The rounding mode is initialized
|
||||
to nearest/even.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Extended Double-Precision Rounding Precision
|
||||
|
||||
For extended double precision (`floatx80') only, the rounding precision
|
||||
of the standard arithmetic operations is controlled by the global variable
|
||||
`floatx80_rounding_precision'. The operations affected are:
|
||||
|
||||
floatx80_add floatx80_sub floatx80_mul floatx80_div floatx80_sqrt
|
||||
|
||||
When `floatx80_rounding_precision' is set to its default value of 80, these
|
||||
operations are rounded (as usual) to the full precision of the extended
|
||||
double-precision format. Setting `floatx80_rounding_precision' to 32
|
||||
or to 64 causes the operations listed to be rounded to reduced precision
|
||||
equivalent to single precision (`float32') or to double precision
|
||||
(`float64'), respectively. When rounding to reduced precision, additional
|
||||
bits in the result significand beyond the rounding point are set to zero.
|
||||
The consequences of setting `floatx80_rounding_precision' to a value other
|
||||
than 32, 64, or 80 is not specified. Operations other than the ones listed
|
||||
above are not affected by `floatx80_rounding_precision'.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Exceptions and Exception Flags
|
||||
|
||||
All five exception flags required by the IEC/IEEE Standard are
|
||||
implemented. Each flag is stored as a unique bit in the global variable
|
||||
`float_exception_flags'. The positions of the exception flag bits within
|
||||
this variable are determined by the bit masks `float_flag_inexact',
|
||||
`float_flag_underflow', `float_flag_overflow', `float_flag_divbyzero', and
|
||||
`float_flag_invalid'. The exception flags variable is initialized to all 0,
|
||||
meaning no exceptions.
|
||||
|
||||
An individual exception flag can be cleared with the statement
|
||||
|
||||
float_exception_flags &= ~ float_flag_<exception>;
|
||||
|
||||
where `<exception>' is the appropriate name. To raise a floating-point
|
||||
exception, the SoftFloat function `float_raise' should be used (see below).
|
||||
|
||||
In the terminology of the IEC/IEEE Standard, SoftFloat can detect tininess
|
||||
for underflow either before or after rounding. The choice is made by
|
||||
the global variable `float_detect_tininess', which can be set to either
|
||||
`float_tininess_before_rounding' or `float_tininess_after_rounding'.
|
||||
Detecting tininess after rounding is better because it results in fewer
|
||||
spurious underflow signals. The other option is provided for compatibility
|
||||
with some systems. Like most systems, SoftFloat always detects loss of
|
||||
accuracy for underflow as an inexact result.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Function Details
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Conversion Functions
|
||||
|
||||
All conversions among the floating-point formats are supported, as are all
|
||||
conversions between a floating-point format and 32-bit and 64-bit signed
|
||||
integers. The complete set of conversion functions is:
|
||||
|
||||
int32_to_float32 int64_to_float32
|
||||
int32_to_float64 int64_to_float32
|
||||
int32_to_floatx80 int64_to_floatx80
|
||||
int32_to_float128 int64_to_float128
|
||||
|
||||
float32_to_int32 float32_to_int64
|
||||
float32_to_int32 float64_to_int64
|
||||
floatx80_to_int32 floatx80_to_int64
|
||||
float128_to_int32 float128_to_int64
|
||||
|
||||
float32_to_float64 float32_to_floatx80 float32_to_float128
|
||||
float64_to_float32 float64_to_floatx80 float64_to_float128
|
||||
floatx80_to_float32 floatx80_to_float64 floatx80_to_float128
|
||||
float128_to_float32 float128_to_float64 float128_to_floatx80
|
||||
|
||||
Each conversion function takes one operand of the appropriate type and
|
||||
returns one result. Conversions from a smaller to a larger floating-point
|
||||
format are always exact and so require no rounding. Conversions from 32-bit
|
||||
integers to double precision and larger formats are also exact, and likewise
|
||||
for conversions from 64-bit integers to extended double and quadruple
|
||||
precisions.
|
||||
|
||||
Conversions from floating-point to integer raise the invalid exception if
|
||||
the source value cannot be rounded to a representable integer of the desired
|
||||
size (32 or 64 bits). If the floating-point operand is a NaN, the largest
|
||||
positive integer is returned. Otherwise, if the conversion overflows, the
|
||||
largest integer with the same sign as the operand is returned.
|
||||
|
||||
On conversions to integer, if the floating-point operand is not already an
|
||||
integer value, the operand is rounded according to the current rounding
|
||||
mode as specified by `float_rounding_mode'. Because C (and perhaps other
|
||||
languages) require that conversions to integers be rounded toward zero, the
|
||||
following functions are provided for improved speed and convenience:
|
||||
|
||||
float32_to_int32_round_to_zero float32_to_int64_round_to_zero
|
||||
float64_to_int32_round_to_zero float64_to_int64_round_to_zero
|
||||
floatx80_to_int32_round_to_zero floatx80_to_int64_round_to_zero
|
||||
float128_to_int32_round_to_zero float128_to_int64_round_to_zero
|
||||
|
||||
These variant functions ignore `float_rounding_mode' and always round toward
|
||||
zero.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Standard Arithmetic Functions
|
||||
|
||||
The following standard arithmetic functions are provided:
|
||||
|
||||
float32_add float32_sub float32_mul float32_div float32_sqrt
|
||||
float64_add float64_sub float64_mul float64_div float64_sqrt
|
||||
floatx80_add floatx80_sub floatx80_mul floatx80_div floatx80_sqrt
|
||||
float128_add float128_sub float128_mul float128_div float128_sqrt
|
||||
|
||||
Each function takes two operands, except for `sqrt' which takes only one.
|
||||
The operands and result are all of the same type.
|
||||
|
||||
Rounding of the extended double-precision (`floatx80') functions is affected
|
||||
by the `floatx80_rounding_precision' variable, as explained above in the
|
||||
section _Extended_Double-Precision_Rounding_Precision_.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Remainder Functions
|
||||
|
||||
For each format, SoftFloat implements the remainder function according to
|
||||
the IEC/IEEE Standard. The remainder functions are:
|
||||
|
||||
float32_rem
|
||||
float64_rem
|
||||
floatx80_rem
|
||||
float128_rem
|
||||
|
||||
Each remainder function takes two operands. The operands and result are all
|
||||
of the same type. Given operands x and y, the remainder functions return
|
||||
the value x - n*y, where n is the integer closest to x/y. If x/y is exactly
|
||||
halfway between two integers, n is the even integer closest to x/y. The
|
||||
remainder functions are always exact and so require no rounding.
|
||||
|
||||
Depending on the relative magnitudes of the operands, the remainder
|
||||
functions can take considerably longer to execute than the other SoftFloat
|
||||
functions. This is inherent in the remainder operation itself and is not a
|
||||
flaw in the SoftFloat implementation.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Round-to-Integer Functions
|
||||
|
||||
For each format, SoftFloat implements the round-to-integer function
|
||||
specified by the IEC/IEEE Standard. The functions are:
|
||||
|
||||
float32_round_to_int
|
||||
float64_round_to_int
|
||||
floatx80_round_to_int
|
||||
float128_round_to_int
|
||||
|
||||
Each function takes a single floating-point operand and returns a result of
|
||||
the same type. (Note that the result is not an integer type.) The operand
|
||||
is rounded to an exact integer according to the current rounding mode, and
|
||||
the resulting integer value is returned in the same floating-point format.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Comparison Functions
|
||||
|
||||
The following floating-point comparison functions are provided:
|
||||
|
||||
float32_eq float32_le float32_lt
|
||||
float64_eq float64_le float64_lt
|
||||
floatx80_eq floatx80_le floatx80_lt
|
||||
float128_eq float128_le float128_lt
|
||||
|
||||
Each function takes two operands of the same type and returns a 1 or 0
|
||||
representing either _true_ or _false_. The abbreviation `eq' stands for
|
||||
``equal'' (=); `le' stands for ``less than or equal'' (<=); and `lt' stands
|
||||
for ``less than'' (<).
|
||||
|
||||
The standard greater-than (>), greater-than-or-equal (>=), and not-equal
|
||||
(!=) functions are easily obtained using the functions provided. The
|
||||
not-equal function is just the logical complement of the equal function.
|
||||
The greater-than-or-equal function is identical to the less-than-or-equal
|
||||
function with the operands reversed; and the greater-than function can be
|
||||
obtained from the less-than function in the same way.
|
||||
|
||||
The IEC/IEEE Standard specifies that the less-than-or-equal and less-than
|
||||
functions raise the invalid exception if either input is any kind of NaN.
|
||||
The equal functions, on the other hand, are defined not to raise the invalid
|
||||
exception on quiet NaNs. For completeness, SoftFloat provides the following
|
||||
additional functions:
|
||||
|
||||
float32_eq_signaling float32_le_quiet float32_lt_quiet
|
||||
float64_eq_signaling float64_le_quiet float64_lt_quiet
|
||||
floatx80_eq_signaling floatx80_le_quiet floatx80_lt_quiet
|
||||
float128_eq_signaling float128_le_quiet float128_lt_quiet
|
||||
|
||||
The `signaling' equal functions are identical to the standard functions
|
||||
except that the invalid exception is raised for any NaN input. Likewise,
|
||||
the `quiet' comparison functions are identical to their counterparts except
|
||||
that the invalid exception is not raised for quiet NaNs.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Signaling NaN Test Functions
|
||||
|
||||
The following functions test whether a floating-point value is a signaling
|
||||
NaN:
|
||||
|
||||
float32_is_signaling_nan
|
||||
float64_is_signaling_nan
|
||||
floatx80_is_signaling_nan
|
||||
float128_is_signaling_nan
|
||||
|
||||
The functions take one operand and return 1 if the operand is a signaling
|
||||
NaN and 0 otherwise.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Raise-Exception Function
|
||||
|
||||
SoftFloat provides a function for raising floating-point exceptions:
|
||||
|
||||
float_raise
|
||||
|
||||
The function takes a mask indicating the set of exceptions to raise. No
|
||||
result is returned. In addition to setting the specified exception flags,
|
||||
this function may cause a trap or abort appropriate for the current system.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Contact Information
|
||||
|
||||
At the time of this writing, the most up-to-date information about
|
||||
SoftFloat and the latest release can be found at the Web page `http://
|
||||
HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'.
|
||||
|
||||
|
49
lib/libc/softfloat/templates/milieu.h
Normal file
49
lib/libc/softfloat/templates/milieu.h
Normal file
@ -0,0 +1,49 @@
|
||||
/* $FreeBSD$ */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Include common integer types and flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#include "../../../processors/!!!processor.h"
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Symbolic Boolean literals.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
enum {
|
||||
FALSE = 0,
|
||||
TRUE = 1
|
||||
};
|
||||
|
465
lib/libc/softfloat/templates/softfloat-specialize
Normal file
465
lib/libc/softfloat/templates/softfloat-specialize
Normal file
@ -0,0 +1,465 @@
|
||||
/* $FreeBSD$ */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Underflow tininess-detection mode, statically initialized to default value.
|
||||
(The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
defined here if desired. It is currently not possible for such a trap to
|
||||
substitute a result value. If traps are not implemented, this routine
|
||||
should be simply `float_exception_flags |= flags;'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
void float_raise( int8 flags )
|
||||
{
|
||||
|
||||
float_exception_flags |= flags;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Internal canonical NaN format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated single-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float32_default_nan 0xFFFFFFFF
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the single-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the single-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two single-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated double-precision NaN.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the double-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>63;
|
||||
z.low = 0;
|
||||
z.high = a<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the double-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two double-precision floating-point values `a' and `b', one of which
|
||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= LIT64( 0x0008000000000000 );
|
||||
b |= LIT64( 0x0008000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated extended double-precision NaN. The
|
||||
`high' and `low' values hold the most- and least-significant bits,
|
||||
respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
signaling NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the extended double-precision floating-
|
||||
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the extended
|
||||
double-precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two extended double-precision floating-point values `a' and `b', one
|
||||
of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
`b' is a signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
`low' values hold the most- and least-significant bits, respectively.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
signaling NaN; otherwise returns 0.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the quadruple-precision floating-point NaN
|
||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static commonNaNT float128ToCommonNaN( float128 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>63;
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
precision floating-point format.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
`b' is a signaling NaN, the invalid exception is raised.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
291
lib/libc/softfloat/templates/softfloat.h
Normal file
291
lib/libc/softfloat/templates/softfloat.h
Normal file
@ -0,0 +1,291 @@
|
||||
/* $FreeBSD$ */
|
||||
|
||||
/*
|
||||
===============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2a.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) they include prominent notice that the work is derivative, and (2) they
|
||||
include prominent notice akin to these four paragraphs for those parts of
|
||||
this code that are retained.
|
||||
|
||||
===============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
floating-point format `floatx80'. If this macro is not defined, the
|
||||
`floatx80' type will not be defined, and none of the functions that either
|
||||
input or output the `floatx80' type will be defined. The same applies to
|
||||
the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define FLOATX80
|
||||
#define FLOAT128
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point types.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
typedef !!!bits32 float32;
|
||||
typedef !!!bits64 float64;
|
||||
#ifdef FLOATX80
|
||||
typedef struct {
|
||||
!!!bits16 high;
|
||||
!!!bits64 low;
|
||||
} floatx80;
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
typedef struct {
|
||||
!!!bits64 high, low;
|
||||
} float128;
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern !!!int8 float_detect_tininess;
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point rounding mode.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern !!!int8 float_rounding_mode;
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_to_zero = 1,
|
||||
float_round_down = 2,
|
||||
float_round_up = 3
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE floating-point exception flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern !!!int8 float_exception_flags;
|
||||
enum {
|
||||
float_flag_inexact = 1,
|
||||
float_flag_underflow = 2,
|
||||
float_flag_overflow = 4,
|
||||
float_flag_divbyzero = 8,
|
||||
float_flag_invalid = 16
|
||||
};
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
exception flags.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
void float_raise( !!!int8 );
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float32 int32_to_float32( !!!int32 );
|
||||
float64 int32_to_float64( !!!int32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( !!!int32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( !!!int32 );
|
||||
#endif
|
||||
float32 int64_to_float32( !!!int64 );
|
||||
float64 int64_to_float64( !!!int64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( !!!int64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( !!!int64 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE single-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
!!!int32 float32_to_int32( float32 );
|
||||
!!!int32 float32_to_int32_round_to_zero( float32 );
|
||||
!!!int64 float32_to_int64( float32 );
|
||||
!!!int64 float32_to_int64_round_to_zero( float32 );
|
||||
float64 float32_to_float64( float32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE single-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
!!!flag float32_eq( float32, float32 );
|
||||
!!!flag float32_le( float32, float32 );
|
||||
!!!flag float32_lt( float32, float32 );
|
||||
!!!flag float32_eq_signaling( float32, float32 );
|
||||
!!!flag float32_le_quiet( float32, float32 );
|
||||
!!!flag float32_lt_quiet( float32, float32 );
|
||||
!!!flag float32_is_signaling_nan( float32 );
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE double-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
!!!int32 float64_to_int32( float64 );
|
||||
!!!int32 float64_to_int32_round_to_zero( float64 );
|
||||
!!!int64 float64_to_int64( float64 );
|
||||
!!!int64 float64_to_int64_round_to_zero( float64 );
|
||||
float32 float64_to_float32( float64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE double-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
!!!flag float64_eq( float64, float64 );
|
||||
!!!flag float64_le( float64, float64 );
|
||||
!!!flag float64_lt( float64, float64 );
|
||||
!!!flag float64_eq_signaling( float64, float64 );
|
||||
!!!flag float64_le_quiet( float64, float64 );
|
||||
!!!flag float64_lt_quiet( float64, float64 );
|
||||
!!!flag float64_is_signaling_nan( float64 );
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
!!!int32 floatx80_to_int32( floatx80 );
|
||||
!!!int32 floatx80_to_int32_round_to_zero( floatx80 );
|
||||
!!!int64 floatx80_to_int64( floatx80 );
|
||||
!!!int64 floatx80_to_int64_round_to_zero( floatx80 );
|
||||
float32 floatx80_to_float32( floatx80 );
|
||||
float64 floatx80_to_float64( floatx80 );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision rounding precision. Valid
|
||||
values are 32, 64, and 80.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
extern !!!int8 floatx80_rounding_precision;
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE extended double-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
floatx80 floatx80_round_to_int( floatx80 );
|
||||
floatx80 floatx80_add( floatx80, floatx80 );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
||||
floatx80 floatx80_div( floatx80, floatx80 );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
||||
floatx80 floatx80_sqrt( floatx80 );
|
||||
!!!flag floatx80_eq( floatx80, floatx80 );
|
||||
!!!flag floatx80_le( floatx80, floatx80 );
|
||||
!!!flag floatx80_lt( floatx80, floatx80 );
|
||||
!!!flag floatx80_eq_signaling( floatx80, floatx80 );
|
||||
!!!flag floatx80_le_quiet( floatx80, floatx80 );
|
||||
!!!flag floatx80_lt_quiet( floatx80, floatx80 );
|
||||
!!!flag floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE quadruple-precision conversion routines.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
!!!int32 float128_to_int32( float128 );
|
||||
!!!int32 float128_to_int32_round_to_zero( float128 );
|
||||
!!!int64 float128_to_int64( float128 );
|
||||
!!!int64 float128_to_int64_round_to_zero( float128 );
|
||||
float32 float128_to_float32( float128 );
|
||||
float64 float128_to_float64( float128 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float128_to_floatx80( float128 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
Software IEC/IEEE quadruple-precision operations.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
float128 float128_round_to_int( float128 );
|
||||
float128 float128_add( float128, float128 );
|
||||
float128 float128_sub( float128, float128 );
|
||||
float128 float128_mul( float128, float128 );
|
||||
float128 float128_div( float128, float128 );
|
||||
float128 float128_rem( float128, float128 );
|
||||
float128 float128_sqrt( float128 );
|
||||
!!!flag float128_eq( float128, float128 );
|
||||
!!!flag float128_le( float128, float128 );
|
||||
!!!flag float128_lt( float128, float128 );
|
||||
!!!flag float128_eq_signaling( float128, float128 );
|
||||
!!!flag float128_le_quiet( float128, float128 );
|
||||
!!!flag float128_lt_quiet( float128, float128 );
|
||||
!!!flag float128_is_signaling_nan( float128 );
|
||||
|
||||
#endif
|
||||
|
2639
lib/libc/softfloat/timesoftfloat.c
Normal file
2639
lib/libc/softfloat/timesoftfloat.c
Normal file
File diff suppressed because it is too large
Load Diff
150
lib/libc/softfloat/timesoftfloat.txt
Normal file
150
lib/libc/softfloat/timesoftfloat.txt
Normal file
@ -0,0 +1,150 @@
|
||||
$NetBSD: timesoftfloat.txt,v 1.1 2000/06/06 08:15:11 bjh21 Exp $
|
||||
$FreeBSD$
|
||||
|
||||
Documentation for the `timesoftfloat' Program of SoftFloat Release 2a
|
||||
|
||||
John R. Hauser
|
||||
1998 December 14
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Introduction
|
||||
|
||||
The `timesoftfloat' program evaluates the speed of SoftFloat's floating-
|
||||
point routines. Each routine can be evaluated for every relevant rounding
|
||||
mode, tininess mode, and/or rounding precision.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Contents
|
||||
|
||||
Introduction
|
||||
Contents
|
||||
Legal Notice
|
||||
Executing `timesoftfloat'
|
||||
Options
|
||||
-help
|
||||
-precision32, -precision64, -precision80
|
||||
-nearesteven, -tozero, -down, -up
|
||||
-tininessbefore, -tininessafter
|
||||
Function Sets
|
||||
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
The `timesoftfloat' program was written by John R. Hauser.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Executing `timesoftfloat'
|
||||
|
||||
The `timesoftfloat' program is intended to be invoked from a command line
|
||||
interpreter as follows:
|
||||
|
||||
timesoftfloat [<option>...] <function>
|
||||
|
||||
Here square brackets ([]) indicate optional items, while angled brackets
|
||||
(<>) denote parameters to be filled in. The `<function>' argument is
|
||||
the name of the SoftFloat routine to evaluate, such as `float32_add' or
|
||||
`float64_to_int32'. The allowed options are detailed in the next section,
|
||||
_Options_. If `timesoftfloat' is executed without any arguments, a summary
|
||||
of usage is written. It is also possible to evaluate all machine functions
|
||||
in a single invocation as explained in the section _Function_Sets_ later in
|
||||
this document.
|
||||
|
||||
Ordinarily, a function's speed will be evaulated separately for each of
|
||||
the four rounding modes, one after the other. If the rounding mode is not
|
||||
supposed to have any affect on the results of a function--for instance,
|
||||
some operations do not require rounding--only the nearest/even rounding mode
|
||||
is timed. In the same way, if a function is affected by the way in which
|
||||
underflow tininess is detected, `timesoftfloat' times the function both with
|
||||
tininess detected before rounding and after rounding. For extended double-
|
||||
precision operations affected by rounding precision control, `timesoftfloat'
|
||||
also times the function for all three rounding precision modes, one after
|
||||
the other. Evaluation of a function can be limited to a single rounding
|
||||
mode, a single tininess mode, and/or a single rounding precision with
|
||||
appropriate options (see _Options_).
|
||||
|
||||
For each function and mode evaluated, `timesoftfloat' reports the speed of
|
||||
the function in kops/s, or ``thousands of operations per second''. This
|
||||
unit of measure differs from the traditional MFLOPS (``millions of floating-
|
||||
point operations per second'') only in being a factor of 1000 smaller.
|
||||
(1000 kops/s is exactly 1 MFLOPS.) Speeds are reported in thousands instead
|
||||
of millions because software floating-point often executes at less than
|
||||
1 MFLOPS.
|
||||
|
||||
The speeds reported by `timesoftfloat' may be affected somewhat by other
|
||||
programs executing at the same time as `timesoftfloat'.
|
||||
|
||||
Note that the remainder operations (`float32_rem', `float64_rem',
|
||||
`floatx80_rem' and `float128_rem') will be markedly slower than other
|
||||
operations, particularly for extended double precision (`floatx80') and
|
||||
quadruple precision (`float128'). This is inherent to the remainder
|
||||
function itself and is not a failing of the SoftFloat implementation.
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Options
|
||||
|
||||
The `timesoftfloat' program accepts several command options. If mutually
|
||||
contradictory options are given, the last one has priority.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-help
|
||||
|
||||
The `-help' option causes a summary of program usage to be written, after
|
||||
which the program exits.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-precision32, -precision64, -precision80
|
||||
|
||||
For extended double-precision functions affected by rounding precision
|
||||
control, the `-precision32' option restricts evaluation to only the cases
|
||||
in which rounding precision is equivalent to single precision. The other
|
||||
rounding precision options are not timed. Likewise, the `-precision64'
|
||||
and `-precision80' options fix the rounding precision equivalent to double
|
||||
precision or extended double precision, respectively. These options are
|
||||
ignored for functions not affected by rounding precision control.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-nearesteven, -tozero, -down, -up
|
||||
|
||||
The `-nearesteven' option restricts evaluation to only the cases in which
|
||||
the rounding mode is nearest/even. The other rounding mode options are not
|
||||
timed. Likewise, `-tozero' forces rounding to zero; `-down' forces rounding
|
||||
down; and `-up' forces rounding up. These options are ignored for functions
|
||||
that are exact and thus do not round.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-tininessbefore, -tininessafter
|
||||
|
||||
The `-tininessbefore' option restricts evaluation to only the cases
|
||||
detecting underflow tininess before rounding. Tininess after rounding
|
||||
is not timed. Likewise, `-tininessafter' forces underflow tininess to be
|
||||
detected after rounding only. These options are ignored for functions not
|
||||
affected by the way in which underflow tininess is detected.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
Function Sets
|
||||
|
||||
Just as `timesoftfloat' can test an operation for all four rounding modes in
|
||||
sequence, multiple operations can also be tested with a single invocation.
|
||||
Three sets are recognized: `-all1', `-all2', and `-all'. The set `-all1'
|
||||
comprises all one-operand functions; `-all2' is all two-operand functions;
|
||||
and `-all' is all functions. A function set can be used in place of a
|
||||
function name in the command line, as in
|
||||
|
||||
timesoftfloat [<option>...] -all
|
||||
|
||||
|
26
lib/libc/softfloat/unorddf2.c
Normal file
26
lib/libc/softfloat/unorddf2.c
Normal file
@ -0,0 +1,26 @@
|
||||
/* $NetBSD: unorddf2.c,v 1.1 2003/05/06 08:58:19 rearnsha Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Richard Earnshaw, 2003. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __unorddf2(float64, float64);
|
||||
|
||||
flag
|
||||
__unorddf2(float64 a, float64 b)
|
||||
{
|
||||
/*
|
||||
* The comparison is unordered if either input is a NaN.
|
||||
* Test for this by comparing each operand with itself.
|
||||
* We must perform both comparisons to correctly check for
|
||||
* signalling NaNs.
|
||||
*/
|
||||
return 1 ^ (float64_eq(a, a) & float64_eq(b, b));
|
||||
}
|
26
lib/libc/softfloat/unordsf2.c
Normal file
26
lib/libc/softfloat/unordsf2.c
Normal file
@ -0,0 +1,26 @@
|
||||
/* $NetBSD: unordsf2.c,v 1.1 2003/05/06 08:58:20 rearnsha Exp $ */
|
||||
|
||||
/*
|
||||
* Written by Richard Earnshaw, 2003. This file is in the Public Domain.
|
||||
*/
|
||||
|
||||
#include "softfloat-for-gcc.h"
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
flag __unordsf2(float32, float32);
|
||||
|
||||
flag
|
||||
__unordsf2(float32 a, float32 b)
|
||||
{
|
||||
/*
|
||||
* The comparison is unordered if either input is a NaN.
|
||||
* Test for this by comparing each operand with itself.
|
||||
* We must perform both comparisons to correctly check for
|
||||
* signalling NaNs.
|
||||
*/
|
||||
return 1 ^ (float32_eq(a, a) & float32_eq(b, b));
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user