Use in_cksum_skip() to calculate in4_cksum instead of doing handrolled magic

(that does not compile with !gcc). Moreover we get the benefit for all archs
that have a hand optimized in_cksum_skip().

Submitted by:	yongari
Tested by:	me (i386, extensivly), pf4freebsd ML (various)
This commit is contained in:
Max Laier 2004-08-05 20:41:38 +00:00
parent 40bce2b2a1
commit 8de5b6f306

View File

@ -64,90 +64,37 @@
*/
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <net/route.h>
#include <sys/mbuf.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#if defined(__FreeBSD__) && defined(__i386__)
/*
* Copied from FreeBSD 5.0 sys/i386/i386/in_cksum.c
* XXX
* Currently support I386 processor only.
* In the long run, we need an optimized cksum routines for each Tier1
* architecture. Due to the lack of available hardware except I386 I
* can't support other processors now. For those users which use Sparc64,
* Alpha processors can use more optimized version in FreeBSD.
* See sys/$ARCH/$ARCH/in_cksum.c where $ARCH=`uname -p`
*/
/*
* These asm statements require __volatile because they pass information
* via the condition codes. GCC does not currently provide a way to specify
* the condition codes as an input or output operand.
*
* The LOAD macro below is effectively a prefetch into cache. GCC will
* load the value into a register but will not use it. Since modern CPUs
* reorder operations, this will generally take place in parallel with
* other calculations.
*/
#define ADD(n) __asm __volatile \
("addl %1, %0" : "+r" (sum) : \
"g" (((const u_int32_t *)w)[n / 4]))
#define ADDC(n) __asm __volatile \
("adcl %1, %0" : "+r" (sum) : \
"g" (((const u_int32_t *)w)[n / 4]))
#define LOAD(n) __asm __volatile \
("" : : "r" (((const u_int32_t *)w)[n / 4]))
#define MOP __asm __volatile \
("adcl $0, %0" : "+r" (sum))
#endif
/*
* Checksum routine for Internet Protocol family headers (Portable Version).
* This is only for IPv4 pseudo header checksum.
* No need to clear non-pseudo-header fields in IPv4 header.
* len is for actual payload size, and does not include IPv4 header and
* skipped header chain (off + len should be equal to the whole packet).
*
* This routine is very heavily used in the network
* code and should be modified for each CPU to be as fast as possible.
*/
#include <machine/in_cksum.h>
#define ADDCARRY(x) (x > 65535 ? x -= 65535 : x)
#define REDUCE {l_util.l = sum; sum = l_util.s[0] + l_util.s[1]; ADDCARRY(sum);}
#if defined(__FreeBSD__)
int
in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
#endif
int in4_cksum(struct mbuf *, u_int8_t, int, int);
int
in4_cksum(m, nxt, off, len)
struct mbuf *m;
u_int8_t nxt;
int off, len;
in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len)
{
u_int16_t *w;
int sum = 0;
int mlen = 0;
int byte_swapped = 0;
union {
struct ipovly ipov;
u_int16_t w[10];
} u;
union {
u_int8_t c[2];
u_int16_t s;
} s_util;
union {
u_int16_t s[2];
u_int32_t l;
} l_util;
u_int16_t *w;
int psum;
int sum = 0;
if (nxt != 0) {
/* pseudo header */
if (off < sizeof(struct ipovly))
@ -165,223 +112,9 @@ in4_cksum(m, nxt, off, len)
sum += w[5]; sum += w[6]; sum += w[7]; sum += w[8]; sum += w[9];
}
/* skip unnecessary part */
while (m && off > 0) {
if (m->m_len > off)
break;
off -= m->m_len;
m = m->m_next;
}
for (;m && len; m = m->m_next) {
if (m->m_len == 0)
continue;
w = (u_int16_t *)(mtod(m, caddr_t) + off);
if (mlen == -1) {
/*
* The first byte of this mbuf is the continuation
* of a word spanning between this mbuf and the
* last mbuf.
*
* s_util.c[0] is already saved when scanning previous
* mbuf.
*/
s_util.c[1] = *(u_int8_t *)w;
sum += s_util.s;
w = (u_int16_t *)((u_int8_t *)w + 1);
mlen = m->m_len - off - 1;
len--;
} else
mlen = m->m_len - off;
off = 0;
if (len < mlen)
mlen = len;
len -= mlen;
#if defined(__FreeBSD__) && defined(__i386__)
/*
* Force to long boundary so we do longword aligned
* memory operations
*/
if (3 & (int) w) {
REDUCE;
if ((1 & (int) w) && (mlen > 0)) {
sum <<= 8;
s_util.c[0] = *(char *)w;
w = (u_short *)((char *)w + 1);
mlen--;
byte_swapped = 1;
}
if ((2 & (int) w) && (mlen >= 2)) {
sum += *w++;
mlen -= 2;
}
}
/*
* Advance to a 486 cache line boundary.
*/
if (4 & (int) w && mlen >= 4) {
ADD(0);
MOP;
w += 2;
mlen -= 4;
}
if (8 & (int) w && mlen >= 8) {
ADD(0);
ADDC(4);
MOP;
w += 4;
mlen -= 8;
}
/*
* Do as much of the checksum as possible 32 bits at at time.
* In fact, this loop is unrolled to make overhead from
* branches &c small.
*/
mlen -= 1;
while ((mlen -= 32) >= 0) {
/*
* Add with carry 16 words and fold in the last
* carry by adding a 0 with carry.
*
* The early ADD(16) and the LOAD(32) are to load
* the next 2 cache lines in advance on 486's. The
* 486 has a penalty of 2 clock cycles for loading
* a cache line, plus whatever time the external
* memory takes to load the first word(s) addressed.
* These penalties are unavoidable. Subsequent
* accesses to a cache line being loaded (and to
* other external memory?) are delayed until the
* whole load finishes. These penalties are mostly
* avoided by not accessing external memory for
* 8 cycles after the ADD(16) and 12 cycles after
* the LOAD(32). The loop terminates when mlen
* is initially 33 (not 32) to guaranteed that
* the LOAD(32) is within bounds.
*/
ADD(16);
ADDC(0);
ADDC(4);
ADDC(8);
ADDC(12);
LOAD(32);
ADDC(20);
ADDC(24);
ADDC(28);
MOP;
w += 16;
}
mlen += 32 + 1;
if (mlen >= 32) {
ADD(16);
ADDC(0);
ADDC(4);
ADDC(8);
ADDC(12);
ADDC(20);
ADDC(24);
ADDC(28);
MOP;
w += 16;
mlen -= 32;
}
if (mlen >= 16) {
ADD(0);
ADDC(4);
ADDC(8);
ADDC(12);
MOP;
w += 8;
mlen -= 16;
}
if (mlen >= 8) {
ADD(0);
ADDC(4);
MOP;
w += 4;
mlen -= 8;
}
if (mlen == 0 && byte_swapped == 0)
continue; /* worth 1% maybe ?? */
REDUCE;
while ((mlen -= 2) >= 0) {
sum += *w++;
}
if (byte_swapped) {
REDUCE;
sum <<= 8;
byte_swapped = 0;
if (mlen == -1) {
s_util.c[1] = *(char *)w;
sum += s_util.s;
mlen = 0;
} else
mlen = -1;
} else if (mlen == -1)
/*
* This mbuf has odd number of bytes.
* There could be a word split betwen
* this mbuf and the next mbuf.
* Save the last byte (to prepend to next mbuf).
*/
s_util.c[0] = *(char *)w;
#else
/*
* Force to even boundary.
*/
if ((1 & (long) w) && (mlen > 0)) {
REDUCE;
sum <<= 8;
s_util.c[0] = *(u_int8_t *)w;
w = (u_int16_t *)((int8_t *)w + 1);
mlen--;
byte_swapped = 1;
}
/*
* Unroll the loop to make overhead from
* branches &c small.
*/
while ((mlen -= 32) >= 0) {
sum += w[0]; sum += w[1]; sum += w[2]; sum += w[3];
sum += w[4]; sum += w[5]; sum += w[6]; sum += w[7];
sum += w[8]; sum += w[9]; sum += w[10]; sum += w[11];
sum += w[12]; sum += w[13]; sum += w[14]; sum += w[15];
w += 16;
}
mlen += 32;
while ((mlen -= 8) >= 0) {
sum += w[0]; sum += w[1]; sum += w[2]; sum += w[3];
w += 4;
}
mlen += 8;
if (mlen == 0 && byte_swapped == 0)
continue;
REDUCE;
while ((mlen -= 2) >= 0) {
sum += *w++;
}
if (byte_swapped) {
REDUCE;
sum <<= 8;
byte_swapped = 0;
if (mlen == -1) {
s_util.c[1] = *(u_int8_t *)w;
sum += s_util.s;
mlen = 0;
} else
mlen = -1;
} else if (mlen == -1)
s_util.c[0] = *(u_int8_t *)w;
#endif
}
if (len)
printf("cksum4: out of data\n");
if (mlen == -1) {
/* The last mbuf has odd # of bytes. Follow the
standard (the odd byte may be shifted left by 8 bits
or not as determined by endian-ness of the machine) */
s_util.c[1] = 0;
sum += s_util.s;
}
psum = in_cksum_skip(m, len + off, off);
psum = ~psum & 0xffff;
sum += psum;
REDUCE;
return (~sum & 0xffff);
}