MFC r258633: MFV r255256: 3954 metaslabs continue to load even after

hitting zfs_mg_alloc_failure limit
This commit is contained in:
avg 2014-01-16 16:05:21 +00:00
parent 26096ba436
commit 926bf5d727
3 changed files with 113 additions and 5 deletions

View File

@ -65,7 +65,8 @@ int zfs_condense_pct = 200;
/* /*
* This value defines the number of allowed allocation failures per vdev. * This value defines the number of allowed allocation failures per vdev.
* If a device reaches this threshold in a given txg then we consider skipping * If a device reaches this threshold in a given txg then we consider skipping
* allocations on that device. * allocations on that device. The value of zfs_mg_alloc_failures is computed
* in zio_init() unless it has been overridden in /etc/system.
*/ */
int zfs_mg_alloc_failures = 0; int zfs_mg_alloc_failures = 0;
TUNABLE_INT("vfs.zfs.mg_alloc_failures", &zfs_mg_alloc_failures); TUNABLE_INT("vfs.zfs.mg_alloc_failures", &zfs_mg_alloc_failures);
@ -73,6 +74,21 @@ SYSCTL_INT(_vfs_zfs, OID_AUTO, mg_alloc_failures, CTLFLAG_RWTUN,
&zfs_mg_alloc_failures, 0, &zfs_mg_alloc_failures, 0,
"Number of allowed allocation failures per vdev"); "Number of allowed allocation failures per vdev");
/*
* The zfs_mg_noalloc_threshold defines which metaslab groups should
* be eligible for allocation. The value is defined as a percentage of
* a free space. Metaslab groups that have more free space than
* zfs_mg_noalloc_threshold are always eligible for allocations. Once
* a metaslab group's free space is less than or equal to the
* zfs_mg_noalloc_threshold the allocator will avoid allocating to that
* group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
* Once all groups in the pool reach zfs_mg_noalloc_threshold then all
* groups are allowed to accept allocations. Gang blocks are always
* eligible to allocate on any metaslab group. The default value of 0 means
* no metaslab group will be excluded based on this criterion.
*/
int zfs_mg_noalloc_threshold = 0;
/* /*
* Metaslab debugging: when set, keeps all space maps in core to verify frees. * Metaslab debugging: when set, keeps all space maps in core to verify frees.
*/ */
@ -289,6 +305,53 @@ metaslab_compare(const void *x1, const void *x2)
return (0); return (0);
} }
/*
* Update the allocatable flag and the metaslab group's capacity.
* The allocatable flag is set to true if the capacity is below
* the zfs_mg_noalloc_threshold. If a metaslab group transitions
* from allocatable to non-allocatable or vice versa then the metaslab
* group's class is updated to reflect the transition.
*/
static void
metaslab_group_alloc_update(metaslab_group_t *mg)
{
vdev_t *vd = mg->mg_vd;
metaslab_class_t *mc = mg->mg_class;
vdev_stat_t *vs = &vd->vdev_stat;
boolean_t was_allocatable;
ASSERT(vd == vd->vdev_top);
mutex_enter(&mg->mg_lock);
was_allocatable = mg->mg_allocatable;
mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
(vs->vs_space + 1);
mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold);
/*
* The mc_alloc_groups maintains a count of the number of
* groups in this metaslab class that are still above the
* zfs_mg_noalloc_threshold. This is used by the allocating
* threads to determine if they should avoid allocations to
* a given group. The allocator will avoid allocations to a group
* if that group has reached or is below the zfs_mg_noalloc_threshold
* and there are still other groups that are above the threshold.
* When a group transitions from allocatable to non-allocatable or
* vice versa we update the metaslab class to reflect that change.
* When the mc_alloc_groups value drops to 0 that means that all
* groups have reached the zfs_mg_noalloc_threshold making all groups
* eligible for allocations. This effectively means that all devices
* are balanced again.
*/
if (was_allocatable && !mg->mg_allocatable)
mc->mc_alloc_groups--;
else if (!was_allocatable && mg->mg_allocatable)
mc->mc_alloc_groups++;
mutex_exit(&mg->mg_lock);
}
metaslab_group_t * metaslab_group_t *
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
{ {
@ -339,6 +402,7 @@ metaslab_group_activate(metaslab_group_t *mg)
return; return;
mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
metaslab_group_alloc_update(mg);
if ((mgprev = mc->mc_rotor) == NULL) { if ((mgprev = mc->mc_rotor) == NULL) {
mg->mg_prev = mg; mg->mg_prev = mg;
@ -425,6 +489,29 @@ metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
mutex_exit(&mg->mg_lock); mutex_exit(&mg->mg_lock);
} }
/*
* Determine if a given metaslab group should skip allocations. A metaslab
* group should avoid allocations if its used capacity has crossed the
* zfs_mg_noalloc_threshold and there is at least one metaslab group
* that can still handle allocations.
*/
static boolean_t
metaslab_group_allocatable(metaslab_group_t *mg)
{
vdev_t *vd = mg->mg_vd;
spa_t *spa = vd->vdev_spa;
metaslab_class_t *mc = mg->mg_class;
/*
* A metaslab group is considered allocatable if its free capacity
* is greater than the set value of zfs_mg_noalloc_threshold, it's
* associated with a slog, or there are no other metaslab groups
* with free capacity greater than zfs_mg_noalloc_threshold.
*/
return (mg->mg_free_capacity > zfs_mg_noalloc_threshold ||
mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
}
/* /*
* ========================================================================== * ==========================================================================
* Common allocator routines * Common allocator routines
@ -1374,6 +1461,8 @@ metaslab_sync_reassess(metaslab_group_t *mg)
vdev_t *vd = mg->mg_vd; vdev_t *vd = mg->mg_vd;
int64_t failures = mg->mg_alloc_failures; int64_t failures = mg->mg_alloc_failures;
metaslab_group_alloc_update(mg);
/* /*
* Re-evaluate all metaslabs which have lower offsets than the * Re-evaluate all metaslabs which have lower offsets than the
* bonus area. * bonus area.
@ -1475,6 +1564,8 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
if (msp == NULL) if (msp == NULL)
return (-1ULL); return (-1ULL);
mutex_enter(&msp->ms_lock);
/* /*
* If we've already reached the allowable number of failed * If we've already reached the allowable number of failed
* allocation attempts on this metaslab group then we * allocation attempts on this metaslab group then we
@ -1491,11 +1582,10 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
"asize %llu, failures %llu", spa_name(spa), "asize %llu, failures %llu", spa_name(spa),
mg->mg_vd->vdev_id, txg, mg, psize, asize, mg->mg_vd->vdev_id, txg, mg, psize, asize,
mg->mg_alloc_failures); mg->mg_alloc_failures);
mutex_exit(&msp->ms_lock);
return (-1ULL); return (-1ULL);
} }
mutex_enter(&msp->ms_lock);
/* /*
* Ensure that the metaslab we have selected is still * Ensure that the metaslab we have selected is still
* capable of handling our request. It's possible that * capable of handling our request. It's possible that
@ -1648,6 +1738,21 @@ metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
} else { } else {
allocatable = vdev_allocatable(vd); allocatable = vdev_allocatable(vd);
} }
/*
* Determine if the selected metaslab group is eligible
* for allocations. If we're ganging or have requested
* an allocation for the smallest gang block size
* then we don't want to avoid allocating to the this
* metaslab group. If we're in this condition we should
* try to allocate from any device possible so that we
* don't inadvertently return ENOSPC and suspend the pool
* even though space is still available.
*/
if (allocatable && CAN_FASTGANG(flags) &&
psize > SPA_GANGBLOCKSIZE)
allocatable = metaslab_group_allocatable(mg);
if (!allocatable) if (!allocatable)
goto next; goto next;

View File

@ -24,7 +24,7 @@
*/ */
/* /*
* Copyright (c) 2012 by Delphix. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved.
*/ */
#ifndef _SYS_METASLAB_IMPL_H #ifndef _SYS_METASLAB_IMPL_H
@ -45,6 +45,7 @@ struct metaslab_class {
metaslab_group_t *mc_rotor; metaslab_group_t *mc_rotor;
space_map_ops_t *mc_ops; space_map_ops_t *mc_ops;
uint64_t mc_aliquot; uint64_t mc_aliquot;
uint64_t mc_alloc_groups; /* # of allocatable groups */
uint64_t mc_alloc; /* total allocated space */ uint64_t mc_alloc; /* total allocated space */
uint64_t mc_deferred; /* total deferred frees */ uint64_t mc_deferred; /* total deferred frees */
uint64_t mc_space; /* total space (alloc + free) */ uint64_t mc_space; /* total space (alloc + free) */
@ -58,6 +59,8 @@ struct metaslab_group {
uint64_t mg_aliquot; uint64_t mg_aliquot;
uint64_t mg_bonus_area; uint64_t mg_bonus_area;
uint64_t mg_alloc_failures; uint64_t mg_alloc_failures;
boolean_t mg_allocatable; /* can we allocate? */
uint64_t mg_free_capacity; /* percentage free */
int64_t mg_bias; int64_t mg_bias;
int64_t mg_activation_count; int64_t mg_activation_count;
metaslab_class_t *mg_class; metaslab_class_t *mg_class;

View File

@ -2458,7 +2458,7 @@ zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
if (error) { if (error) {
error = metaslab_alloc(spa, spa_normal_class(spa), size, error = metaslab_alloc(spa, spa_normal_class(spa), size,
new_bp, 1, txg, old_bp, new_bp, 1, txg, old_bp,
METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); METASLAB_HINTBP_AVOID);
} }
if (error == 0) { if (error == 0) {