diff --git a/lib/msun/src/k_cos.c b/lib/msun/src/k_cos.c index 39a29747daa7..dfd986786581 100644 --- a/lib/msun/src/k_cos.c +++ b/lib/msun/src/k_cos.c @@ -36,18 +36,22 @@ static char rcsid[] = "$FreeBSD$"; * * 4 6 8 10 12 14 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then - * cos(x) = 1 - x*x/2 + r + * cos(x) ~ 1 - x*x/2 + r * since cos(x+y) ~ cos(x) - sin(x)*y * ~ cos(x) - x*y, * a correction term is necessary in cos(x) and hence * cos(x+y) = 1 - (x*x/2 - (r - x*y)) - * For better accuracy when x > 0.3, let qx = |x|/4 with - * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. - * Then - * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). - * Note that 1-qx and (x*x/2-qx) is EXACT here, and the - * magnitude of the latter is at least a quarter of x*x/2, - * thus, reducing the rounding error in the subtraction. + * For better accuracy, rearrange to + * cos(x+y) ~ w + (tmp + (r-x*y)) + * where w = 1 - x*x/2 and tmp is a tiny correction term + * (1 - x*x/2 == w + tmp exactly in infinite precision). + * The exactness of w + tmp in infinite precision depends on w + * and tmp having the same precision as x. If they have extra + * precision due to compiler bugs, then the extra precision is + * only good provided it is retained in all terms of the final + * expression for cos(). Retention happens in all cases tested + * under FreeBSD, so don't pessimize things by forcibly clipping + * any extra precision in w. */ #include "math.h" @@ -65,22 +69,11 @@ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ double __kernel_cos(double x, double y) { - double a,hz,z,r,qx; - int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; /* ix = |x|'s high word*/ + double hz,z,r,w; + z = x*x; r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); - if(ix < 0x3FD33333) /* if |x| < 0.3 */ - return one - (0.5*z - (z*r - x*y)); - else { - if(ix > 0x3fe90000) { /* x > 0.78125 */ - qx = 0.28125; - } else { - INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ - } - hz = 0.5*z-qx; - a = one-qx; - return a - (hz - (z*r-x*y)); - } + hz = (float)0.5*z; + w = one-hz; + return w + (((one-w)-hz) + (z*r-x*y)); } diff --git a/lib/msun/src/k_cosf.c b/lib/msun/src/k_cosf.c index e1012ec1e45a..5ce76082070e 100644 --- a/lib/msun/src/k_cosf.c +++ b/lib/msun/src/k_cosf.c @@ -32,33 +32,11 @@ C6 = -1.1359647598e-11; /* 0xad47d74e */ float __kernel_cosf(float x, float y) { - float a,hz,z,r,qx; - int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; /* ix = |x|'s high word*/ + float hz,z,r,w; + z = x*x; r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); - if(ix < 0x3e99999a) /* if |x| < 0.3 */ - return one - ((float)0.5*z - (z*r - x*y)); - else { - /* - * qx is an approximation to x*x/2 such that 1-qx and x*x/2-qx - * are both exact. Its implementation is optimized for - * efficiency in preference to accuracy. We use x*x/2 ~ x/4 for - * x near 0.5 and mask off just enough low bits (3) for both of - * the above differences to be exact. We use a constant for - * x > 0.78125 to keep using the same algorithm as k_cos.c, - * although this gives only a small improvement in accuracy, at - * least here. Using x*x/2 to approximate itself (masking off - * 3 low bits again) would give better accuracy. - */ - if(ix > 0x3f480000) { /* x > 0.78125 */ - qx = (float)0.28125; - } else { - SET_FLOAT_WORD(qx,(ix-0x01000000)&0xfffffff8); - } - hz = (float)0.5*z-qx; - a = one-qx; - return a - (hz - (z*r-x*y)); - } + hz = (float)0.5*z; + w = one-hz; + return w + (((one-w)-hz) + (z*r-x*y)); }