Add support for Allwinner Consumer IR interface.

RX is supported now and the driver is using evdev framework.
It was tested on Cubieboard2 (A20 SoC) using lirc
with dfrobot's IR remote controller.
This commit is contained in:
Ganbold Tsagaankhuu 2016-10-27 04:26:33 +00:00
parent 20b3dcf039
commit a6e9118bf4
3 changed files with 542 additions and 0 deletions

535
sys/arm/allwinner/aw_cir.c Normal file
View File

@ -0,0 +1,535 @@
/*-
* Copyright (c) 2016 Ganbold Tsagaankhuu <ganbold@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Allwinner Consumer IR controller
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/evdev/input.h>
#include <dev/evdev/evdev.h>
#define READ(_sc, _r) bus_read_4((_sc)->res[0], (_r))
#define WRITE(_sc, _r, _v) bus_write_4((_sc)->res[0], (_r), (_v))
/* IR Control */
#define AW_IR_CTL 0x00
/* Global Enable */
#define AW_IR_CTL_GEN (1 << 0)
/* RX enable */
#define AW_IR_CTL_RXEN (1 << 1)
/* CIR mode enable */
#define AW_IR_CTL_MD (1 << 4) | (1 << 5)
/* RX Config Reg */
#define AW_IR_RXCTL 0x10
/* Pulse Polarity Invert flag */
#define AW_IR_RXCTL_RPPI (1 << 2)
/* RX Data */
#define AW_IR_RXFIFO 0x20
/* RX Interrupt Control */
#define AW_IR_RXINT 0x2C
/* RX FIFO Overflow */
#define AW_IR_RXINT_ROI_EN (1 << 0)
/* RX Packet End */
#define AW_IR_RXINT_RPEI_EN (1 << 1)
/* RX FIFO Data Available */
#define AW_IR_RXINT_RAI_EN (1 << 4)
/* RX FIFO available byte level */
#define AW_IR_RXINT_RAL(val) ((val) << 8)
/* RX Interrupt Status Reg */
#define AW_IR_RXSTA 0x30
/* RX FIFO Get Available Counter */
#define AW_IR_RXSTA_COUNTER(val) (((val) >> 8) & (sc->fifo_size * 2 - 1))
/* Clear all interrupt status */
#define AW_IR_RXSTA_CLEARALL 0xff
/* IR Sample Configure Reg */
#define AW_IR_CIR 0x34
/* Filter Threshold = 8 * 21.3 = ~128us < 200us */
#define AW_IR_RXFILT_VAL (((8) & 0x3f) << 2)
/* Idle Threshold = (2 + 1) * 128 * 42.7 = ~16.4ms > 9ms */
#define AW_IR_RXIDLE_VAL (((2) & 0xff) << 8)
/* Bit 15 - value (pulse/space) */
#define VAL_MASK 0x80
/* Bits 0:14 - sample duration */
#define PERIOD_MASK 0x7f
/* Clock rate for IR0 or IR1 clock in CIR mode */
#define AW_IR_BASE_CLK 3000000
/* Frequency sample 3MHz/64 = 46875Hz (21.3us) */
#define AW_IR_SAMPLE_64 (0 << 0)
/* Frequency sample 3MHz/128 = 23437.5Hz (42.7us) */
#define AW_IR_SAMPLE_128 (1 << 0)
#define AW_IR_ERROR_CODE 0xffffffff
#define AW_IR_REPEAT_CODE 0x0
/* 80 * 42.7 = ~3.4ms, Lead1(4.5ms) > AW_IR_L1_MIN */
#define AW_IR_L1_MIN 80
/* 40 * 42.7 = ~1.7ms, Lead0(4.5ms) Lead0R(2.25ms) > AW_IR_L0_MIN */
#define AW_IR_L0_MIN 40
/* 26 * 42.7 = ~1109us ~= 561 * 2, Pulse < AW_IR_PMAX */
#define AW_IR_PMAX 26
/* 26 * 42.7 = ~1109us ~= 561 * 2, D1 > AW_IR_DMID, D0 <= AW_IR_DMID */
#define AW_IR_DMID 26
/* 53 * 42.7 = ~2263us ~= 561 * 4, D < AW_IR_DMAX */
#define AW_IR_DMAX 53
/* Active Thresholds */
#define AW_IR_ACTIVE_T ((0 & 0xff) << 16)
#define AW_IR_ACTIVE_T_C ((1 & 0xff) << 23)
/* Code masks */
#define CODE_MASK 0x00ff00ff
#define INV_CODE_MASK 0xff00ff00
#define VALID_CODE_MASK 0x00ff0000
#define A10_IR 1
#define A13_IR 2
#define AW_IR_RAW_BUF_SIZE 128
struct aw_ir_softc {
device_t dev;
struct resource *res[2];
void * intrhand;
int fifo_size;
int dcnt; /* Packet Count */
unsigned char buf[AW_IR_RAW_BUF_SIZE];
struct evdev_dev *sc_evdev;
};
static struct resource_spec aw_ir_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun4i-a10-ir", A10_IR },
{ "allwinner,sun5i-a13-ir", A13_IR },
{ NULL, 0 }
};
static void
aw_ir_buf_reset(struct aw_ir_softc *sc)
{
sc->dcnt = 0;
}
static void
aw_ir_buf_write(struct aw_ir_softc *sc, unsigned char data)
{
if (sc->dcnt < AW_IR_RAW_BUF_SIZE)
sc->buf[sc->dcnt++] = data;
else
if (bootverbose)
device_printf(sc->dev, "IR RX Buffer Full!\n");
}
static int
aw_ir_buf_full(struct aw_ir_softc *sc)
{
return (sc->dcnt >= AW_IR_RAW_BUF_SIZE);
}
static unsigned char
aw_ir_read_data(struct aw_ir_softc *sc)
{
return (unsigned char)(READ(sc, AW_IR_RXFIFO) & 0xff);
}
static unsigned long
aw_ir_decode_packets(struct aw_ir_softc *sc)
{
unsigned long len, code;
unsigned char val, last;
unsigned int active_delay;
int i, bitcount;
if (bootverbose)
device_printf(sc->dev, "sc->dcnt = %d\n", sc->dcnt);
/* Find Lead 1 (bit separator) */
active_delay = (AW_IR_ACTIVE_T + 1) * (AW_IR_ACTIVE_T_C ? 128 : 1);
len = 0;
len += (active_delay >> 1);
if (bootverbose)
device_printf(sc->dev, "Initial len: %ld\n", len);
for (i = 0; i < sc->dcnt; i++) {
val = sc->buf[i];
if (val & VAL_MASK)
len += val & PERIOD_MASK;
else {
if (len > AW_IR_L1_MIN)
break;
len = 0;
}
}
if (bootverbose)
device_printf(sc->dev, "len = %ld\n", len);
if ((val & VAL_MASK) || (len <= AW_IR_L1_MIN)) {
if (bootverbose)
device_printf(sc->dev, "Bit separator error\n");
goto error_code;
}
/* Find Lead 0 (bit length) */
len = 0;
for (; i < sc->dcnt; i++) {
val = sc->buf[i];
if (val & VAL_MASK) {
if(len > AW_IR_L0_MIN)
break;
len = 0;
} else
len += val & PERIOD_MASK;
}
if ((!(val & VAL_MASK)) || (len <= AW_IR_L0_MIN)) {
if (bootverbose)
device_printf(sc->dev, "Bit length error\n");
goto error_code;
}
/* Start decoding */
code = 0;
bitcount = 0;
last = 1;
len = 0;
for (; i < sc->dcnt; i++) {
val = sc->buf[i];
if (last) {
if (val & VAL_MASK)
len += val & PERIOD_MASK;
else {
if (len > AW_IR_PMAX) {
if (bootverbose)
device_printf(sc->dev,
"Pulse error\n");
goto error_code;
}
last = 0;
len = val & PERIOD_MASK;
}
} else {
if (val & VAL_MASK) {
if (len > AW_IR_DMAX) {
if (bootverbose)
device_printf(sc->dev,
"Distant error\n");
goto error_code;
} else {
if (len > AW_IR_DMID) {
/* Decode */
code |= 1 << bitcount;
}
bitcount++;
if (bitcount == 32)
break; /* Finish decoding */
}
last = 1;
len = val & PERIOD_MASK;
} else
len += val & PERIOD_MASK;
}
}
return (code);
error_code:
return (AW_IR_ERROR_CODE);
}
static int
aw_ir_validate_code(unsigned long code)
{
unsigned long v1, v2;
/* Don't check address */
v1 = code & CODE_MASK;
v2 = (code & INV_CODE_MASK) >> 8;
if (((v1 ^ v2) & VALID_CODE_MASK) == VALID_CODE_MASK)
return (0); /* valid */
else
return (1); /* invalid */
}
static void
aw_ir_intr(void *arg)
{
struct aw_ir_softc *sc;
uint32_t val;
int i, dcnt;
unsigned long ir_code;
int stat;
sc = (struct aw_ir_softc *)arg;
/* Read RX interrupt status */
val = READ(sc, AW_IR_RXSTA);
/* Clean all pending interrupt statuses */
WRITE(sc, AW_IR_RXSTA, val | AW_IR_RXSTA_CLEARALL);
/* When Rx FIFO Data available or Packet end */
if (val & (AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RPEI_EN)) {
/* Get available message count in RX FIFO */
dcnt = AW_IR_RXSTA_COUNTER(val);
/* Read FIFO */
for (i = 0; i < dcnt; i++) {
if (aw_ir_buf_full(sc)) {
if (bootverbose)
device_printf(sc->dev,
"raw buffer full\n");
break;
} else
aw_ir_buf_write(sc, aw_ir_read_data(sc));
}
}
if (val & AW_IR_RXINT_RPEI_EN) {
/* RX Packet end */
if (bootverbose)
device_printf(sc->dev, "RX Packet end\n");
ir_code = aw_ir_decode_packets(sc);
stat = aw_ir_validate_code(ir_code);
if (stat == 0) {
evdev_push_event(sc->sc_evdev,
EV_MSC, MSC_SCAN, ir_code);
evdev_sync(sc->sc_evdev);
}
if (bootverbose) {
device_printf(sc->dev, "Final IR code: %lx\n",
ir_code);
device_printf(sc->dev, "IR code status: %d\n",
stat);
}
sc->dcnt = 0;
}
if (val & AW_IR_RXINT_ROI_EN) {
/* RX FIFO overflow */
if (bootverbose)
device_printf(sc->dev, "RX FIFO overflow\n");
/* Flush raw buffer */
aw_ir_buf_reset(sc);
}
}
static int
aw_ir_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Allwinner CIR controller");
return (BUS_PROBE_DEFAULT);
}
static int
aw_ir_attach(device_t dev)
{
struct aw_ir_softc *sc;
hwreset_t rst_apb;
clk_t clk_ir, clk_gate;
int err;
uint32_t val = 0;
clk_ir = clk_gate = NULL;
sc = device_get_softc(dev);
sc->dev = dev;
if (bus_alloc_resources(dev, aw_ir_spec, sc->res) != 0) {
device_printf(dev, "could not allocate memory resource\n");
return (ENXIO);
}
switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
case A10_IR:
sc->fifo_size = 16;
break;
case A13_IR:
sc->fifo_size = 64;
break;
}
/* De-assert reset */
if (hwreset_get_by_ofw_name(dev, 0, "apb", &rst_apb) == 0) {
err = hwreset_deassert(rst_apb);
if (err != 0) {
device_printf(dev, "cannot de-assert reset\n");
goto error;
}
}
/* Reset buffer */
aw_ir_buf_reset(sc);
/* Get clocks and enable them */
err = clk_get_by_ofw_name(dev, 0, "apb", &clk_gate);
if (err != 0) {
device_printf(dev, "Cannot get gate clock\n");
goto error;
}
err = clk_get_by_ofw_name(dev, 0, "ir", &clk_ir);
if (err != 0) {
device_printf(dev, "Cannot get IR clock\n");
goto error;
}
/* Set clock rate */
err = clk_set_freq(clk_ir, AW_IR_BASE_CLK, 0);
if (err != 0) {
device_printf(dev, "cannot set IR clock rate\n");
goto error;
}
/* Enable clocks */
err = clk_enable(clk_gate);
if (err != 0) {
device_printf(dev, "Cannot enable clk gate\n");
goto error;
}
err = clk_enable(clk_ir);
if (err != 0) {
device_printf(dev, "Cannot enable IR clock\n");
goto error;
}
if (bus_setup_intr(dev, sc->res[1],
INTR_TYPE_MISC | INTR_MPSAFE, NULL, aw_ir_intr, sc,
&sc->intrhand)) {
bus_release_resources(dev, aw_ir_spec, sc->res);
device_printf(dev, "cannot setup interrupt handler\n");
return (ENXIO);
}
/* Enable CIR Mode */
WRITE(sc, AW_IR_CTL, AW_IR_CTL_MD);
/*
* Set clock sample, filter, idle thresholds.
* Frequency sample = 3MHz/128 = 23437.5Hz (42.7us)
*/
val = AW_IR_SAMPLE_128;
val |= (AW_IR_RXFILT_VAL | AW_IR_RXIDLE_VAL);
val |= (AW_IR_ACTIVE_T | AW_IR_ACTIVE_T_C);
WRITE(sc, AW_IR_CIR, val);
/* Invert Input Signal */
WRITE(sc, AW_IR_RXCTL, AW_IR_RXCTL_RPPI);
/* Clear All RX Interrupt Status */
WRITE(sc, AW_IR_RXSTA, AW_IR_RXSTA_CLEARALL);
/*
* Enable RX interrupt in case of overflow, packet end
* and FIFO available.
* RX FIFO Threshold = FIFO size / 2
*/
WRITE(sc, AW_IR_RXINT, AW_IR_RXINT_ROI_EN | AW_IR_RXINT_RPEI_EN |
AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RAL((sc->fifo_size >> 1) - 1));
/* Enable IR Module */
val = READ(sc, AW_IR_CTL);
WRITE(sc, AW_IR_CTL, val | AW_IR_CTL_GEN | AW_IR_CTL_RXEN);
sc->sc_evdev = evdev_alloc();
evdev_set_name(sc->sc_evdev, device_get_desc(sc->dev));
evdev_set_phys(sc->sc_evdev, device_get_nameunit(sc->dev));
evdev_set_id(sc->sc_evdev, BUS_HOST, 0, 0, 0);
evdev_support_event(sc->sc_evdev, EV_SYN);
evdev_support_event(sc->sc_evdev, EV_MSC);
evdev_support_msc(sc->sc_evdev, MSC_SCAN);
err = evdev_register(sc->sc_evdev);
if (err) {
device_printf(dev,
"failed to register evdev: error=%d\n", err);
goto error;
}
return (0);
error:
if (clk_gate != NULL)
clk_release(clk_gate);
if (clk_ir != NULL)
clk_release(clk_ir);
if (rst_apb != NULL)
hwreset_release(rst_apb);
evdev_free(sc->sc_evdev);
sc->sc_evdev = NULL; /* Avoid double free */
bus_release_resources(dev, aw_ir_spec, sc->res);
return (ENXIO);
}
static device_method_t aw_ir_methods[] = {
DEVMETHOD(device_probe, aw_ir_probe),
DEVMETHOD(device_attach, aw_ir_attach),
DEVMETHOD_END
};
static driver_t aw_ir_driver = {
"aw_ir",
aw_ir_methods,
sizeof(struct aw_ir_softc),
};
static devclass_t aw_ir_devclass;
DRIVER_MODULE(aw_ir, simplebus, aw_ir_driver, aw_ir_devclass, 0, 0);
MODULE_DEPEND(aw_ir, evdev, 1, 1, 1);

View File

@ -29,6 +29,7 @@ dev/usb/controller/generic_usb_if.m optional ohci
arm/allwinner/aw_sid.c standard
arm/allwinner/aw_thermal.c standard
dev/iicbus/sy8106a.c optional sy8106a
arm/allwinner/aw_cir.c optional aw_cir evdev
#arm/allwinner/console.c standard
arm/allwinner/a10_fb.c optional vt

View File

@ -119,6 +119,12 @@ device gpio
device gpioled
device gpioregulator
# EVDEV support
device evdev # input event device support
options EVDEV_SUPPORT # evdev support in legacy drivers
device uinput # install /dev/uinput cdev
device aw_cir
# SPI
device spibus
device bcm2835_spi