loader: support com.delphix:removing

We should support removing vdev from boot pool. Update loader zfs reader
to support com.delphix:removing.

Reviewed by:	allanjude
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D18901
This commit is contained in:
Toomas Soome 2019-08-08 18:08:13 +00:00
parent 56abac3fc3
commit b1b9326846
12 changed files with 846 additions and 34 deletions

View File

@ -3300,13 +3300,6 @@ zpool_vdev_remove(zpool_handle_t *zhp, const char *path)
return (zfs_error(hdl, EZFS_BADVERSION, msg));
}
if (!islog && !avail_spare && !l2cache && zpool_is_bootable(zhp)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"root pool can not have removed devices, "
"because GRUB does not understand them"));
return (zfs_error(hdl, EINVAL, msg));
}
zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID);
if (zfs_ioctl(hdl, ZFS_IOC_VDEV_REMOVE, &zc) == 0)

View File

@ -36,6 +36,8 @@ SRCS+= zfs_module.c
CFLAGS.zfs_module.c+= -I${ZFSSRC}
CFLAGS.zfs_module.c+= -I${SYSDIR}/cddl/boot/zfs
CFLAGS.zfs_module.c+= -I${SYSDIR}/crypto/skein
CFLAGS.zfs_module.c+= -I${SYSDIR}/cddl/contrib/opensolaris/uts/common
CFLAGS+= -DEFI_ZFS_BOOT
.endif

View File

@ -28,6 +28,7 @@ CFLAGS+=-DBOOTPROG=\"gptzfsboot\" \
-I${ZFSSRC} \
-I${SYSDIR}/crypto/skein \
-I${SYSDIR}/cddl/boot/zfs \
-I${SYSDIR}/cddl/contrib/opensolaris/uts/common \
-I${BOOTSRC}/i386/btx/lib \
-I${BOOTSRC}/i386/boot2 \
-Wall -Waggregate-return -Wbad-function-cast \

View File

@ -27,6 +27,7 @@ CFLAGS+=-DBOOTPROG=\"zfsboot\" \
-I${ZFSSRC} \
-I${SYSDIR}/crypto/skein \
-I${SYSDIR}/cddl/boot/zfs \
-I${SYSDIR}/cddl/contrib/opensolaris/uts/common \
-I${BOOTSRC}/i386/boot2 \
-Wall -Waggregate-return -Wbad-function-cast -Wno-cast-align \
-Wmissing-declarations -Wmissing-prototypes -Wnested-externs \

View File

@ -1,13 +1,15 @@
# $FreeBSD$
.PATH: ${ZFSSRC}
SRCS+= zfs.c skein.c skein_block.c
SRCS+= zfs.c skein.c skein_block.c list.c
# Do not unroll skein loops, reduce code size
CFLAGS+= -DSKEIN_LOOP=111
.PATH: ${SYSDIR}/crypto/skein
.PATH: ${SYSDIR}/cddl/contrib/opensolaris/uts/common/os
CFLAGS+= -I${LDRSRC}
CFLAGS+= -I${SYSDIR}/cddl/boot/zfs
CFLAGS+= -I${SYSDIR}/cddl/contrib/opensolaris/uts/common
CFLAGS+= -I${SYSDIR}/crypto/skein
CFLAGS+= -Wformat -Wall

View File

@ -34,6 +34,7 @@ __FBSDID("$FreeBSD$");
#include <sys/endian.h>
#include <sys/stat.h>
#include <sys/stdint.h>
#include <sys/list.h>
#include "zfsimpl.h"
#include "zfssubr.c"
@ -46,6 +47,58 @@ struct zfsmount {
};
static struct zfsmount zfsmount __unused;
/*
* The indirect_child_t represents the vdev that we will read from, when we
* need to read all copies of the data (e.g. for scrub or reconstruction).
* For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
* ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
* ic_vdev is a child of the mirror.
*/
typedef struct indirect_child {
void *ic_data;
vdev_t *ic_vdev;
} indirect_child_t;
/*
* The indirect_split_t represents one mapped segment of an i/o to the
* indirect vdev. For non-split (contiguously-mapped) blocks, there will be
* only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
* For split blocks, there will be several of these.
*/
typedef struct indirect_split {
list_node_t is_node; /* link on iv_splits */
/*
* is_split_offset is the offset into the i/o.
* This is the sum of the previous splits' is_size's.
*/
uint64_t is_split_offset;
vdev_t *is_vdev; /* top-level vdev */
uint64_t is_target_offset; /* offset on is_vdev */
uint64_t is_size;
int is_children; /* number of entries in is_child[] */
/*
* is_good_child is the child that we are currently using to
* attempt reconstruction.
*/
int is_good_child;
indirect_child_t is_child[1]; /* variable-length */
} indirect_split_t;
/*
* The indirect_vsd_t is associated with each i/o to the indirect vdev.
* It is the "Vdev-Specific Data" in the zio_t's io_vsd.
*/
typedef struct indirect_vsd {
boolean_t iv_split_block;
boolean_t iv_reconstruct;
list_t iv_splits; /* list of indirect_split_t's */
} indirect_vsd_t;
/*
* List of all vdevs, chained through v_alllink.
*/
@ -70,6 +123,8 @@ static const char *features_for_read[] = {
"com.datto:encryption",
"org.zfsonlinux:allocation_classes",
"com.datto:resilver_defer",
"com.delphix:device_removal",
"com.delphix:obsolete_counts",
NULL
};
@ -92,6 +147,18 @@ static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
const char *name, uint64_t integer_size, uint64_t num_integers,
void *value);
static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
dnode_phys_t *);
static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
size_t);
static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
size_t);
static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
uint64_t);
vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
uint64_t, uint64_t *);
static void
zfs_init(void)
@ -161,7 +228,7 @@ xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
static int
nvlist_find(const unsigned char *nvlist, const char *name, int type,
int* elementsp, void *valuep)
int *elementsp, void *valuep)
{
const unsigned char *p, *pair;
int junk;
@ -426,12 +493,499 @@ vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
if (rc)
return (rc);
if (bp && zio_checksum_verify(vdev->spa, bp, buf))
return (EIO);
if (bp != NULL)
return (zio_checksum_verify(vdev->spa, bp, buf));
return (0);
}
typedef struct remap_segment {
vdev_t *rs_vd;
uint64_t rs_offset;
uint64_t rs_asize;
uint64_t rs_split_offset;
list_node_t rs_node;
} remap_segment_t;
static remap_segment_t *
rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
{
remap_segment_t *rs = malloc(sizeof (remap_segment_t));
if (rs != NULL) {
rs->rs_vd = vd;
rs->rs_offset = offset;
rs->rs_asize = asize;
rs->rs_split_offset = split_offset;
}
return (rs);
}
vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
uint64_t mapping_object)
{
vdev_indirect_mapping_t *vim;
vdev_indirect_mapping_phys_t *vim_phys;
int rc;
vim = calloc(1, sizeof (*vim));
if (vim == NULL)
return (NULL);
vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
if (vim->vim_dn == NULL) {
free(vim);
return (NULL);
}
rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
if (rc != 0) {
free(vim->vim_dn);
free(vim);
return (NULL);
}
vim->vim_spa = spa;
vim->vim_phys = malloc(sizeof (*vim->vim_phys));
if (vim->vim_phys == NULL) {
free(vim->vim_dn);
free(vim);
return (NULL);
}
vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
*vim->vim_phys = *vim_phys;
vim->vim_objset = os;
vim->vim_object = mapping_object;
vim->vim_entries = NULL;
vim->vim_havecounts =
(vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
return (vim);
}
/*
* Compare an offset with an indirect mapping entry; there are three
* possible scenarios:
*
* 1. The offset is "less than" the mapping entry; meaning the
* offset is less than the source offset of the mapping entry. In
* this case, there is no overlap between the offset and the
* mapping entry and -1 will be returned.
*
* 2. The offset is "greater than" the mapping entry; meaning the
* offset is greater than the mapping entry's source offset plus
* the entry's size. In this case, there is no overlap between
* the offset and the mapping entry and 1 will be returned.
*
* NOTE: If the offset is actually equal to the entry's offset
* plus size, this is considered to be "greater" than the entry,
* and this case applies (i.e. 1 will be returned). Thus, the
* entry's "range" can be considered to be inclusive at its
* start, but exclusive at its end: e.g. [src, src + size).
*
* 3. The last case to consider is if the offset actually falls
* within the mapping entry's range. If this is the case, the
* offset is considered to be "equal to" the mapping entry and
* 0 will be returned.
*
* NOTE: If the offset is equal to the entry's source offset,
* this case applies and 0 will be returned. If the offset is
* equal to the entry's source plus its size, this case does
* *not* apply (see "NOTE" above for scenario 2), and 1 will be
* returned.
*/
static int
dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
{
const uint64_t *key = v_key;
const vdev_indirect_mapping_entry_phys_t *array_elem =
v_array_elem;
uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
if (*key < src_offset) {
return (-1);
} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
return (0);
} else {
return (1);
}
}
/*
* Return array entry.
*/
static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
{
uint64_t size;
off_t offset = 0;
int rc;
if (vim->vim_phys->vimp_num_entries == 0)
return (NULL);
if (vim->vim_entries == NULL) {
uint64_t bsize;
bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
size = vim->vim_phys->vimp_num_entries *
sizeof (*vim->vim_entries);
if (size > bsize) {
size = bsize / sizeof (*vim->vim_entries);
size *= sizeof (*vim->vim_entries);
}
vim->vim_entries = malloc(size);
if (vim->vim_entries == NULL)
return (NULL);
vim->vim_num_entries = size / sizeof (*vim->vim_entries);
offset = index * sizeof (*vim->vim_entries);
}
/* We have data in vim_entries */
if (offset == 0) {
if (index >= vim->vim_entry_offset &&
index <= vim->vim_entry_offset + vim->vim_num_entries) {
index -= vim->vim_entry_offset;
return (&vim->vim_entries[index]);
}
offset = index * sizeof (*vim->vim_entries);
}
vim->vim_entry_offset = index;
size = vim->vim_num_entries * sizeof (*vim->vim_entries);
rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
size);
if (rc != 0) {
/* Read error, invalidate vim_entries. */
free(vim->vim_entries);
vim->vim_entries = NULL;
return (NULL);
}
index -= vim->vim_entry_offset;
return (&vim->vim_entries[index]);
}
/*
* Returns the mapping entry for the given offset.
*
* It's possible that the given offset will not be in the mapping table
* (i.e. no mapping entries contain this offset), in which case, the
* return value value depends on the "next_if_missing" parameter.
*
* If the offset is not found in the table and "next_if_missing" is
* B_FALSE, then NULL will always be returned. The behavior is intended
* to allow consumers to get the entry corresponding to the offset
* parameter, iff the offset overlaps with an entry in the table.
*
* If the offset is not found in the table and "next_if_missing" is
* B_TRUE, then the entry nearest to the given offset will be returned,
* such that the entry's source offset is greater than the offset
* passed in (i.e. the "next" mapping entry in the table is returned, if
* the offset is missing from the table). If there are no entries whose
* source offset is greater than the passed in offset, NULL is returned.
*/
static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
uint64_t offset)
{
ASSERT(vim->vim_phys->vimp_num_entries > 0);
vdev_indirect_mapping_entry_phys_t *entry;
uint64_t last = vim->vim_phys->vimp_num_entries - 1;
uint64_t base = 0;
/*
* We don't define these inside of the while loop because we use
* their value in the case that offset isn't in the mapping.
*/
uint64_t mid;
int result;
while (last >= base) {
mid = base + ((last - base) >> 1);
entry = vdev_indirect_mapping_entry(vim, mid);
if (entry == NULL)
break;
result = dva_mapping_overlap_compare(&offset, entry);
if (result == 0) {
break;
} else if (result < 0) {
last = mid - 1;
} else {
base = mid + 1;
}
}
return (entry);
}
/*
* Given an indirect vdev and an extent on that vdev, it duplicates the
* physical entries of the indirect mapping that correspond to the extent
* to a new array and returns a pointer to it. In addition, copied_entries
* is populated with the number of mapping entries that were duplicated.
*
* Finally, since we are doing an allocation, it is up to the caller to
* free the array allocated in this function.
*/
vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
uint64_t asize, uint64_t *copied_entries)
{
vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
vdev_indirect_mapping_t *vim = vd->v_mapping;
uint64_t entries = 0;
vdev_indirect_mapping_entry_phys_t *first_mapping =
vdev_indirect_mapping_entry_for_offset(vim, offset);
ASSERT3P(first_mapping, !=, NULL);
vdev_indirect_mapping_entry_phys_t *m = first_mapping;
while (asize > 0) {
uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
uint64_t inner_size = MIN(asize, size - inner_offset);
offset += inner_size;
asize -= inner_size;
entries++;
m++;
}
size_t copy_length = entries * sizeof (*first_mapping);
duplicate_mappings = malloc(copy_length);
if (duplicate_mappings != NULL)
bcopy(first_mapping, duplicate_mappings, copy_length);
else
entries = 0;
*copied_entries = entries;
return (duplicate_mappings);
}
static vdev_t *
vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
vdev_t *rvd;
STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink)
if (rvd->v_id == vdev)
break;
return (rvd);
}
/*
* This is a callback for vdev_indirect_remap() which allocates an
* indirect_split_t for each split segment and adds it to iv_splits.
*/
static void
vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
uint64_t size, void *arg)
{
int n = 1;
zio_t *zio = arg;
indirect_vsd_t *iv = zio->io_vsd;
if (vd->v_read == vdev_indirect_read)
return;
if (vd->v_read == vdev_mirror_read)
n = vd->v_nchildren;
indirect_split_t *is =
malloc(offsetof(indirect_split_t, is_child[n]));
if (is == NULL) {
zio->io_error = ENOMEM;
return;
}
bzero(is, offsetof(indirect_split_t, is_child[n]));
is->is_children = n;
is->is_size = size;
is->is_split_offset = split_offset;
is->is_target_offset = offset;
is->is_vdev = vd;
/*
* Note that we only consider multiple copies of the data for
* *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
* though they use the same ops as mirror, because there's only one
* "good" copy under the replacing/spare.
*/
if (vd->v_read == vdev_mirror_read) {
int i = 0;
vdev_t *kid;
STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
is->is_child[i++].ic_vdev = kid;
}
} else {
is->is_child[0].ic_vdev = vd;
}
list_insert_tail(&iv->iv_splits, is);
}
static void
vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
{
list_t stack;
spa_t *spa = vd->spa;
list_create(&stack, sizeof (remap_segment_t),
offsetof(remap_segment_t, rs_node));
for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
rs != NULL; rs = list_remove_head(&stack)) {
vdev_t *v = rs->rs_vd;
uint64_t num_entries = 0;
/* vdev_indirect_mapping_t *vim = v->v_mapping; */
vdev_indirect_mapping_entry_phys_t *mapping =
vdev_indirect_mapping_duplicate_adjacent_entries(v,
rs->rs_offset, rs->rs_asize, &num_entries);
for (uint64_t i = 0; i < num_entries; i++) {
vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
uint64_t inner_offset = rs->rs_offset -
DVA_MAPPING_GET_SRC_OFFSET(m);
uint64_t inner_size =
MIN(rs->rs_asize, size - inner_offset);
vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
if (dst_v->v_read == vdev_indirect_read) {
list_insert_head(&stack,
rs_alloc(dst_v, dst_offset + inner_offset,
inner_size, rs->rs_split_offset));
}
vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
dst_offset + inner_offset,
inner_size, arg);
rs->rs_offset += inner_size;
rs->rs_asize -= inner_size;
rs->rs_split_offset += inner_size;
}
free(mapping);
free(rs);
}
list_destroy(&stack);
}
static void
vdev_indirect_map_free(zio_t *zio)
{
indirect_vsd_t *iv = zio->io_vsd;
indirect_split_t *is;
while ((is = list_head(&iv->iv_splits)) != NULL) {
for (int c = 0; c < is->is_children; c++) {
indirect_child_t *ic = &is->is_child[c];
free(ic->ic_data);
}
list_remove(&iv->iv_splits, is);
free(is);
}
free(iv);
}
static int
vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
zio_t zio = { 0 };
spa_t *spa = vdev->spa;
indirect_vsd_t *iv = malloc(sizeof (*iv));
indirect_split_t *first;
int rc = EIO;
if (iv == NULL)
return (ENOMEM);
bzero(iv, sizeof (*iv));
list_create(&iv->iv_splits,
sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
zio.io_spa = spa;
zio.io_bp = (blkptr_t *)bp;
zio.io_data = buf;
zio.io_size = bytes;
zio.io_offset = offset;
zio.io_vd = vdev;
zio.io_vsd = iv;
if (vdev->v_mapping == NULL) {
vdev_indirect_config_t *vic;
vic = &vdev->vdev_indirect_config;
vdev->v_mapping = vdev_indirect_mapping_open(spa,
&spa->spa_mos, vic->vic_mapping_object);
}
vdev_indirect_remap(vdev, offset, bytes, &zio);
first = list_head(&iv->iv_splits);
if (first->is_size == zio.io_size) {
/*
* This is not a split block; we are pointing to the entire
* data, which will checksum the same as the original data.
* Pass the BP down so that the child i/o can verify the
* checksum, and try a different location if available
* (e.g. on a mirror).
*
* While this special case could be handled the same as the
* general (split block) case, doing it this way ensures
* that the vast majority of blocks on indirect vdevs
* (which are not split) are handled identically to blocks
* on non-indirect vdevs. This allows us to be less strict
* about performance in the general (but rare) case.
*/
rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
zio.io_data, first->is_target_offset, bytes);
} else {
iv->iv_split_block = B_TRUE;
/*
* Read one copy of each split segment, from the
* top-level vdev. Since we don't know the
* checksum of each split individually, the child
* zio can't ensure that we get the right data.
* E.g. if it's a mirror, it will just read from a
* random (healthy) leaf vdev. We have to verify
* the checksum in vdev_indirect_io_done().
*/
for (indirect_split_t *is = list_head(&iv->iv_splits);
is != NULL; is = list_next(&iv->iv_splits, is)) {
char *ptr = zio.io_data;
rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
ptr + is->is_split_offset, is->is_target_offset,
is->is_size);
}
if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
rc = ECKSUM;
else
rc = 0;
}
vdev_indirect_map_free(&zio);
if (rc == 0)
rc = zio.io_error;
return (rc);
}
static int
vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
@ -498,6 +1052,7 @@ static vdev_t *
vdev_create(uint64_t guid, vdev_read_t *_read)
{
vdev_t *vdev;
vdev_indirect_config_t *vic;
vdev = malloc(sizeof(vdev_t));
memset(vdev, 0, sizeof(vdev_t));
@ -505,8 +1060,9 @@ vdev_create(uint64_t guid, vdev_read_t *_read)
vdev->v_guid = guid;
vdev->v_state = VDEV_STATE_OFFLINE;
vdev->v_read = _read;
vdev->v_phys_read = 0;
vdev->v_read_priv = 0;
vic = &vdev->vdev_indirect_config;
vic->vic_prev_indirect_vdev = UINT64_MAX;
STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
return (vdev);
@ -540,6 +1096,7 @@ vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
&& strcmp(type, VDEV_TYPE_FILE)
#endif
&& strcmp(type, VDEV_TYPE_RAIDZ)
&& strcmp(type, VDEV_TYPE_INDIRECT)
&& strcmp(type, VDEV_TYPE_REPLACING)) {
printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
return (EIO);
@ -568,7 +1125,23 @@ vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
vdev = vdev_create(guid, vdev_raidz_read);
else if (!strcmp(type, VDEV_TYPE_REPLACING))
vdev = vdev_create(guid, vdev_replacing_read);
else
else if (!strcmp(type, VDEV_TYPE_INDIRECT)) {
vdev_indirect_config_t *vic;
vdev = vdev_create(guid, vdev_indirect_read);
vdev->v_state = VDEV_STATE_HEALTHY;
vic = &vdev->vdev_indirect_config;
nvlist_find(nvlist,
ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64,
NULL, &vic->vic_mapping_object);
nvlist_find(nvlist,
ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64,
NULL, &vic->vic_births_object);
nvlist_find(nvlist,
ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64,
NULL, &vic->vic_prev_indirect_vdev);
} else
vdev = vdev_create(guid, vdev_disk_read);
vdev->v_id = id;
@ -591,20 +1164,24 @@ vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
path += 5;
vdev->v_name = strdup(path);
} else {
char *name;
if (!strcmp(type, "raidz")) {
if (vdev->v_nparity == 1)
vdev->v_name = "raidz1";
else if (vdev->v_nparity == 2)
vdev->v_name = "raidz2";
else if (vdev->v_nparity == 3)
vdev->v_name = "raidz3";
else {
printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
if (vdev->v_nparity < 1 ||
vdev->v_nparity > 3) {
printf("ZFS: can only boot from disk, "
"mirror, raidz1, raidz2 and raidz3 "
"vdevs\n");
return (EIO);
}
asprintf(&name, "%s%d-%jd", type,
vdev->v_nparity, id);
} else {
vdev->v_name = strdup(type);
asprintf(&name, "%s-%jd", type, id);
}
if (name == NULL)
return (ENOMEM);
vdev->v_name = name;
}
} else {
is_new = 0;
@ -2226,11 +2803,49 @@ check_mos_features(const spa_t *spa)
return (rc);
}
static int
load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
{
dnode_phys_t dir;
size_t size;
int rc;
unsigned char *nv;
*value = NULL;
if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
return (rc);
if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
return (EIO);
}
if (dir.dn_bonuslen != sizeof (uint64_t))
return (EIO);
size = *(uint64_t *)DN_BONUS(&dir);
nv = malloc(size);
if (nv == NULL)
return (ENOMEM);
rc = dnode_read(spa, &dir, 0, nv, size);
if (rc != 0) {
free(nv);
nv = NULL;
return (rc);
}
*value = nv;
return (rc);
}
static int
zfs_spa_init(spa_t *spa)
{
dnode_phys_t dir;
int rc;
uint64_t config_object;
unsigned char *nvlist;
char *type;
const unsigned char *nv;
int nkids, rc;
if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
@ -2255,8 +2870,77 @@ zfs_spa_init(spa_t *spa)
rc = check_mos_features(spa);
if (rc != 0) {
printf("ZFS: pool %s is not supported\n", spa->spa_name);
return (rc);
}
rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
sizeof (config_object), 1, &config_object);
if (rc != 0) {
printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
return (EIO);
}
rc = load_nvlist(spa, config_object, &nvlist);
if (rc != 0)
return (rc);
/* Update vdevs from MOS config. */
if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
NULL, &nv)) {
rc = EIO;
goto done;
}
if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
NULL, &type)) {
printf("ZFS: can't find vdev details\n");
rc = ENOENT;
goto done;
}
if (strcmp(type, VDEV_TYPE_ROOT) != 0) {
rc = ENOENT;
goto done;
}
rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
&nkids, &nv);
if (rc != 0)
goto done;
for (int i = 0; i < nkids; i++) {
vdev_t *vd, *prev, *kid = NULL;
rc = vdev_init_from_nvlist(nv, NULL, &kid, 0);
if (rc != 0) {
printf("vdev_init_from_nvlist: %d\n", rc);
break;
}
kid->spa = spa;
prev = NULL;
STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) {
/* Already present? */
if (kid->v_id == vd->v_id) {
kid = NULL;
break;
}
if (vd->v_id > kid->v_id) {
if (prev == NULL) {
STAILQ_INSERT_HEAD(&spa->spa_vdevs,
kid, v_childlink);
} else {
STAILQ_INSERT_AFTER(&spa->spa_vdevs,
prev, kid, v_childlink);
}
kid = NULL;
break;
}
prev = vd;
}
if (kid != NULL)
STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink);
nv = nvlist_next(nv);
}
rc = 0;
done:
free(nvlist);
return (rc);
}

View File

@ -715,6 +715,9 @@ typedef enum {
#define ZPOOL_CONFIG_CHILDREN "children"
#define ZPOOL_CONFIG_ID "id"
#define ZPOOL_CONFIG_GUID "guid"
#define ZPOOL_CONFIG_INDIRECT_OBJECT "com.delphix:indirect_object"
#define ZPOOL_CONFIG_INDIRECT_BIRTHS "com.delphix:indirect_births"
#define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev"
#define ZPOOL_CONFIG_PATH "path"
#define ZPOOL_CONFIG_DEVID "devid"
#define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array"
@ -758,6 +761,7 @@ typedef enum {
#define VDEV_TYPE_SPARE "spare"
#define VDEV_TYPE_LOG "log"
#define VDEV_TYPE_L2CACHE "l2cache"
#define VDEV_TYPE_INDIRECT "indirect"
/*
* This is needed in userland to report the minimum necessary device size.
@ -850,7 +854,7 @@ struct uberblock {
*/
#define DNODE_SHIFT 9 /* 512 bytes */
#define DN_MIN_INDBLKSHIFT 12 /* 4k */
#define DN_MAX_INDBLKSHIFT 14 /* 16k */
#define DN_MAX_INDBLKSHIFT 17 /* 128k */
#define DNODE_BLOCK_SHIFT 14 /* 16k */
#define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */
#define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */
@ -1217,6 +1221,9 @@ typedef struct dsl_dataset_phys {
#define DMU_POOL_HISTORY "history"
#define DMU_POOL_PROPS "pool_props"
#define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
#define DMU_POOL_REMOVING "com.delphix:removing"
#define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
#define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
#define ZAP_MAGIC 0x2F52AB2ABULL
@ -1530,6 +1537,116 @@ typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
typedef struct vdev_indirect_mapping_entry_phys {
/*
* Decode with DVA_MAPPING_* macros.
* Contains:
* the source offset (low 63 bits)
* the one-bit "mark", used for garbage collection (by zdb)
*/
uint64_t vimep_src;
/*
* Note: the DVA's asize is 24 bits, and can thus store ranges
* up to 8GB.
*/
dva_t vimep_dst;
} vdev_indirect_mapping_entry_phys_t;
#define DVA_MAPPING_GET_SRC_OFFSET(vimep) \
BF64_GET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0)
#define DVA_MAPPING_SET_SRC_OFFSET(vimep, x) \
BF64_SET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0, x)
typedef struct vdev_indirect_mapping_entry {
vdev_indirect_mapping_entry_phys_t vime_mapping;
uint32_t vime_obsolete_count;
list_node_t vime_node;
} vdev_indirect_mapping_entry_t;
/*
* This is stored in the bonus buffer of the mapping object, see comment of
* vdev_indirect_config for more details.
*/
typedef struct vdev_indirect_mapping_phys {
uint64_t vimp_max_offset;
uint64_t vimp_bytes_mapped;
uint64_t vimp_num_entries; /* number of v_i_m_entry_phys_t's */
/*
* For each entry in the mapping object, this object contains an
* entry representing the number of bytes of that mapping entry
* that were no longer in use by the pool at the time this indirect
* vdev was last condensed.
*/
uint64_t vimp_counts_object;
} vdev_indirect_mapping_phys_t;
#define VDEV_INDIRECT_MAPPING_SIZE_V0 (3 * sizeof (uint64_t))
typedef struct vdev_indirect_mapping {
uint64_t vim_object;
boolean_t vim_havecounts;
/* vim_entries segment offset currently in memory. */
uint64_t vim_entry_offset;
/* vim_entries segment size. */
size_t vim_num_entries;
/* Needed by dnode_read() */
const void *vim_spa;
dnode_phys_t *vim_dn;
/*
* An ordered array of mapping entries, sorted by source offset.
* Note that vim_entries is needed during a removal (and contains
* mappings that have been synced to disk so far) to handle frees
* from the removing device.
*/
vdev_indirect_mapping_entry_phys_t *vim_entries;
objset_phys_t *vim_objset;
vdev_indirect_mapping_phys_t *vim_phys;
} vdev_indirect_mapping_t;
/*
* On-disk indirect vdev state.
*
* An indirect vdev is described exclusively in the MOS config of a pool.
* The config for an indirect vdev includes several fields, which are
* accessed in memory by a vdev_indirect_config_t.
*/
typedef struct vdev_indirect_config {
/*
* Object (in MOS) which contains the indirect mapping. This object
* contains an array of vdev_indirect_mapping_entry_phys_t ordered by
* vimep_src. The bonus buffer for this object is a
* vdev_indirect_mapping_phys_t. This object is allocated when a vdev
* removal is initiated.
*
* Note that this object can be empty if none of the data on the vdev
* has been copied yet.
*/
uint64_t vic_mapping_object;
/*
* Object (in MOS) which contains the birth times for the mapping
* entries. This object contains an array of
* vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus
* buffer for this object is a vdev_indirect_birth_phys_t. This object
* is allocated when a vdev removal is initiated.
*
* Note that this object can be empty if none of the vdev has yet been
* copied.
*/
uint64_t vic_births_object;
/*
* This is the vdev ID which was removed previous to this vdev, or
* UINT64_MAX if there are no previously removed vdevs.
*/
uint64_t vic_prev_indirect_vdev;
} vdev_indirect_config_t;
typedef struct vdev {
STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */
STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */
@ -1546,6 +1663,11 @@ typedef struct vdev {
vdev_read_t *v_read; /* read from vdev */
void *v_read_priv; /* private data for read function */
struct spa *spa; /* link to spa */
/*
* Values stored in the config for an indirect or removing vdev.
*/
vdev_indirect_config_t vdev_indirect_config;
vdev_indirect_mapping_t *v_mapping;
} vdev_t;
/*
@ -1566,4 +1688,19 @@ typedef struct spa {
int spa_inited; /* initialized */
} spa_t;
/* IO related arguments. */
typedef struct zio {
spa_t *io_spa;
blkptr_t *io_bp;
void *io_data;
uint64_t io_size;
uint64_t io_offset;
/* Stuff for the vdev stack */
vdev_t *io_vd;
void *io_vsd;
int io_error;
} zio_t;
static void decode_embedded_bp_compressed(const blkptr_t *, void *);

View File

@ -23,8 +23,6 @@
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Generic doubly-linked list implementation
*/

View File

@ -26,8 +26,6 @@
#ifndef _SYS_LIST_H
#define _SYS_LIST_H
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/list_impl.h>
#ifdef __cplusplus

View File

@ -27,8 +27,6 @@
#ifndef _SYS_LIST_IMPL_H
#define _SYS_LIST_IMPL_H
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#ifdef __cplusplus

View File

@ -39,8 +39,6 @@
#ifndef _SYS_NOTE_H
#define _SYS_NOTE_H
#pragma ident "%Z%%M% %I% %E% SMI"
#ifdef __cplusplus
extern "C" {
#endif

View File

@ -383,7 +383,7 @@ extern unsigned char bcd_to_byte[256];
* High order bit is 31 (or 63 in _LP64 kernel).
*/
static __inline int
highbit(ulong_t i)
highbit(unsigned long i)
{
#if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL)
return (flsl(i));