add tool to calculate air time for 802.11 packets

This commit is contained in:
sam 2009-01-12 22:50:55 +00:00
parent 37d2c77dcc
commit c6a41fafcb
3 changed files with 604 additions and 1 deletions

View File

@ -1,5 +1,5 @@
# $FreeBSD$
SUBDIR= stumbler w00t wesside wlaninject wlanstats wlanwatch wlanwds
SUBDIR= stumbler w00t wesside wlaninject wlanstats wlantxtime wlanwatch wlanwds
.include <bsd.subdir.mk>

View File

@ -0,0 +1,7 @@
# $FreeBSD$
PROG= wlantxtime
BINDIR= /usr/local/bin
NO_MAN=
.include <bsd.prog.mk>

View File

@ -0,0 +1,596 @@
/*-
* Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 PHY-related support.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <net/if_llc.h>
#include <net80211/_ieee80211.h>
#include <net80211/ieee80211.h>
#define IEEE80211_F_SHPREAMBLE 0x00040000 /* STATUS: use short preamble */
#include <err.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
struct ieee80211_rate_table {
int rateCount; /* NB: for proper padding */
uint8_t rateCodeToIndex[256]; /* back mapping */
struct {
uint8_t phy; /* CCK/OFDM/TURBO */
uint32_t rateKbps; /* transfer rate in kbs */
uint8_t shortPreamble; /* mask for enabling short
* preamble in CCK rate code */
uint8_t dot11Rate; /* value for supported rates
* info element of MLME */
uint8_t ctlRateIndex; /* index of next lower basic
* rate; used for dur. calcs */
uint16_t lpAckDuration; /* long preamble ACK dur. */
uint16_t spAckDuration; /* short preamble ACK dur. */
} info[32];
};
uint16_t
ieee80211_compute_duration(const struct ieee80211_rate_table *rt,
uint32_t frameLen, uint16_t rate, int isShortPreamble);
#define KASSERT(c, msg) do { \
if (!(c)) { \
printf msg; \
putchar('\n'); \
exit(-1); \
} \
} while (0)
static void
panic(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
exit(-1);
}
/* shorthands to compact tables for readability */
#define OFDM IEEE80211_T_OFDM
#define CCK IEEE80211_T_CCK
#define TURBO IEEE80211_T_TURBO
#define PBCC (IEEE80211_T_HT+1) /* XXX */
#define B(r) (0x80 | r)
#define Mb(x) (x*1000)
static struct ieee80211_rate_table ieee80211_11b_table = {
.rateCount = 4, /* XXX no PBCC */
.info = {
/* short ctrl */
/* Preamble dot11Rate Rate */
[0] = { .phy = CCK, 1000, 0x00, B(2), 0 },/* 1 Mb */
[1] = { .phy = CCK, 2000, 0x04, B(4), 1 },/* 2 Mb */
[2] = { .phy = CCK, 5500, 0x04, B(11), 1 },/* 5.5 Mb */
[3] = { .phy = CCK, 11000, 0x04, B(22), 1 },/* 11 Mb */
[4] = { .phy = PBCC, 22000, 0x04, 44, 3 } /* 22 Mb */
},
};
static struct ieee80211_rate_table ieee80211_11g_table = {
.rateCount = 12,
.info = {
/* short ctrl */
/* Preamble dot11Rate Rate */
[0] = { .phy = CCK, 1000, 0x00, B(2), 0 },
[1] = { .phy = CCK, 2000, 0x04, B(4), 1 },
[2] = { .phy = CCK, 5500, 0x04, B(11), 2 },
[3] = { .phy = CCK, 11000, 0x04, B(22), 3 },
[4] = { .phy = OFDM, 6000, 0x00, 12, 4 },
[5] = { .phy = OFDM, 9000, 0x00, 18, 4 },
[6] = { .phy = OFDM, 12000, 0x00, 24, 6 },
[7] = { .phy = OFDM, 18000, 0x00, 36, 6 },
[8] = { .phy = OFDM, 24000, 0x00, 48, 8 },
[9] = { .phy = OFDM, 36000, 0x00, 72, 8 },
[10] = { .phy = OFDM, 48000, 0x00, 96, 8 },
[11] = { .phy = OFDM, 54000, 0x00, 108, 8 }
},
};
static struct ieee80211_rate_table ieee80211_11a_table = {
.rateCount = 8,
.info = {
/* short ctrl */
/* Preamble dot11Rate Rate */
[0] = { .phy = OFDM, 6000, 0x00, B(12), 0 },
[1] = { .phy = OFDM, 9000, 0x00, 18, 0 },
[2] = { .phy = OFDM, 12000, 0x00, B(24), 2 },
[3] = { .phy = OFDM, 18000, 0x00, 36, 2 },
[4] = { .phy = OFDM, 24000, 0x00, B(48), 4 },
[5] = { .phy = OFDM, 36000, 0x00, 72, 4 },
[6] = { .phy = OFDM, 48000, 0x00, 96, 4 },
[7] = { .phy = OFDM, 54000, 0x00, 108, 4 }
},
};
static struct ieee80211_rate_table ieee80211_half_table = {
.rateCount = 8,
.info = {
/* short ctrl */
/* Preamble dot11Rate Rate */
[0] = { .phy = OFDM, 3000, 0x00, B(6), 0 },
[1] = { .phy = OFDM, 4500, 0x00, 9, 0 },
[2] = { .phy = OFDM, 6000, 0x00, B(12), 2 },
[3] = { .phy = OFDM, 9000, 0x00, 18, 2 },
[4] = { .phy = OFDM, 12000, 0x00, B(24), 4 },
[5] = { .phy = OFDM, 18000, 0x00, 36, 4 },
[6] = { .phy = OFDM, 24000, 0x00, 48, 4 },
[7] = { .phy = OFDM, 27000, 0x00, 54, 4 }
},
};
static struct ieee80211_rate_table ieee80211_quarter_table = {
.rateCount = 8,
.info = {
/* short ctrl */
/* Preamble dot11Rate Rate */
[0] = { .phy = OFDM, 1500, 0x00, B(3), 0 },
[1] = { .phy = OFDM, 2250, 0x00, 4, 0 },
[2] = { .phy = OFDM, 3000, 0x00, B(9), 2 },
[3] = { .phy = OFDM, 4500, 0x00, 9, 2 },
[4] = { .phy = OFDM, 6000, 0x00, B(12), 4 },
[5] = { .phy = OFDM, 9000, 0x00, 18, 4 },
[6] = { .phy = OFDM, 12000, 0x00, 24, 4 },
[7] = { .phy = OFDM, 13500, 0x00, 27, 4 }
},
};
static struct ieee80211_rate_table ieee80211_turbog_table = {
.rateCount = 7,
.info = {
/* short ctrl */
/* Preamble dot11Rate Rate */
[0] = { .phy = TURBO, 12000, 0x00, B(12), 0 },
[1] = { .phy = TURBO, 24000, 0x00, B(24), 1 },
[2] = { .phy = TURBO, 36000, 0x00, 36, 1 },
[3] = { .phy = TURBO, 48000, 0x00, B(48), 3 },
[4] = { .phy = TURBO, 72000, 0x00, 72, 3 },
[5] = { .phy = TURBO, 96000, 0x00, 96, 3 },
[6] = { .phy = TURBO, 108000, 0x00, 108, 3 }
},
};
static struct ieee80211_rate_table ieee80211_turboa_table = {
.rateCount = 8,
.info = {
/* short ctrl */
/* Preamble dot11Rate Rate */
[0] = { .phy = TURBO, 12000, 0x00, B(12), 0 },
[1] = { .phy = TURBO, 18000, 0x00, 18, 0 },
[2] = { .phy = TURBO, 24000, 0x00, B(24), 2 },
[3] = { .phy = TURBO, 36000, 0x00, 36, 2 },
[4] = { .phy = TURBO, 48000, 0x00, B(48), 4 },
[5] = { .phy = TURBO, 72000, 0x00, 72, 4 },
[6] = { .phy = TURBO, 96000, 0x00, 96, 4 },
[7] = { .phy = TURBO, 108000, 0x00, 108, 4 }
},
};
#undef Mb
#undef B
#undef OFDM
#undef CCK
#undef TURBO
#undef XR
/*
* Setup a rate table's reverse lookup table and fill in
* ack durations. The reverse lookup tables are assumed
* to be initialized to zero (or at least the first entry).
* We use this as a key that indicates whether or not
* we've previously setup the reverse lookup table.
*
* XXX not reentrant, but shouldn't matter
*/
static void
ieee80211_setup_ratetable(struct ieee80211_rate_table *rt)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
#define WLAN_CTRL_FRAME_SIZE \
(sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
int i;
for (i = 0; i < N(rt->rateCodeToIndex); i++)
rt->rateCodeToIndex[i] = (uint8_t) -1;
for (i = 0; i < rt->rateCount; i++) {
uint8_t code = rt->info[i].dot11Rate;
uint8_t cix = rt->info[i].ctlRateIndex;
uint8_t ctl_rate = rt->info[cix].dot11Rate;
rt->rateCodeToIndex[code] = i;
if (code & IEEE80211_RATE_BASIC) {
/*
* Map w/o basic rate bit too.
*/
code &= IEEE80211_RATE_VAL;
rt->rateCodeToIndex[code] = i;
}
/*
* XXX for 11g the control rate to use for 5.5 and 11 Mb/s
* depends on whether they are marked as basic rates;
* the static tables are setup with an 11b-compatible
* 2Mb/s rate which will work but is suboptimal
*
* NB: Control rate is always less than or equal to the
* current rate, so control rate's reverse lookup entry
* has been installed and following call is safe.
*/
rt->info[i].lpAckDuration = ieee80211_compute_duration(rt,
WLAN_CTRL_FRAME_SIZE, ctl_rate, 0);
rt->info[i].spAckDuration = ieee80211_compute_duration(rt,
WLAN_CTRL_FRAME_SIZE, ctl_rate, IEEE80211_F_SHPREAMBLE);
}
#undef WLAN_CTRL_FRAME_SIZE
#undef N
}
/* Setup all rate tables */
static void
ieee80211_phy_init(void)
{
#define N(arr) (int)(sizeof(arr) / sizeof(arr[0]))
static struct ieee80211_rate_table * const ratetables[] = {
&ieee80211_half_table,
&ieee80211_quarter_table,
&ieee80211_11a_table,
&ieee80211_11g_table,
&ieee80211_turbog_table,
&ieee80211_turboa_table,
&ieee80211_turboa_table,
&ieee80211_11a_table,
&ieee80211_11g_table,
&ieee80211_11b_table
};
int i;
for (i = 0; i < N(ratetables); ++i)
ieee80211_setup_ratetable(ratetables[i]);
#undef N
}
/*
* Compute the time to transmit a frame of length frameLen bytes
* using the specified rate, phy, and short preamble setting.
* SIFS is included.
*/
uint16_t
ieee80211_compute_duration(const struct ieee80211_rate_table *rt,
uint32_t frameLen, uint16_t rate, int isShortPreamble)
{
uint8_t rix = rt->rateCodeToIndex[rate];
uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
uint32_t kbps;
KASSERT(rix != (uint8_t)-1, ("rate %d has no info", rate));
kbps = rt->info[rix].rateKbps;
if (kbps == 0) /* XXX bandaid for channel changes */
return 0;
switch (rt->info[rix].phy) {
case IEEE80211_T_CCK:
#define CCK_SIFS_TIME 10
#define CCK_PREAMBLE_BITS 144
#define CCK_PLCP_BITS 48
phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
if (isShortPreamble && rt->info[rix].shortPreamble)
phyTime >>= 1;
numBits = frameLen << 3;
txTime = CCK_SIFS_TIME + phyTime
+ ((numBits * 1000)/kbps);
break;
#undef CCK_SIFS_TIME
#undef CCK_PREAMBLE_BITS
#undef CCK_PLCP_BITS
case IEEE80211_T_OFDM:
#define OFDM_SIFS_TIME 16
#define OFDM_PREAMBLE_TIME 20
#define OFDM_PLCP_BITS 22
#define OFDM_SYMBOL_TIME 4
#define OFDM_SIFS_TIME_HALF 32
#define OFDM_PREAMBLE_TIME_HALF 40
#define OFDM_PLCP_BITS_HALF 22
#define OFDM_SYMBOL_TIME_HALF 8
#define OFDM_SIFS_TIME_QUARTER 64
#define OFDM_PREAMBLE_TIME_QUARTER 80
#define OFDM_PLCP_BITS_QUARTER 22
#define OFDM_SYMBOL_TIME_QUARTER 16
if (rt == &ieee80211_half_table) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
KASSERT(bitsPerSymbol != 0, ("1/2 rate bps"));
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = howmany(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_QUARTER
+ OFDM_PREAMBLE_TIME_QUARTER
+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
} else if (rt == &ieee80211_quarter_table) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
KASSERT(bitsPerSymbol != 0, ("1/4 rate bps"));
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = howmany(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_HALF
+ OFDM_PREAMBLE_TIME_HALF
+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
} else { /* full rate channel */
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
KASSERT(bitsPerSymbol != 0, ("full rate bps"));
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = howmany(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
+ (numSymbols * OFDM_SYMBOL_TIME);
}
break;
#undef OFDM_SIFS_TIME
#undef OFDM_PREAMBLE_TIME
#undef OFDM_PLCP_BITS
#undef OFDM_SYMBOL_TIME
case IEEE80211_T_TURBO:
#define TURBO_SIFS_TIME 8
#define TURBO_PREAMBLE_TIME 14
#define TURBO_PLCP_BITS 22
#define TURBO_SYMBOL_TIME 4
/* we still save OFDM rates in kbps - so double them */
bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000;
KASSERT(bitsPerSymbol != 0, ("turbo bps"));
numBits = TURBO_PLCP_BITS + (frameLen << 3);
numSymbols = howmany(numBits, bitsPerSymbol);
txTime = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME
+ (numSymbols * TURBO_SYMBOL_TIME);
break;
#undef TURBO_SIFS_TIME
#undef TURBO_PREAMBLE_TIME
#undef TURBO_PLCP_BITS
#undef TURBO_SYMBOL_TIME
default:
panic("%s: unknown phy %u (rate %u)\n", __func__,
rt->info[rix].phy, rate);
break;
}
return txTime;
}
#define OFDM_PLCP_BITS 22
#define HT_L_STF 8
#define HT_L_LTF 8
#define HT_L_SIG 4
#define HT_SIG 8
#define HT_STF 4
#define HT_LTF(n) ((n) * 4)
uint32_t
ieee80211_compute_duration_ht(const struct ieee80211_rate_table *rt,
uint32_t frameLen, uint16_t rate,
int streams, int isht40, int isShortGI)
{
static const uint16_t ht20_bps[16] = {
26, 52, 78, 104, 156, 208, 234, 260,
52, 104, 156, 208, 312, 416, 468, 520
};
static const uint16_t ht40_bps[16] = {
54, 108, 162, 216, 324, 432, 486, 540,
108, 216, 324, 432, 648, 864, 972, 1080,
};
uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
KASSERT((rate &~ IEEE80211_RATE_MCS) < 16, ("bad mcs 0x%x", rate));
if (isht40)
bitsPerSymbol = ht40_bps[rate & 0xf];
else
bitsPerSymbol = ht20_bps[rate & 0xf];
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = howmany(numBits, bitsPerSymbol);
if (isShortGI)
txTime = ((numSymbols * 18) + 4) / 5; /* 3.6us */
else
txTime = numSymbols * 4; /* 4us */
return txTime + HT_L_STF + HT_L_LTF +
HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
}
static const struct ieee80211_rate_table *
mode2table(const char *mode)
{
if (strcasecmp(mode, "half") == 0)
return &ieee80211_half_table;
else if (strcasecmp(mode, "quarter") == 0)
return &ieee80211_quarter_table;
else if (strcasecmp(mode, "hta") == 0)
return &ieee80211_11a_table; /* XXX */
else if (strcasecmp(mode, "htg") == 0)
return &ieee80211_11g_table; /* XXX */
else if (strcasecmp(mode, "108g") == 0)
return &ieee80211_turbog_table;
else if (strcasecmp(mode, "sturbo") == 0)
return &ieee80211_turboa_table;
else if (strcasecmp(mode, "turbo") == 0)
return &ieee80211_turboa_table;
else if (strcasecmp(mode, "11a") == 0)
return &ieee80211_11a_table;
else if (strcasecmp(mode, "11g") == 0)
return &ieee80211_11g_table;
else if (strcasecmp(mode, "11b") == 0)
return &ieee80211_11b_table;
else
return NULL;
}
const char *
srate(int rate)
{
static char buf[32];
if (rate & 1)
snprintf(buf, sizeof(buf), "%u.5", rate/2);
else
snprintf(buf, sizeof(buf), "%u", rate/2);
return buf;
}
static int
checkpreamble(const struct ieee80211_rate_table *rt, uint8_t rix,
int isShortPreamble, int verbose)
{
if (isShortPreamble) {
if (rt->info[rix].phy != IEEE80211_T_CCK) {
if (verbose)
warnx("short preamble not meaningful, ignored");
isShortPreamble = 0;
} else if (!rt->info[rix].shortPreamble) {
if (verbose)
warnx("short preamble not meaningful with "
"rate %s, ignored",
srate(rt->info[rix].dot11Rate &~ IEEE80211_RATE_BASIC));
isShortPreamble = 0;
}
}
return isShortPreamble;
}
static void
usage(const char *progname)
{
fprintf(stderr, "usage: %s [-a] [-l framelen] [-m mode] [-r rate] [-s]\n",
progname);
fprintf(stderr, "-a display calculations for all possible rates\n");
fprintf(stderr, "-l framelen length in bytes of 802.11 payload (default 1536)\n");
fprintf(stderr, "-m 11a calculate for 11a channel\n");
fprintf(stderr, "-m 11b calculate for 11b channel\n");
fprintf(stderr, "-m 11g calculate for 11g channel (default)\n");
fprintf(stderr, "-m half calculate for 1/2 width channel\n");
fprintf(stderr, "-m quarter calculate for 1/4 width channel\n");
fprintf(stderr, "-m 108g calculate for dynamic turbo 11g channel\n");
fprintf(stderr, "-m sturbo calculate for static turbo channel\n");
fprintf(stderr, "-m turbo calculate for dynamic turbo 11a channel\n");
fprintf(stderr, "-r rate IEEE rate code (default 54)\n");
fprintf(stderr, "-s short preamble (default long)\n");
exit(0);
}
int
main(int argc, char *argv[])
{
const struct ieee80211_rate_table *rt;
const char *mode;
uint32_t frameLen;
uint16_t rate;
uint16_t time;
uint8_t rix;
int ch, allrates, isShortPreamble, isShort;
float frate;
ieee80211_phy_init();
mode = "11g";
isShortPreamble = 0;
frameLen = 1500
+ sizeof(struct ieee80211_frame)
+ LLC_SNAPFRAMELEN
+ IEEE80211_CRC_LEN
;
rate = 2*54;
allrates = 0;
while ((ch = getopt(argc, argv, "al:m:r:s")) != -1) {
switch (ch) {
case 'a':
allrates = 1;
break;
case 'l':
frameLen = strtoul(optarg, NULL, 0);
break;
case 'm':
mode = optarg;
break;
case 'r':
frate = atof(optarg);
rate = (int) 2*frate;
break;
case 's':
isShortPreamble = 1;
break;
default:
usage(argv[0]);
break;
}
}
rt = mode2table(mode);
if (rt == NULL)
errx(-1, "unknown mode %s", mode);
if (!allrates) {
rix = rt->rateCodeToIndex[rate];
if (rix == (uint8_t) -1)
errx(-1, "rate %s not valid for mode %s", srate(rate), mode);
isShort = checkpreamble(rt, rix, isShortPreamble, 1);
time = ieee80211_compute_duration(rt, frameLen, rate, isShort);
printf("%u usec to send %u bytes @ %s Mb/s, %s preamble\n",
time, frameLen, srate(rate),
isShort ? "short" : "long");
} else {
for (rix = 0; rix < rt->rateCount; rix++) {
rate = rt->info[rix].dot11Rate &~ IEEE80211_RATE_BASIC;
isShort = checkpreamble(rt, rix, isShortPreamble, 0);
time = ieee80211_compute_duration(rt, frameLen, rate,
isShort);
printf("%u usec to send %u bytes @ %s Mb/s, %s preamble\n",
time, frameLen, srate(rate),
isShort ? "short" : "long");
}
}
return 0;
}