Update uboot's disk driver to use new DISK API.

This commit is contained in:
Andrey V. Elsukov 2012-09-09 11:33:06 +00:00
parent 8be6260966
commit d958ec0ca3

View File

@ -1,6 +1,7 @@
/*-
* Copyright (c) 2008 Semihalf, Rafal Jaworowski
* Copyright (c) 2009 Semihalf, Piotr Ziecik
* Copyright (c) 2012 Andrey V. Elsukov <ae@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -34,20 +35,13 @@
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/queue.h>
#include <netinet/in.h>
#include <sys/disk.h>
#include <machine/stdarg.h>
#include <stand.h>
#include <uuid.h>
#define FSTYPENAMES
#include <sys/disklabel.h>
#include <sys/diskmbr.h>
#include <sys/gpt.h>
#include "api_public.h"
#include "bootstrap.h"
#include "disk.h"
#include "glue.h"
#include "libuboot.h"
@ -66,51 +60,28 @@ __FBSDID("$FreeBSD$");
#define debugf(fmt, args...)
#endif
struct gpt_part {
int gp_index;
uuid_t gp_type;
uint64_t gp_start;
uint64_t gp_end;
};
static struct {
int opened; /* device is opened */
int handle; /* storage device handle */
int type; /* storage type */
off_t blocks; /* block count */
u_int bsize; /* block size */
} stor_info[UB_MAX_DEV];
struct open_dev {
int od_bsize; /* block size */
int od_bstart; /* start block offset from beginning of disk */
union {
struct {
struct disklabel bsdlabel;
} _bsd;
struct {
struct gpt_part *gpt_partitions;
int gpt_nparts;
} _gpt;
} _data;
};
#define SI(dev) (stor_info[(dev)->d_unit])
#define od_bsdlabel _data._bsd.bsdlabel
#define od_nparts _data._gpt.gpt_nparts
#define od_partitions _data._gpt.gpt_partitions
static uuid_t efi = GPT_ENT_TYPE_EFI;
static uuid_t freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
static uuid_t freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
static uuid_t freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
static uuid_t freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
static uuid_t ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
static int stor_info[UB_MAX_DEV];
static int stor_info_no = 0;
static int stor_opendev(struct open_dev **, struct uboot_devdesc *);
static int stor_closedev(struct uboot_devdesc *);
static int stor_readdev(struct uboot_devdesc *, daddr_t, size_t, char *);
static int stor_open_count = 0;
static int stor_opendev(struct disk_devdesc *);
static int stor_readdev(struct disk_devdesc *, daddr_t, size_t, char *);
/* devsw I/F */
static int stor_init(void);
static int stor_strategy(void *, int, daddr_t, size_t, char *, size_t *);
static int stor_open(struct open_file *, ...);
static int stor_close(struct open_file *);
static int stor_ioctl(struct open_file *f, u_long cmd, void *data);
static void stor_print(int);
static void stor_cleanup(void);
struct devsw uboot_storage = {
"disk",
@ -119,24 +90,16 @@ struct devsw uboot_storage = {
stor_strategy,
stor_open,
stor_close,
noioctl,
stor_print
stor_ioctl,
stor_print,
stor_cleanup
};
static void
uuid_letoh(uuid_t *uuid)
{
uuid->time_low = le32toh(uuid->time_low);
uuid->time_mid = le16toh(uuid->time_mid);
uuid->time_hi_and_version = le16toh(uuid->time_hi_and_version);
}
static int
stor_init(void)
{
struct device_info *di;
int i, found = 0;
int i;
if (devs_no == 0) {
printf("No U-Boot devices! Really enumerated?\n");
@ -151,12 +114,18 @@ stor_init(void)
stor_info_no);
return (-1);
}
stor_info[stor_info_no++] = i;
found = 1;
stor_info[stor_info_no].handle = i;
stor_info[stor_info_no].opened = 0;
stor_info[stor_info_no].type = di->type;
stor_info[stor_info_no].blocks =
di->di_stor.block_count;
stor_info[stor_info_no].bsize =
di->di_stor.block_size;
stor_info_no++;
}
}
if (!found) {
if (!stor_info_no) {
debugf("No storage devices\n");
return (-1);
}
@ -165,32 +134,39 @@ stor_init(void)
return (0);
}
static void
stor_cleanup(void)
{
int i;
for (i = 0; i < stor_info_no; i++)
if (stor_info[i].opened > 0)
ub_dev_close(stor_info[i].handle);
}
static int
stor_strategy(void *devdata, int rw, daddr_t blk, size_t size, char *buf,
size_t *rsize)
{
struct uboot_devdesc *dev = (struct uboot_devdesc *)devdata;
struct open_dev *od = (struct open_dev *)dev->d_disk.data;
int bcount, err;
debugf("od=%p, size=%d, bsize=%d\n", od, size, od->od_bsize);
struct disk_devdesc *dev = (struct disk_devdesc *)devdata;
daddr_t bcount;
int err;
if (rw != F_READ) {
stor_printf("write attempt, operation not supported!\n");
return (EROFS);
}
if (size % od->od_bsize) {
if (size % SI(dev).bsize) {
stor_printf("size=%d not multiple of device block size=%d\n",
size, od->od_bsize);
size, SI(dev).bsize);
return (EIO);
}
bcount = size / od->od_bsize;
bcount = size / SI(dev).bsize;
if (rsize)
*rsize = 0;
err = stor_readdev(dev, blk + od->od_bstart, bcount, buf);
err = stor_readdev(dev, blk + dev->d_offset, bcount, buf);
if (!err && rsize)
*rsize = size;
@ -201,340 +177,54 @@ static int
stor_open(struct open_file *f, ...)
{
va_list ap;
struct open_dev *od;
struct uboot_devdesc *dev;
int err;
struct disk_devdesc *dev;
va_start(ap, f);
dev = va_arg(ap, struct uboot_devdesc *);
dev = va_arg(ap, struct disk_devdesc *);
va_end(ap);
if ((err = stor_opendev(&od, dev)) != 0)
return (err);
return (stor_opendev(dev));
}
((struct uboot_devdesc *)(f->f_devdata))->d_disk.data = od;
static int
stor_opendev(struct disk_devdesc *dev)
{
int err;
return (0);
if (dev->d_unit < 0 || dev->d_unit >= stor_info_no)
return (EIO);
if (SI(dev).opened == 0) {
err = ub_dev_open(SI(dev).handle);
if (err != 0) {
stor_printf("device open failed with error=%d, "
"handle=%d\n", err, SI(dev).handle);
return (ENXIO);
}
SI(dev).opened++;
}
return (disk_open(dev, SI(dev).blocks * SI(dev).bsize,
SI(dev).bsize));
}
static int
stor_close(struct open_file *f)
{
struct uboot_devdesc *dev;
struct disk_devdesc *dev;
dev = (struct uboot_devdesc *)(f->f_devdata);
return (stor_closedev(dev));
dev = (struct disk_devdesc *)(f->f_devdata);
return (disk_close(dev));
}
static int
stor_open_gpt(struct open_dev *od, struct uboot_devdesc *dev)
{
char *buf;
struct dos_partition *dp;
struct gpt_hdr *hdr;
struct gpt_ent *ent;
daddr_t slba, lba, elba;
int eps, part, i;
int err = 0;
od->od_nparts = 0;
od->od_partitions = NULL;
/* Devices with block size smaller than 512 bytes cannot use GPT */
if (od->od_bsize < 512)
return (ENXIO);
/* Allocate 1 block */
buf = malloc(od->od_bsize);
if (!buf) {
stor_printf("could not allocate memory for GPT\n");
return (ENOMEM);
}
/* Read MBR */
err = stor_readdev(dev, 0, 1, buf);
if (err) {
stor_printf("GPT read error=%d\n", err);
err = EIO;
goto out;
}
/* Check the slice table magic. */
if (le16toh(*((uint16_t *)(buf + DOSMAGICOFFSET))) != DOSMAGIC) {
err = ENXIO;
goto out;
}
/* Check GPT slice */
dp = (struct dos_partition *)(buf + DOSPARTOFF);
part = 0;
for (i = 0; i < NDOSPART; i++) {
if (dp[i].dp_typ == 0xee)
part += 1;
else if (dp[i].dp_typ != 0x00) {
err = EINVAL;
goto out;
}
}
if (part != 1) {
err = EINVAL;
goto out;
}
/* Read primary GPT header */
err = stor_readdev(dev, 1, 1, buf);
if (err) {
stor_printf("GPT read error=%d\n", err);
err = EIO;
goto out;
}
hdr = (struct gpt_hdr *)buf;
/* Check GPT header */
if (bcmp(hdr->hdr_sig, GPT_HDR_SIG, sizeof(hdr->hdr_sig)) != 0 ||
le64toh(hdr->hdr_lba_self) != 1 ||
le32toh(hdr->hdr_revision) < 0x00010000 ||
le32toh(hdr->hdr_entsz) < sizeof(*ent) ||
od->od_bsize % le32toh(hdr->hdr_entsz) != 0) {
debugf("Invalid GPT header!\n");
err = EINVAL;
goto out;
}
/* Count number of valid partitions */
part = 0;
eps = od->od_bsize / le32toh(hdr->hdr_entsz);
slba = le64toh(hdr->hdr_lba_table);
elba = slba + le32toh(hdr->hdr_entries) / eps;
for (lba = slba; lba < elba; lba++) {
err = stor_readdev(dev, lba, 1, buf);
if (err) {
stor_printf("GPT read error=%d\n", err);
err = EIO;
goto out;
}
ent = (struct gpt_ent *)buf;
for (i = 0; i < eps; i++) {
if (uuid_is_nil(&ent[i].ent_type, NULL) ||
le64toh(ent[i].ent_lba_start) == 0 ||
le64toh(ent[i].ent_lba_end) <
le64toh(ent[i].ent_lba_start))
continue;
part += 1;
}
}
/* Save information about partitions */
if (part != 0) {
od->od_nparts = part;
od->od_partitions = malloc(part * sizeof(struct gpt_part));
if (!od->od_partitions) {
stor_printf("could not allocate memory for GPT\n");
err = ENOMEM;
goto out;
}
part = 0;
for (lba = slba; lba < elba; lba++) {
err = stor_readdev(dev, lba, 1, buf);
if (err) {
stor_printf("GPT read error=%d\n", err);
err = EIO;
goto out;
}
ent = (struct gpt_ent *)buf;
for (i = 0; i < eps; i++) {
if (uuid_is_nil(&ent[i].ent_type, NULL) ||
le64toh(ent[i].ent_lba_start) == 0 ||
le64toh(ent[i].ent_lba_end) <
le64toh(ent[i].ent_lba_start))
continue;
od->od_partitions[part].gp_index = (lba - slba)
* eps + i + 1;
od->od_partitions[part].gp_type =
ent[i].ent_type;
od->od_partitions[part].gp_start =
le64toh(ent[i].ent_lba_start);
od->od_partitions[part].gp_end =
le64toh(ent[i].ent_lba_end);
uuid_letoh(&od->od_partitions[part].gp_type);
part += 1;
}
}
}
dev->d_disk.ptype = PTYPE_GPT;
/*
* If index of partition to open (dev->d_disk.pnum) is not defined
* we set it to the index of the first existing partition. This
* handles cases when only a disk device is specified (without full
* partition information) by the caller.
*/
if ((od->od_nparts > 0) && (dev->d_disk.pnum == 0))
dev->d_disk.pnum = od->od_partitions[0].gp_index;
for (i = 0; i < od->od_nparts; i++)
if (od->od_partitions[i].gp_index == dev->d_disk.pnum)
od->od_bstart = od->od_partitions[i].gp_start;
out:
if (err && od->od_partitions)
free(od->od_partitions);
free(buf);
return (err);
}
static int
stor_open_mbr(struct open_dev *od, struct uboot_devdesc *dev)
{
char *buf = NULL;
struct dos_partition *dp;
int err, i, part;
od->od_nparts = 0;
od->od_partitions = NULL;
/* Block size must be at least 512 bytes. */
if (od->od_bsize < 512)
return (ENXIO);
/* Read MBR */
buf = malloc(od->od_bsize);
if (!buf) {
stor_printf("could not allocate memory for MBR\n");
return (ENOMEM);
}
err = stor_readdev(dev, 0, 1, buf);
if (err) {
stor_printf("MBR read error=%d\n", err);
err = EIO;
goto out;
}
/* Check the slice table magic. */
if (le16toh(*((uint16_t *)(buf + DOSMAGICOFFSET))) != DOSMAGIC) {
err = ENXIO;
goto out;
}
/* Save information about partitions. */
dp = (struct dos_partition *)(buf + DOSPARTOFF);
od->od_partitions = calloc(NDOSPART, sizeof(struct gpt_part));
if (!od->od_partitions) {
stor_printf("could not allocate memory for MBR partitions\n");
err = ENOMEM;
goto out;
}
part = 0;
for (i = 0; i < NDOSPART; i++) {
u_int32_t start = le32dec(&dp[i].dp_start);
u_int32_t size = le32dec(&dp[i].dp_size);
uuid_t *u = NULL;
/* Map MBR partition types to GPT partition types. */
switch (dp[i].dp_typ) {
case DOSPTYP_386BSD:
u = &freebsd_ufs;
break;
/* XXX Other types XXX */
}
if (u) {
od->od_partitions[part].gp_type = *u;
od->od_partitions[part].gp_index = i + 1;
od->od_partitions[part].gp_start = start;
od->od_partitions[part].gp_end = start + size;
part += 1;
}
}
od->od_nparts = part;
if (od->od_nparts == 0) {
err = EINVAL;
goto out;
}
dev->d_disk.ptype = PTYPE_MBR;
/* XXX Be smarter here? XXX */
if (dev->d_disk.pnum == 0)
dev->d_disk.pnum = od->od_partitions[0].gp_index;
for (i = 0; i < od->od_nparts; i++)
if (od->od_partitions[i].gp_index == dev->d_disk.pnum)
od->od_bstart = od->od_partitions[i].gp_start;
out:
if (err && od->od_partitions)
free(od->od_partitions);
free(buf);
return (err);
}
static int
stor_open_bsdlabel(struct open_dev *od, struct uboot_devdesc *dev)
{
char *buf;
struct disklabel *dl;
int err = 0;
/* Allocate 1 block */
buf = malloc(od->od_bsize);
if (!buf) {
stor_printf("could not allocate memory for disklabel\n");
return (ENOMEM);
}
/* Read disklabel */
err = stor_readdev(dev, LABELSECTOR, 1, buf);
if (err) {
stor_printf("disklabel read error=%d\n", err);
err = ERDLAB;
goto out;
}
bcopy(buf + LABELOFFSET, &od->od_bsdlabel, sizeof(struct disklabel));
dl = &od->od_bsdlabel;
if (dl->d_magic != DISKMAGIC) {
stor_printf("no disklabel magic!\n");
err = EUNLAB;
goto out;
}
od->od_bstart = dl->d_partitions[dev->d_disk.pnum].p_offset;
dev->d_disk.ptype = PTYPE_BSDLABEL;
debugf("bstart=%d\n", od->od_bstart);
out:
free(buf);
return (err);
}
static int
stor_readdev(struct uboot_devdesc *dev, daddr_t blk, size_t size, char *buf)
stor_readdev(struct disk_devdesc *dev, daddr_t blk, size_t size, char *buf)
{
lbasize_t real_size;
int err, handle;
int err;
debugf("reading blk=%d size=%d @ 0x%08x\n", (int)blk, size, (uint32_t)buf);
handle = stor_info[dev->d_unit];
err = ub_dev_read(handle, buf, size, blk, &real_size);
err = ub_dev_read(SI(dev).handle, buf, size, blk, &real_size);
if (err != 0) {
stor_printf("read failed, error=%d\n", err);
return (EIO);
@ -548,229 +238,45 @@ stor_readdev(struct uboot_devdesc *dev, daddr_t blk, size_t size, char *buf)
return (err);
}
static int
stor_opendev(struct open_dev **odp, struct uboot_devdesc *dev)
{
struct device_info *di;
struct open_dev *od;
int err, h;
h = stor_info[dev->d_unit];
debugf("refcount=%d\n", stor_open_count);
/*
* There can be recursive open calls from the infrastructure, but at
* U-Boot level open the device only the first time.
*/
if (stor_open_count > 0)
stor_open_count++;
else if ((err = ub_dev_open(h)) != 0) {
stor_printf("device open failed with error=%d, handle=%d\n",
err, h);
*odp = NULL;
return (ENXIO);
}
if ((di = ub_dev_get(h)) == NULL)
panic("could not retrieve U-Boot device_info, handle=%d", h);
if ((od = malloc(sizeof(struct open_dev))) == NULL) {
stor_printf("could not allocate memory for open_dev\n");
return (ENOMEM);
}
od->od_bsize = di->di_stor.block_size;
od->od_bstart = 0;
err = stor_open_gpt(od, dev);
if (err != 0)
err = stor_open_mbr(od, dev);
if (err != 0)
err = stor_open_bsdlabel(od, dev);
if (err != 0)
free(od);
else {
stor_open_count = 1;
*odp = od;
}
return (err);
}
static int
stor_closedev(struct uboot_devdesc *dev)
{
struct open_dev *od;
int err, h;
od = (struct open_dev *)dev->d_disk.data;
if (dev->d_disk.ptype == PTYPE_GPT && od->od_nparts != 0)
free(od->od_partitions);
if (dev->d_disk.ptype == PTYPE_MBR && od->od_nparts != 0)
free(od->od_partitions);
free(od);
dev->d_disk.data = NULL;
if (--stor_open_count == 0) {
h = stor_info[dev->d_unit];
if ((err = ub_dev_close(h)) != 0) {
stor_printf("device close failed with error=%d, "
"handle=%d\n", err, h);
return (ENXIO);
}
}
return (0);
}
/* Given a size in 512 byte sectors, convert it to a human-readable number. */
/* XXX stolen from sys/boot/i386/libi386/biosdisk.c, should really be shared */
static char *
display_size(uint64_t size)
{
static char buf[80];
char unit;
size /= 2;
unit = 'K';
if (size >= 10485760000LL) {
size /= 1073741824;
unit = 'T';
} else if (size >= 10240000) {
size /= 1048576;
unit = 'G';
} else if (size >= 10000) {
size /= 1024;
unit = 'M';
}
sprintf(buf, "%.6ld%cB", (long)size, unit);
return (buf);
}
static void
stor_print_bsdlabel(struct uboot_devdesc *dev, char *prefix, int verbose)
{
char buf[512], line[80];
struct disklabel *dl;
uint32_t off, size;
int err, i, t;
/* Read disklabel */
err = stor_readdev(dev, LABELSECTOR, 1, buf);
if (err) {
sprintf(line, "%s%d: disklabel read error=%d\n",
dev->d_dev->dv_name, dev->d_unit, err);
pager_output(line);
return;
}
dl = (struct disklabel *)buf;
if (dl->d_magic != DISKMAGIC) {
sprintf(line, "%s%d: no disklabel magic!\n",
dev->d_dev->dv_name, dev->d_unit);
pager_output(line);
return;
}
/* Print partitions info */
for (i = 0; i < dl->d_npartitions; i++) {
if ((t = dl->d_partitions[i].p_fstype) < FSMAXTYPES) {
off = dl->d_partitions[i].p_offset;
size = dl->d_partitions[i].p_size;
if (fstypenames[t] == NULL || size == 0)
continue;
if ((('a' + i) == 'c') && (!verbose))
continue;
sprintf(line, " %s%c: %s %s (%d - %d)\n", prefix,
'a' + i, fstypenames[t], display_size(size),
off, off + size);
pager_output(line);
}
}
}
static void
stor_print_gpt(struct uboot_devdesc *dev, char *prefix, int verbose)
{
struct open_dev *od = (struct open_dev *)dev->d_disk.data;
struct gpt_part *gp;
char line[80];
char *fs;
int i;
for (i = 0; i < od->od_nparts; i++) {
gp = &od->od_partitions[i];
if (uuid_equal(&gp->gp_type, &efi, NULL))
fs = "EFI";
else if (uuid_equal(&gp->gp_type, &ms_basic_data, NULL))
fs = "FAT/NTFS";
else if (uuid_equal(&gp->gp_type, &freebsd_boot, NULL))
fs = "FreeBSD Boot";
else if (uuid_equal(&gp->gp_type, &freebsd_ufs, NULL))
fs = "FreeBSD UFS";
else if (uuid_equal(&gp->gp_type, &freebsd_swap, NULL))
fs = "FreeBSD Swap";
else if (uuid_equal(&gp->gp_type, &freebsd_zfs, NULL))
fs = "FreeBSD ZFS";
else
fs = "unknown";
sprintf(line, " %sp%u: %s %s (%lld - %lld)\n", prefix,
gp->gp_index, fs,
display_size(gp->gp_end + 1 - gp->gp_start), gp->gp_start,
gp->gp_end);
pager_output(line);
}
}
static void
stor_print_one(int i, struct device_info *di, int verbose)
{
struct uboot_devdesc dev;
struct open_dev *od;
char line[80];
sprintf(line, "\tdisk%d (%s)\n", i, ub_stor_type(di->type));
pager_output(line);
dev.d_dev = &uboot_storage;
dev.d_unit = i;
dev.d_disk.pnum = -1;
dev.d_disk.data = NULL;
if (stor_opendev(&od, &dev) == 0) {
dev.d_disk.data = od;
if (dev.d_disk.ptype == PTYPE_GPT) {
sprintf(line, "\t\tdisk%d", i);
stor_print_gpt(&dev, line, verbose);
} else if (dev.d_disk.ptype == PTYPE_BSDLABEL) {
sprintf(line, "\t\tdisk%d", i);
stor_print_bsdlabel(&dev, line, verbose);
}
stor_closedev(&dev);
}
}
static void
stor_print(int verbose)
{
struct device_info *di;
struct disk_devdesc dev;
static char line[80];
int i;
for (i = 0; i < stor_info_no; i++) {
di = ub_dev_get(stor_info[i]);
if (di != NULL)
stor_print_one(i, di, verbose);
dev.d_dev = &uboot_storage;
dev.d_unit = i;
dev.d_slice = -1;
dev.d_partition = -1;
sprintf(line, "\tdisk%d (%s)\n", i,
ub_stor_type(SI(&dev).type));
pager_output(line);
if (stor_opendev(&dev) == 0) {
sprintf(line, "\tdisk%d", i);
disk_print(&dev, line, verbose);
disk_close(&dev);
}
}
}
static int
stor_ioctl(struct open_file *f, u_long cmd, void *data)
{
struct disk_devdesc *dev;
dev = (struct disk_devdesc *)f->f_devdata;
switch (cmd) {
case DIOCGSECTORSIZE:
*(u_int *)data = SI(dev).bsize;
break;
case DIOCGMEDIASIZE:
*(off_t *)data = SI(dev).bsize * SI(dev).blocks;
break;
default:
return (ENOTTY);
}
return (0);
}