Add imx6 compatibility and make the driver work for any clock frequency.

There are still a couple references to imx51 ccm driver functions that will
need to be changed after an imx6 ccm driver is written.

Reviewed by:	ray
This commit is contained in:
Ian Lepore 2013-08-13 13:14:13 +00:00
parent a1df5ac10a
commit e0511b6c67
2 changed files with 135 additions and 82 deletions

View File

@ -57,8 +57,6 @@ __FBSDID("$FreeBSD$");
#include <sys/kdb.h>
#include <arm/freescale/imx/imx51_ccmvar.h>
#define MIN_PERIOD 100LLU
#define WRITE4(_sc, _r, _v) \
bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
#define READ4(_sc, _r) \
@ -82,11 +80,27 @@ static struct timecounter imx_gpt_timecounter = {
.tc_get_timecount = imx_gpt_get_timecount,
.tc_counter_mask = ~0u,
.tc_frequency = 0,
.tc_quality = 500,
.tc_quality = 1000,
};
/* Global softc pointer for use in DELAY(). */
struct imx_gpt_softc *imx_gpt_sc = NULL;
static volatile int imx_gpt_delay_count = 300;
/*
* Hand-calibrated delay-loop counter. This was calibrated on an i.MX6 running
* at 792mhz. It will delay a bit too long on slower processors -- that's
* better than not delaying long enough. In practice this is unlikely to get
* used much since the clock driver is one of the first to start up, and once
* we're attached the delay loop switches to using the timer hardware.
*/
static const int imx_gpt_delay_count = 78;
/* Try to divide down an available fast clock to this frequency. */
#define TARGET_FREQUENCY 1000000
/* Don't try to set an event timer period smaller than this. */
#define MIN_ET_PERIOD 10LLU
static struct resource_spec imx_gpt_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
@ -101,7 +115,7 @@ imx_gpt_probe(device_t dev)
if (!ofw_bus_is_compatible(dev, "fsl,imx51-gpt"))
return (ENXIO);
device_set_desc(dev, "Freescale i.MXxxx GPT timer");
device_set_desc(dev, "Freescale i.MX GPT timer");
return (BUS_PROBE_DEFAULT);
}
@ -109,7 +123,8 @@ static int
imx_gpt_attach(device_t dev)
{
struct imx_gpt_softc *sc;
int err;
int ctlreg, err;
uint32_t basefreq, prescale;
sc = device_get_softc(dev);
@ -119,49 +134,96 @@ imx_gpt_attach(device_t dev)
}
sc->sc_dev = dev;
sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
sc->sc_iot = rman_get_bustag(sc->res[0]);
sc->sc_ioh = rman_get_bushandle(sc->res[0]);
/*
* For now, just automatically choose a good clock for the hardware
* we're running on. Eventually we could allow selection from the fdt;
* the code in this driver will cope with any clock frequency.
*/
if (ofw_bus_is_compatible(dev, "fsl,imx6-gpt"))
sc->sc_clksrc = GPT_CR_CLKSRC_24M;
else
sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
ctlreg = 0;
switch (sc->sc_clksrc) {
case GPT_CR_CLKSRC_NONE:
device_printf(dev, "can't run timer without clock source\n");
return (EINVAL);
case GPT_CR_CLKSRC_EXT:
device_printf(dev, "Not implemented. Geve me the way to get "
"external clock source frequency\n");
return (EINVAL);
case GPT_CR_CLKSRC_32K:
sc->clkfreq = 32768;
basefreq = 32768;
break;
case GPT_CR_CLKSRC_IPG:
basefreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT);
break;
case GPT_CR_CLKSRC_IPG_HIGH:
sc->clkfreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT) * 2;
basefreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT) * 2;
break;
case GPT_CR_CLKSRC_24M:
ctlreg |= GPT_CR_24MEN;
basefreq = 24000000;
break;
case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
case GPT_CR_CLKSRC_EXT: /* No way to get the freq of an ext clock. */
default:
sc->clkfreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT);
device_printf(dev, "Unsupported clock source '%d'\n",
sc->sc_clksrc);
return (EINVAL);
}
device_printf(dev, "Run on %dKHz clock.\n", sc->clkfreq / 1000);
/* Reset */
WRITE4(sc, IMX_GPT_CR, GPT_CR_SWR);
/* Enable and setup counters */
WRITE4(sc, IMX_GPT_CR,
GPT_CR_CLKSRC_IPG | /* Use IPG clock */
GPT_CR_FRR | /* Just count (FreeRunner mode) */
GPT_CR_STOPEN | /* Run in STOP mode */
GPT_CR_WAITEN | /* Run in WAIT mode */
GPT_CR_DBGEN); /* Run in DEBUG mode */
/* Disable interrupts */
/*
* The following setup sequence is from the I.MX6 reference manual,
* "Selecting the clock source". First, disable the clock and
* interrupts. This also clears input and output mode bits and in
* general completes several of the early steps in the procedure.
*/
WRITE4(sc, IMX_GPT_CR, 0);
WRITE4(sc, IMX_GPT_IR, 0);
/* Tick every 10us */
/* XXX: must be calculated from clock source frequency */
WRITE4(sc, IMX_GPT_PR, 665);
/* Use 100 KHz */
sc->clkfreq = 100000;
/* Choose the clock and the power-saving behaviors. */
ctlreg |=
sc->sc_clksrc | /* Use selected clock */
GPT_CR_FRR | /* Just count (FreeRunner mode) */
GPT_CR_STOPEN | /* Run in STOP mode */
GPT_CR_DOZEEN | /* Run in DOZE mode */
GPT_CR_WAITEN | /* Run in WAIT mode */
GPT_CR_DBGEN; /* Run in DEBUG mode */
WRITE4(sc, IMX_GPT_CR, ctlreg);
/* Setup and enable the timer interrupt */
/*
* The datasheet says to do the software reset after choosing the clock
* source. It says nothing about needing to wait for the reset to
* complete, but the register description does document the fact that
* the reset isn't complete until the SWR bit reads 0, so let's be safe.
* The reset also clears all registers except for a few of the bits in
* CR, but we'll rewrite all the CR bits when we start the counter.
*/
WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
continue;
/* Set a prescaler value that gets us near the target frequency. */
if (basefreq < TARGET_FREQUENCY) {
prescale = 0;
sc->clkfreq = basefreq;
} else {
prescale = basefreq / TARGET_FREQUENCY;
sc->clkfreq = basefreq / prescale;
prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
}
WRITE4(sc, IMX_GPT_PR, prescale);
/* Clear the status register. */
WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
/* Start the counter. */
WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
if (bootverbose)
device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
/* Setup the timer interrupt. */
err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
NULL, sc, &sc->sc_ih);
if (err != 0) {
@ -171,35 +233,25 @@ imx_gpt_attach(device_t dev)
return (ENXIO);
}
/* Register as an eventtimer. */
sc->et.et_name = "i.MXxxx GPT Eventtimer";
sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
sc->et.et_quality = 1000;
sc->et.et_frequency = sc->clkfreq;
sc->et.et_min_period = (MIN_PERIOD << 32) / sc->et.et_frequency;
sc->et.et_min_period = (MIN_ET_PERIOD << 32) / sc->et.et_frequency;
sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
sc->et.et_start = imx_gpt_timer_start;
sc->et.et_stop = imx_gpt_timer_stop;
sc->et.et_priv = sc;
et_register(&sc->et);
/* Disable interrupts */
WRITE4(sc, IMX_GPT_IR, 0);
/* ACK any panding interrupts */
WRITE4(sc, IMX_GPT_SR, (GPT_IR_ROV << 1) - 1);
if (device_get_unit(dev) == 0)
imx_gpt_sc = sc;
/* Register as a timecounter. */
imx_gpt_timecounter.tc_frequency = sc->clkfreq;
tc_init(&imx_gpt_timecounter);
printf("clock: hz=%d stathz = %d\n", hz, stathz);
device_printf(sc->sc_dev, "timer clock frequency %d\n", sc->clkfreq);
imx_gpt_delay_count = imx51_get_clock(IMX51CLK_ARM_ROOT) / 4000000;
SET4(sc, IMX_GPT_CR, GPT_CR_EN);
/* If this is the first unit, store the softc for use in DELAY. */
if (device_get_unit(dev) == 0)
imx_gpt_sc = sc;
return (0);
}
@ -267,16 +319,11 @@ void
cpu_initclocks(void)
{
if (!imx_gpt_sc) {
panic("%s: driver has not been initialized!", __func__);
if (imx_gpt_sc == NULL) {
panic("%s: i.MX GPT driver has not been initialized!", __func__);
}
cpu_initclocks_bsp();
/* Switch to DELAY using counter */
imx_gpt_delay_count = 0;
device_printf(imx_gpt_sc->sc_dev,
"switch DELAY to use H/W counter\n");
}
static int
@ -342,29 +389,30 @@ EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
void
DELAY(int usec)
{
int32_t counts;
uint32_t last;
uint64_t curcnt, endcnt, startcnt, ticks;
/*
* Check the timers are setup, if not just use a for loop for the
* meantime.
*/
if (imx_gpt_delay_count) {
for (; usec > 0; usec--)
for (counts = imx_gpt_delay_count; counts > 0;
counts--)
/* Prevent optimizing out the loop */
/* If the timer hardware is not accessible, just use a loop. */
if (imx_gpt_sc == NULL) {
while (usec-- > 0)
for (ticks = 0; ticks < imx_gpt_delay_count; ++ticks)
cpufunc_nullop();
return;
}
/* At least 1 count */
usec = MAX(1, usec / 100);
last = READ4(imx_gpt_sc, IMX_GPT_CNT) + usec;
while (READ4(imx_gpt_sc, IMX_GPT_CNT) < last) {
/* Prevent optimizing out the loop */
cpufunc_nullop();
/*
* Calculate the tick count with 64-bit values so that it works for any
* clock frequency. Loop until the hardware count reaches start+ticks.
* If the 32-bit hardware count rolls over while we're looping, just
* manually do a carry into the high bits after each read; don't worry
* that doing this on each loop iteration is inefficient -- we're trying
* to waste time here.
*/
ticks = 1 + ((uint64_t)usec * imx_gpt_sc->clkfreq) / 1000000;
curcnt = startcnt = READ4(imx_gpt_sc, IMX_GPT_CNT);
endcnt = startcnt + ticks;
while (curcnt < endcnt) {
curcnt = READ4(imx_gpt_sc, IMX_GPT_CNT);
if (curcnt < startcnt)
curcnt += 1ULL << 32;
}
/* TODO: use interrupt on OCR2 */
}

View File

@ -55,13 +55,16 @@
#define GPT_CR_IMX_FEDGE 2
#define GPT_CR_IMX_BOTH 3
#define GPT_CR_SWR (1 << 15)
#define GPT_CR_24MEN (1 << 10)
#define GPT_CR_FRR (1 << 9)
#define GPT_CR_CLKSRC_NONE 0x00000000
#define GPT_CR_CLKSRC_IPG 0x00000040
#define GPT_CR_CLKSRC_IPG_HIGH 0x00000080
#define GPT_CR_CLKSRC_EXT 0x000000c0
#define GPT_CR_CLKSRC_32K 0x00000100
#define GPT_CR_CLKSRC_NONE (0 << 6)
#define GPT_CR_CLKSRC_IPG (1 << 6)
#define GPT_CR_CLKSRC_IPG_HIGH (2 << 6)
#define GPT_CR_CLKSRC_EXT (3 << 6)
#define GPT_CR_CLKSRC_32K (4 << 6)
#define GPT_CR_CLKSRC_24M (5 << 6)
#define GPT_CR_STOPEN (1 << 5)
#define GPT_CR_DOZEEN (1 << 4)
#define GPT_CR_WAITEN (1 << 3)
#define GPT_CR_DBGEN (1 << 2)
#define GPT_CR_ENMOD (1 << 1)
@ -70,6 +73,8 @@
#define IMX_GPT_PR 0x0004 /* Prescaler Register R/W */
#define GPT_PR_VALUE_SHIFT 0
#define GPT_PR_VALUE_MASK 0x00000fff
#define GPT_PR_VALUE_SHIFT_24M 12
#define GPT_PR_VALUE_MASK_24M 0x0000f000
/* Same map for SR and IR */
#define IMX_GPT_SR 0x0008 /* Status Register R/W */