Add a "kernel" log function, based on e_log.c, which is useful for

implementing accurate logarithms in different bases.  This is based
on an approach bde coded up years ago.

This function should always be inlined; it will be used in only a few
places, and rudimentary tests show a 40% performance improvement in
implementations of log2() and log10() on amd64.

The kernel takes a reduced argument x and returns the same polynomial
approximation as e_log.c, but omitting the low-order term. The low-order
term is much larger than the rest of the approximation, so the caller of
the kernel function can scale it to the appropriate base in extra precision
and obtain a much more accurate answer than by using log(x)/log(b).
This commit is contained in:
David Schultz 2010-12-05 22:11:03 +00:00
parent 1c40e1f66c
commit e7780530fa
2 changed files with 171 additions and 0 deletions

116
lib/msun/src/k_log.h Normal file
View File

@ -0,0 +1,116 @@
/* @(#)e_log.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* __kernel_log(x)
* Return log(x) - (x-1) for x in ~[sqrt(2)/2, sqrt(2)].
*
* The following describes the overall strategy for computing
* logarithms in base e. The argument reduction and adding the final
* term of the polynomial are done by the caller for increased accuracy
* when different bases are used.
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static const double
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
/*
* We always inline __kernel_log(), since doing so produces a
* substantial performance improvement (~40% on amd64).
*/
static inline double
__kernel_log(double x)
{
double hfsq,f,s,z,R,w,t1,t2;
int32_t hx,i,j;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
f = x-1.0;
if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
if(f==0.0) return 0.0;
return f*f*(0.33333333333333333*f-0.5);
}
s = f/(2.0+f);
z = s*s;
hx &= 0x000fffff;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if (i>0) {
hfsq=0.5*f*f;
return s*(hfsq+R) - hfsq;
} else {
return s*(R-f);
}
}

55
lib/msun/src/k_logf.h Normal file
View File

@ -0,0 +1,55 @@
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* __kernel_logf(x)
* Return log(x) - (x-1) for x in ~[sqrt(2)/2, sqrt(2)].
*/
static const float
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
static inline float
__kernel_logf(float x)
{
float hfsq,f,s,z,R,w,t1,t2;
int32_t ix,i,j;
GET_FLOAT_WORD(ix,x);
f = x-(float)1.0;
if((0x007fffff&(0x8000+ix))<0xc000) { /* -2**-9 <= f < 2**-9 */
if(f==0.0) return 0.0;
return f*f*((float)0.33333333333333333*f-(float)0.5);
}
s = f/((float)2.0+f);
z = s*s;
ix &= 0x007fffff;
i = ix-(0x6147a<<3);
w = z*z;
j = (0x6b851<<3)-ix;
t1= w*(Lg2+w*Lg4);
t2= z*(Lg1+w*Lg3);
i |= j;
R = t2+t1;
if(i>0) {
hfsq=(float)0.5*f*f;
return s*(hfsq+R) - hfsq;
} else {
return s*(R-f);
}
}