Merged from sys/i386/i386/machdep.c revisions 1.462 and 1.464.

This commit is contained in:
kato 2001-07-19 08:51:08 +00:00
parent 9196524e13
commit e8208cbe7d
2 changed files with 184 additions and 146 deletions

View File

@ -2323,15 +2323,27 @@ fill_dbregs(p, dbregs)
{
struct pcb *pcb;
pcb = &p->p_addr->u_pcb;
dbregs->dr0 = pcb->pcb_dr0;
dbregs->dr1 = pcb->pcb_dr1;
dbregs->dr2 = pcb->pcb_dr2;
dbregs->dr3 = pcb->pcb_dr3;
dbregs->dr4 = 0;
dbregs->dr5 = 0;
dbregs->dr6 = pcb->pcb_dr6;
dbregs->dr7 = pcb->pcb_dr7;
if (p == NULL) {
dbregs->dr0 = rdr0();
dbregs->dr1 = rdr1();
dbregs->dr2 = rdr2();
dbregs->dr3 = rdr3();
dbregs->dr4 = rdr4();
dbregs->dr5 = rdr5();
dbregs->dr6 = rdr6();
dbregs->dr7 = rdr7();
}
else {
pcb = &p->p_addr->u_pcb;
dbregs->dr0 = pcb->pcb_dr0;
dbregs->dr1 = pcb->pcb_dr1;
dbregs->dr2 = pcb->pcb_dr2;
dbregs->dr3 = pcb->pcb_dr3;
dbregs->dr4 = 0;
dbregs->dr5 = 0;
dbregs->dr6 = pcb->pcb_dr6;
dbregs->dr7 = pcb->pcb_dr7;
}
return (0);
}
@ -2344,73 +2356,80 @@ set_dbregs(p, dbregs)
int i;
u_int32_t mask1, mask2;
/*
* Don't let an illegal value for dr7 get set. Specifically,
* check for undefined settings. Setting these bit patterns
* result in undefined behaviour and can lead to an unexpected
* TRCTRAP.
*/
for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
i++, mask1 <<= 2, mask2 <<= 2)
if ((dbregs->dr7 & mask1) == mask2)
return (EINVAL);
if (dbregs->dr7 & 0x0000fc00)
return (EINVAL);
pcb = &p->p_addr->u_pcb;
/*
* Don't let a process set a breakpoint that is not within the
* process's address space. If a process could do this, it
* could halt the system by setting a breakpoint in the kernel
* (if ddb was enabled). Thus, we need to check to make sure
* that no breakpoints are being enabled for addresses outside
* process's address space, unless, perhaps, we were called by
* uid 0.
*
* XXX - what about when the watched area of the user's
* address space is written into from within the kernel
* ... wouldn't that still cause a breakpoint to be generated
* from within kernel mode?
*/
if (suser(p) != 0) {
if (dbregs->dr7 & 0x3) {
/* dr0 is enabled */
if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<2)) {
/* dr1 is enabled */
if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<4)) {
/* dr2 is enabled */
if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<6)) {
/* dr3 is enabled */
if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (p == NULL) {
load_dr0(dbregs->dr0);
load_dr1(dbregs->dr1);
load_dr2(dbregs->dr2);
load_dr3(dbregs->dr3);
load_dr4(dbregs->dr4);
load_dr5(dbregs->dr5);
load_dr6(dbregs->dr6);
load_dr7(dbregs->dr7);
}
else {
/*
* Don't let an illegal value for dr7 get set. Specifically,
* check for undefined settings. Setting these bit patterns
* result in undefined behaviour and can lead to an unexpected
* TRCTRAP.
*/
for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
i++, mask1 <<= 2, mask2 <<= 2)
if ((dbregs->dr7 & mask1) == mask2)
return (EINVAL);
pcb = &p->p_addr->u_pcb;
/*
* Don't let a process set a breakpoint that is not within the
* process's address space. If a process could do this, it
* could halt the system by setting a breakpoint in the kernel
* (if ddb was enabled). Thus, we need to check to make sure
* that no breakpoints are being enabled for addresses outside
* process's address space, unless, perhaps, we were called by
* uid 0.
*
* XXX - what about when the watched area of the user's
* address space is written into from within the kernel
* ... wouldn't that still cause a breakpoint to be generated
* from within kernel mode?
*/
pcb->pcb_dr0 = dbregs->dr0;
pcb->pcb_dr1 = dbregs->dr1;
pcb->pcb_dr2 = dbregs->dr2;
pcb->pcb_dr3 = dbregs->dr3;
pcb->pcb_dr6 = dbregs->dr6;
pcb->pcb_dr7 = dbregs->dr7;
if (suser(p) != 0) {
if (dbregs->dr7 & 0x3) {
/* dr0 is enabled */
if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<2)) {
/* dr1 is enabled */
if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<4)) {
/* dr2 is enabled */
if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<6)) {
/* dr3 is enabled */
if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
}
pcb->pcb_flags |= PCB_DBREGS;
pcb->pcb_dr0 = dbregs->dr0;
pcb->pcb_dr1 = dbregs->dr1;
pcb->pcb_dr2 = dbregs->dr2;
pcb->pcb_dr3 = dbregs->dr3;
pcb->pcb_dr6 = dbregs->dr6;
pcb->pcb_dr7 = dbregs->dr7;
pcb->pcb_flags |= PCB_DBREGS;
}
return (0);
}

View File

@ -2323,15 +2323,27 @@ fill_dbregs(p, dbregs)
{
struct pcb *pcb;
pcb = &p->p_addr->u_pcb;
dbregs->dr0 = pcb->pcb_dr0;
dbregs->dr1 = pcb->pcb_dr1;
dbregs->dr2 = pcb->pcb_dr2;
dbregs->dr3 = pcb->pcb_dr3;
dbregs->dr4 = 0;
dbregs->dr5 = 0;
dbregs->dr6 = pcb->pcb_dr6;
dbregs->dr7 = pcb->pcb_dr7;
if (p == NULL) {
dbregs->dr0 = rdr0();
dbregs->dr1 = rdr1();
dbregs->dr2 = rdr2();
dbregs->dr3 = rdr3();
dbregs->dr4 = rdr4();
dbregs->dr5 = rdr5();
dbregs->dr6 = rdr6();
dbregs->dr7 = rdr7();
}
else {
pcb = &p->p_addr->u_pcb;
dbregs->dr0 = pcb->pcb_dr0;
dbregs->dr1 = pcb->pcb_dr1;
dbregs->dr2 = pcb->pcb_dr2;
dbregs->dr3 = pcb->pcb_dr3;
dbregs->dr4 = 0;
dbregs->dr5 = 0;
dbregs->dr6 = pcb->pcb_dr6;
dbregs->dr7 = pcb->pcb_dr7;
}
return (0);
}
@ -2344,73 +2356,80 @@ set_dbregs(p, dbregs)
int i;
u_int32_t mask1, mask2;
/*
* Don't let an illegal value for dr7 get set. Specifically,
* check for undefined settings. Setting these bit patterns
* result in undefined behaviour and can lead to an unexpected
* TRCTRAP.
*/
for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
i++, mask1 <<= 2, mask2 <<= 2)
if ((dbregs->dr7 & mask1) == mask2)
return (EINVAL);
if (dbregs->dr7 & 0x0000fc00)
return (EINVAL);
pcb = &p->p_addr->u_pcb;
/*
* Don't let a process set a breakpoint that is not within the
* process's address space. If a process could do this, it
* could halt the system by setting a breakpoint in the kernel
* (if ddb was enabled). Thus, we need to check to make sure
* that no breakpoints are being enabled for addresses outside
* process's address space, unless, perhaps, we were called by
* uid 0.
*
* XXX - what about when the watched area of the user's
* address space is written into from within the kernel
* ... wouldn't that still cause a breakpoint to be generated
* from within kernel mode?
*/
if (suser(p) != 0) {
if (dbregs->dr7 & 0x3) {
/* dr0 is enabled */
if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<2)) {
/* dr1 is enabled */
if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<4)) {
/* dr2 is enabled */
if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<6)) {
/* dr3 is enabled */
if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (p == NULL) {
load_dr0(dbregs->dr0);
load_dr1(dbregs->dr1);
load_dr2(dbregs->dr2);
load_dr3(dbregs->dr3);
load_dr4(dbregs->dr4);
load_dr5(dbregs->dr5);
load_dr6(dbregs->dr6);
load_dr7(dbregs->dr7);
}
else {
/*
* Don't let an illegal value for dr7 get set. Specifically,
* check for undefined settings. Setting these bit patterns
* result in undefined behaviour and can lead to an unexpected
* TRCTRAP.
*/
for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
i++, mask1 <<= 2, mask2 <<= 2)
if ((dbregs->dr7 & mask1) == mask2)
return (EINVAL);
pcb = &p->p_addr->u_pcb;
/*
* Don't let a process set a breakpoint that is not within the
* process's address space. If a process could do this, it
* could halt the system by setting a breakpoint in the kernel
* (if ddb was enabled). Thus, we need to check to make sure
* that no breakpoints are being enabled for addresses outside
* process's address space, unless, perhaps, we were called by
* uid 0.
*
* XXX - what about when the watched area of the user's
* address space is written into from within the kernel
* ... wouldn't that still cause a breakpoint to be generated
* from within kernel mode?
*/
pcb->pcb_dr0 = dbregs->dr0;
pcb->pcb_dr1 = dbregs->dr1;
pcb->pcb_dr2 = dbregs->dr2;
pcb->pcb_dr3 = dbregs->dr3;
pcb->pcb_dr6 = dbregs->dr6;
pcb->pcb_dr7 = dbregs->dr7;
if (suser(p) != 0) {
if (dbregs->dr7 & 0x3) {
/* dr0 is enabled */
if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<2)) {
/* dr1 is enabled */
if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<4)) {
/* dr2 is enabled */
if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<6)) {
/* dr3 is enabled */
if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
}
pcb->pcb_flags |= PCB_DBREGS;
pcb->pcb_dr0 = dbregs->dr0;
pcb->pcb_dr1 = dbregs->dr1;
pcb->pcb_dr2 = dbregs->dr2;
pcb->pcb_dr3 = dbregs->dr3;
pcb->pcb_dr6 = dbregs->dr6;
pcb->pcb_dr7 = dbregs->dr7;
pcb->pcb_flags |= PCB_DBREGS;
}
return (0);
}