The struct thread td_estcpu member is only used by the 4BSD scheduler.

Move it to the struct td_sched for 4BSD, removing always present
field, otherwise unused for ULE.

New scheduler method sched_estcpu() returns the estimation for
kinfo_proc consumption.  As before, it always returns 0 for ULE.

Remove sched_tick() scheduler method, unused both by 4BSD and ULE.

Update locking comment for the 4BSD struct td_sched, copying it from
the same comment for ULE.

Spell MAXPRI as PRI_MAX_TIMESHARE in the 4BSD comment.

Based on some notes from, and reviewed by:	bde
Sponsored by:	The FreeBSD Foundation
This commit is contained in:
kib 2016-04-17 11:04:27 +00:00
parent 5aaf17e8ed
commit f16910a47e
6 changed files with 53 additions and 53 deletions

View File

@ -449,7 +449,6 @@ hardclock_cpu(int usermode)
PROC_ITIMUNLOCK(p);
}
thread_lock(td);
sched_tick(1);
td->td_flags |= flags;
thread_unlock(td);
@ -539,7 +538,6 @@ hardclock_cnt(int cnt, int usermode)
PROC_ITIMUNLOCK(p);
}
thread_lock(td);
sched_tick(cnt);
td->td_flags |= flags;
thread_unlock(td);

View File

@ -855,7 +855,7 @@ fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
FOREACH_THREAD_IN_PROC(p, td) {
thread_lock(td);
kp->ki_pctcpu += sched_pctcpu(td);
kp->ki_estcpu += td->td_estcpu;
kp->ki_estcpu += sched_estcpu(td);
thread_unlock(td);
}
}
@ -1101,7 +1101,7 @@ fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
rufetchtd(td, &kp->ki_rusage);
kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
kp->ki_pctcpu = sched_pctcpu(td);
kp->ki_estcpu = td->td_estcpu;
kp->ki_estcpu = sched_estcpu(td);
kp->ki_cow = td->td_cow;
}

View File

@ -87,12 +87,14 @@ dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
/*
* The schedulable entity that runs a context.
* This is an extension to the thread structure and is tailored to
* the requirements of this scheduler
* the requirements of this scheduler.
* All fields are protected by the scheduler lock.
*/
struct td_sched {
fixpt_t ts_pctcpu; /* (j) %cpu during p_swtime. */
int ts_cpticks; /* (j) Ticks of cpu time. */
int ts_slptime; /* (j) Seconds !RUNNING. */
fixpt_t ts_pctcpu; /* %cpu during p_swtime. */
u_int ts_estcpu; /* Estimated cpu utilization. */
int ts_cpticks; /* Ticks of cpu time. */
int ts_slptime; /* Seconds !RUNNING. */
int ts_slice; /* Remaining part of time slice. */
int ts_flags;
struct runq *ts_runq; /* runq the thread is currently on */
@ -382,20 +384,20 @@ maybe_preempt(struct thread *td)
/*
* Constants for digital decay and forget:
* 90% of (td_estcpu) usage in 5 * loadav time
* 90% of (ts_estcpu) usage in 5 * loadav time
* 95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
* Note that, as ps(1) mentions, this can let percentages
* total over 100% (I've seen 137.9% for 3 processes).
*
* Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
* Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
*
* We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
* We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
* That is, the system wants to compute a value of decay such
* that the following for loop:
* for (i = 0; i < (5 * loadavg); i++)
* td_estcpu *= decay;
* ts_estcpu *= decay;
* will compute
* td_estcpu *= 0.1;
* ts_estcpu *= 0.1;
* for all values of loadavg:
*
* Mathematically this loop can be expressed by saying:
@ -559,7 +561,7 @@ schedcpu(void)
thread_unlock(td);
continue;
}
td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
resetpriority(td);
resetpriority_thread(td);
thread_unlock(td);
@ -584,8 +586,8 @@ schedcpu_thread(void)
/*
* Recalculate the priority of a process after it has slept for a while.
* For all load averages >= 1 and max td_estcpu of 255, sleeping for at
* least six times the loadfactor will decay td_estcpu to zero.
* For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
* least six times the loadfactor will decay ts_estcpu to zero.
*/
static void
updatepri(struct thread *td)
@ -597,13 +599,13 @@ updatepri(struct thread *td)
ts = td->td_sched;
loadfac = loadfactor(averunnable.ldavg[0]);
if (ts->ts_slptime > 5 * loadfac)
td->td_estcpu = 0;
ts->ts_estcpu = 0;
else {
newcpu = td->td_estcpu;
newcpu = ts->ts_estcpu;
ts->ts_slptime--; /* was incremented in schedcpu() */
while (newcpu && --ts->ts_slptime)
newcpu = decay_cpu(loadfac, newcpu);
td->td_estcpu = newcpu;
ts->ts_estcpu = newcpu;
}
}
@ -615,15 +617,15 @@ updatepri(struct thread *td)
static void
resetpriority(struct thread *td)
{
register unsigned int newpriority;
u_int newpriority;
if (td->td_pri_class == PRI_TIMESHARE) {
newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
PRI_MAX_TIMESHARE);
sched_user_prio(td, newpriority);
}
if (td->td_pri_class != PRI_TIMESHARE)
return;
newpriority = PUSER + td->td_sched->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
PRI_MAX_TIMESHARE);
sched_user_prio(td, newpriority);
}
/*
@ -709,18 +711,18 @@ sched_rr_interval(void)
}
/*
* We adjust the priority of the current process. The priority of
* a process gets worse as it accumulates CPU time. The cpu usage
* estimator (td_estcpu) is increased here. resetpriority() will
* compute a different priority each time td_estcpu increases by
* INVERSE_ESTCPU_WEIGHT
* (until MAXPRI is reached). The cpu usage estimator ramps up
* quite quickly when the process is running (linearly), and decays
* away exponentially, at a rate which is proportionally slower when
* the system is busy. The basic principle is that the system will
* 90% forget that the process used a lot of CPU time in 5 * loadav
* seconds. This causes the system to favor processes which haven't
* run much recently, and to round-robin among other processes.
* We adjust the priority of the current process. The priority of a
* process gets worse as it accumulates CPU time. The cpu usage
* estimator (ts_estcpu) is increased here. resetpriority() will
* compute a different priority each time ts_estcpu increases by
* INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached). The
* cpu usage estimator ramps up quite quickly when the process is
* running (linearly), and decays away exponentially, at a rate which
* is proportionally slower when the system is busy. The basic
* principle is that the system will 90% forget that the process used
* a lot of CPU time in 5 * loadav seconds. This causes the system to
* favor processes which haven't run much recently, and to round-robin
* among other processes.
*/
void
sched_clock(struct thread *td)
@ -732,8 +734,8 @@ sched_clock(struct thread *td)
ts = td->td_sched;
ts->ts_cpticks++;
td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
resetpriority(td);
resetpriority_thread(td);
}
@ -773,7 +775,8 @@ sched_exit_thread(struct thread *td, struct thread *child)
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
"prio:%d", child->td_priority);
thread_lock(td);
td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
td->td_sched->ts_estcpu = ESTCPULIM(td->td_sched->ts_estcpu +
child->td_sched->ts_estcpu);
thread_unlock(td);
thread_lock(child);
if ((child->td_flags & TDF_NOLOAD) == 0)
@ -794,12 +797,12 @@ sched_fork_thread(struct thread *td, struct thread *childtd)
childtd->td_oncpu = NOCPU;
childtd->td_lastcpu = NOCPU;
childtd->td_estcpu = td->td_estcpu;
childtd->td_lock = &sched_lock;
childtd->td_cpuset = cpuset_ref(td->td_cpuset);
childtd->td_priority = childtd->td_base_pri;
ts = childtd->td_sched;
bzero(ts, sizeof(*ts));
ts->ts_estcpu = td->td_sched->ts_estcpu;
ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
ts->ts_slice = 1;
}
@ -1621,9 +1624,11 @@ sched_pctcpu_delta(struct thread *td)
}
#endif
void
sched_tick(int cnt)
u_int
sched_estcpu(struct thread *td)
{
return (td->td_sched->ts_estcpu);
}
/*

View File

@ -2288,13 +2288,11 @@ sched_clock(struct thread *td)
}
}
/*
* Called once per hz tick.
*/
void
sched_tick(int cnt)
u_int
sched_estcpu(struct thread *td __unused)
{
return (0);
}
/*

View File

@ -250,7 +250,6 @@ struct thread {
int td_pinned; /* (k) Temporary cpu pin count. */
struct ucred *td_ucred; /* (k) Reference to credentials. */
struct plimit *td_limit; /* (k) Resource limits. */
u_int td_estcpu; /* (t) estimated cpu utilization */
int td_slptick; /* (t) Time at sleep. */
int td_blktick; /* (t) Time spent blocked. */
int td_swvoltick; /* (t) Time at last SW_VOL switch. */

View File

@ -90,6 +90,7 @@ void sched_nice(struct proc *p, int nice);
* priorities inherited from their procs, and use up cpu time.
*/
void sched_exit_thread(struct thread *td, struct thread *child);
u_int sched_estcpu(struct thread *td);
void sched_fork_thread(struct thread *td, struct thread *child);
void sched_lend_prio(struct thread *td, u_char prio);
void sched_lend_user_prio(struct thread *td, u_char pri);
@ -102,7 +103,6 @@ void sched_unlend_prio(struct thread *td, u_char prio);
void sched_user_prio(struct thread *td, u_char prio);
void sched_userret(struct thread *td);
void sched_wakeup(struct thread *td);
void sched_preempt(struct thread *td);
#ifdef RACCT
#ifdef SCHED_4BSD
fixpt_t sched_pctcpu_delta(struct thread *td);
@ -114,8 +114,8 @@ fixpt_t sched_pctcpu_delta(struct thread *td);
*/
void sched_add(struct thread *td, int flags);
void sched_clock(struct thread *td);
void sched_preempt(struct thread *td);
void sched_rem(struct thread *td);
void sched_tick(int cnt);
void sched_relinquish(struct thread *td);
struct thread *sched_choose(void);
void sched_idletd(void *);