LinuxKPI should use bus_dma(9) to be compatible with an IOMMU

Reviewed by:	hselasky, kib
Tested by:	greg@unrelenting.technology
Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D19845
This commit is contained in:
Tycho Nightingale 2019-04-24 20:30:45 +00:00
parent 9c498bd5c3
commit f211d536b6
7 changed files with 550 additions and 62 deletions

View File

@ -105,7 +105,7 @@ struct device {
struct class *class;
void (*release)(struct device *dev);
struct kobject kobj;
uint64_t *dma_mask;
void *dma_priv;
void *driver_data;
unsigned int irq;
#define LINUX_IRQ_INVALID 65535

View File

@ -90,6 +90,16 @@ struct dma_map_ops {
#define DMA_BIT_MASK(n) ((2ULL << ((n) - 1)) - 1ULL)
int linux_dma_tag_init(struct device *dev, u64 mask);
void *linux_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
dma_addr_t linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len);
void linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t size);
int linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, struct dma_attrs *attrs);
void linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, struct dma_attrs *attrs);
static inline int
dma_supported(struct device *dev, u64 mask)
{
@ -102,11 +112,10 @@ static inline int
dma_set_mask(struct device *dev, u64 dma_mask)
{
if (!dev->dma_mask || !dma_supported(dev, dma_mask))
if (!dev->dma_priv || !dma_supported(dev, dma_mask))
return -EIO;
*dev->dma_mask = dma_mask;
return (0);
return (linux_dma_tag_init(dev, dma_mask));
}
static inline int
@ -134,24 +143,7 @@ static inline void *
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flag)
{
vm_paddr_t high;
size_t align;
void *mem;
if (dev != NULL && dev->dma_mask)
high = *dev->dma_mask;
else if (flag & GFP_DMA32)
high = BUS_SPACE_MAXADDR_32BIT;
else
high = BUS_SPACE_MAXADDR;
align = PAGE_SIZE << get_order(size);
mem = (void *)kmem_alloc_contig(size, flag, 0, high, align, 0,
VM_MEMATTR_DEFAULT);
if (mem)
*dma_handle = vtophys(mem);
else
*dma_handle = 0;
return (mem);
return (linux_dma_alloc_coherent(dev, size, dma_handle, flag));
}
static inline void *
@ -164,25 +156,27 @@ dma_zalloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
static inline void
dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
dma_addr_t dma_addr)
{
linux_dma_unmap(dev, dma_addr, size);
kmem_free((vm_offset_t)cpu_addr, size);
}
/* XXX This only works with no iommu. */
static inline dma_addr_t
dma_map_single_attrs(struct device *dev, void *ptr, size_t size,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
return vtophys(ptr);
return (linux_dma_map_phys(dev, vtophys(ptr), size));
}
static inline void
dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, size_t size,
dma_unmap_single_attrs(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
linux_dma_unmap(dev, dma_addr, size);
}
static inline dma_addr_t
@ -190,26 +184,23 @@ dma_map_page_attrs(struct device *dev, struct page *page, size_t offset,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
return (VM_PAGE_TO_PHYS(page) + offset);
return (linux_dma_map_phys(dev, VM_PAGE_TO_PHYS(page) + offset, size));
}
static inline int
dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
sg_dma_address(sg) = sg_phys(sg);
return (nents);
return (linux_dma_map_sg_attrs(dev, sgl, nents, dir, attrs));
}
static inline void
dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
linux_dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
}
static inline dma_addr_t
@ -217,13 +208,15 @@ dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction direction)
{
return VM_PAGE_TO_PHYS(page) + offset;
return (linux_dma_map_phys(dev, VM_PAGE_TO_PHYS(page) + offset, size));
}
static inline void
dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
{
linux_dma_unmap(dev, dma_address, size);
}
static inline void
@ -273,7 +266,7 @@ static inline int
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return (0);
return (dma_addr == 0);
}
static inline unsigned int dma_set_max_seg_size(struct device *dev,

View File

@ -37,44 +37,44 @@
#include <linux/device.h>
#include <linux/slab.h>
struct dma_pool *linux_dma_pool_create(char *name, struct device *dev,
size_t size, size_t align, size_t boundary);
void linux_dma_pool_destroy(struct dma_pool *pool);
void *linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
dma_addr_t *handle);
void linux_dma_pool_free(struct dma_pool *pool, void *vaddr,
dma_addr_t dma_addr);
struct dma_pool {
struct pci_dev *pool_pdev;
uma_zone_t pool_zone;
struct mtx pool_dma_lock;
bus_dma_tag_t pool_dmat;
size_t pool_entry_size;
struct mtx pool_ptree_lock;
struct pctrie pool_ptree;
};
static inline struct dma_pool *
dma_pool_create(char *name, struct device *dev, size_t size,
size_t align, size_t boundary)
{
struct dma_pool *pool;
pool = kmalloc(sizeof(*pool), GFP_KERNEL);
align--;
/*
* XXX Eventually this could use a separate allocf to honor boundary
* and physical address requirements of the device.
*/
pool->pool_zone = uma_zcreate(name, size, NULL, NULL, NULL, NULL,
align, UMA_ZONE_OFFPAGE|UMA_ZONE_HASH);
return (pool);
return (linux_dma_pool_create(name, dev, size, align, boundary));
}
static inline void
dma_pool_destroy(struct dma_pool *pool)
{
uma_zdestroy(pool->pool_zone);
kfree(pool);
linux_dma_pool_destroy(pool);
}
static inline void *
dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle)
{
void *vaddr;
vaddr = uma_zalloc(pool->pool_zone, mem_flags);
if (vaddr)
*handle = vtophys(vaddr);
return (vaddr);
return (linux_dma_pool_alloc(pool, mem_flags, handle));
}
static inline void *
@ -85,9 +85,10 @@ dma_pool_zalloc(struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle)
}
static inline void
dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t addr)
dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
{
uma_zfree(pool->pool_zone, vaddr);
linux_dma_pool_free(pool, vaddr, dma_addr);
}

View File

@ -219,7 +219,6 @@ struct pci_dev {
struct list_head links;
struct pci_driver *pdrv;
struct pci_bus *bus;
uint64_t dma_mask;
uint16_t device;
uint16_t vendor;
uint16_t subsystem_vendor;

View File

@ -43,7 +43,8 @@ struct scatterlist {
#define SG_PAGE_LINK_MASK 0x3UL
unsigned int offset;
unsigned int length;
dma_addr_t address;
dma_addr_t dma_address;
unsigned int dma_length;
};
CTASSERT((sizeof(struct scatterlist) & SG_PAGE_LINK_MASK) == 0);
@ -77,8 +78,8 @@ struct sg_page_iter {
#define sg_chain_ptr(sg) \
((struct scatterlist *) ((sg)->page_link & ~SG_PAGE_LINK_MASK))
#define sg_dma_address(sg) (sg)->address
#define sg_dma_len(sg) (sg)->length
#define sg_dma_address(sg) (sg)->dma_address
#define sg_dma_len(sg) (sg)->dma_length
#define for_each_sg_page(sgl, iter, nents, pgoffset) \
for (_sg_iter_init(sgl, iter, nents, pgoffset); \
@ -444,7 +445,7 @@ _sg_iter_init(struct scatterlist *sgl, struct sg_page_iter *iter,
static inline dma_addr_t
sg_page_iter_dma_address(struct sg_page_iter *spi)
{
return (spi->sg->address + (spi->sg_pgoffset << PAGE_SHIFT));
return (spi->sg->dma_address + (spi->sg_pgoffset << PAGE_SHIFT));
}
static inline struct page *

View File

@ -38,6 +38,7 @@ __FBSDID("$FreeBSD$");
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/filio.h>
#include <sys/pctrie.h>
#include <sys/rwlock.h>
#include <vm/vm.h>
@ -75,6 +76,76 @@ static device_method_t pci_methods[] = {
DEVMETHOD_END
};
struct linux_dma_priv {
uint64_t dma_mask;
struct mtx dma_lock;
bus_dma_tag_t dmat;
struct mtx ptree_lock;
struct pctrie ptree;
};
static int
linux_pdev_dma_init(struct pci_dev *pdev)
{
struct linux_dma_priv *priv;
priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
pdev->dev.dma_priv = priv;
mtx_init(&priv->dma_lock, "linux_dma", NULL, MTX_DEF);
mtx_init(&priv->ptree_lock, "linux_dma_ptree", NULL, MTX_DEF);
pctrie_init(&priv->ptree);
return (0);
}
static int
linux_pdev_dma_uninit(struct pci_dev *pdev)
{
struct linux_dma_priv *priv;
priv = pdev->dev.dma_priv;
if (priv->dmat)
bus_dma_tag_destroy(priv->dmat);
mtx_destroy(&priv->dma_lock);
mtx_destroy(&priv->ptree_lock);
free(priv, M_DEVBUF);
pdev->dev.dma_priv = NULL;
return (0);
}
int
linux_dma_tag_init(struct device *dev, u64 dma_mask)
{
struct linux_dma_priv *priv;
int error;
priv = dev->dma_priv;
if (priv->dmat) {
if (priv->dma_mask == dma_mask)
return (0);
bus_dma_tag_destroy(priv->dmat);
}
priv->dma_mask = dma_mask;
error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1, 0, /* alignment, boundary */
dma_mask, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
BUS_SPACE_MAXADDR, /* maxsize */
1, /* nsegments */
BUS_SPACE_MAXADDR, /* maxsegsz */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&priv->dmat);
return (-error);
}
static struct pci_driver *
linux_pci_find(device_t dev, const struct pci_device_id **idp)
{
@ -158,7 +229,6 @@ linux_pci_attach(device_t dev)
pdev->subsystem_device = dinfo->cfg.subdevice;
pdev->class = pci_get_class(dev);
pdev->revision = pci_get_revid(dev);
pdev->dev.dma_mask = &pdev->dma_mask;
pdev->pdrv = pdrv;
kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
@ -170,6 +240,9 @@ linux_pci_attach(device_t dev)
else
pdev->dev.irq = LINUX_IRQ_INVALID;
pdev->irq = pdev->dev.irq;
error = linux_pdev_dma_init(pdev);
if (error)
goto out;
if (pdev->bus == NULL) {
pbus = malloc(sizeof(*pbus), M_DEVBUF, M_WAITOK | M_ZERO);
@ -183,6 +256,7 @@ linux_pci_attach(device_t dev)
spin_unlock(&pci_lock);
error = pdrv->probe(pdev, id);
out:
if (error) {
spin_lock(&pci_lock);
list_del(&pdev->links);
@ -202,6 +276,7 @@ linux_pci_detach(device_t dev)
pdev = device_get_softc(dev);
pdev->pdrv->remove(pdev);
linux_pdev_dma_uninit(pdev);
spin_lock(&pci_lock);
list_del(&pdev->links);
@ -330,3 +405,422 @@ linux_pci_unregister_driver(struct pci_driver *pdrv)
devclass_delete_driver(bus, &pdrv->bsddriver);
mtx_unlock(&Giant);
}
struct linux_dma_obj {
void *vaddr;
dma_addr_t dma_addr;
bus_dmamap_t dmamap;
};
static uma_zone_t linux_dma_trie_zone;
static uma_zone_t linux_dma_obj_zone;
static void
linux_dma_init(void *arg)
{
linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
UMA_ALIGN_PTR, 0);
linux_dma_obj_zone = uma_zcreate("linux_dma_object",
sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
}
SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
static void
linux_dma_uninit(void *arg)
{
uma_zdestroy(linux_dma_obj_zone);
uma_zdestroy(linux_dma_trie_zone);
}
SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
static void *
linux_dma_trie_alloc(struct pctrie *ptree)
{
return (uma_zalloc(linux_dma_trie_zone, 0));
}
static void
linux_dma_trie_free(struct pctrie *ptree, void *node)
{
uma_zfree(linux_dma_trie_zone, node);
}
PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
linux_dma_trie_free);
void *
linux_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
struct linux_dma_priv *priv;
vm_paddr_t high;
size_t align;
void *mem;
if (dev == NULL || dev->dma_priv == NULL) {
*dma_handle = 0;
return (NULL);
}
priv = dev->dma_priv;
if (priv->dma_mask)
high = priv->dma_mask;
else if (flag & GFP_DMA32)
high = BUS_SPACE_MAXADDR_32BIT;
else
high = BUS_SPACE_MAXADDR;
align = PAGE_SIZE << get_order(size);
mem = (void *)kmem_alloc_contig(size, flag, 0, high, align, 0,
VM_MEMATTR_DEFAULT);
if (mem)
*dma_handle = linux_dma_map_phys(dev, vtophys(mem), size);
else
*dma_handle = 0;
return (mem);
}
dma_addr_t
linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
{
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
int error, nseg;
bus_dma_segment_t seg;
priv = dev->dma_priv;
obj = uma_zalloc(linux_dma_obj_zone, 0);
if (bus_dmamap_create(priv->dmat, 0, &obj->dmamap) != 0) {
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
nseg = -1;
mtx_lock(&priv->dma_lock);
if (_bus_dmamap_load_phys(priv->dmat, obj->dmamap, phys, len,
BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
bus_dmamap_destroy(priv->dmat, obj->dmamap);
mtx_unlock(&priv->dma_lock);
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
mtx_unlock(&priv->dma_lock);
KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
obj->dma_addr = seg.ds_addr;
mtx_lock(&priv->ptree_lock);
error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
mtx_unlock(&priv->ptree_lock);
if (error != 0) {
mtx_lock(&priv->dma_lock);
bus_dmamap_unload(priv->dmat, obj->dmamap);
bus_dmamap_destroy(priv->dmat, obj->dmamap);
mtx_unlock(&priv->dma_lock);
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
return (obj->dma_addr);
}
void
linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
{
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
priv = dev->dma_priv;
mtx_lock(&priv->ptree_lock);
obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
if (obj == NULL) {
mtx_unlock(&priv->ptree_lock);
return;
}
LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
mtx_unlock(&priv->ptree_lock);
mtx_lock(&priv->dma_lock);
bus_dmamap_unload(priv->dmat, obj->dmamap);
bus_dmamap_destroy(priv->dmat, obj->dmamap);
mtx_unlock(&priv->dma_lock);
uma_zfree(linux_dma_obj_zone, obj);
}
int
linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
struct scatterlist *dma_sg, *sg;
int dma_nents, error, nseg;
size_t seg_len;
vm_paddr_t seg_phys, prev_phys_end;
bus_dma_segment_t seg;
priv = dev->dma_priv;
obj = uma_zalloc(linux_dma_obj_zone, 0);
if (bus_dmamap_create(priv->dmat, 0, &obj->dmamap) != 0) {
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
sg = sgl;
dma_sg = sg;
dma_nents = 0;
while (nents > 0) {
seg_phys = sg_phys(sg);
seg_len = sg->length;
while (--nents > 0) {
prev_phys_end = sg_phys(sg) + sg->length;
sg = sg_next(sg);
if (prev_phys_end != sg_phys(sg))
break;
seg_len += sg->length;
}
nseg = -1;
mtx_lock(&priv->dma_lock);
if (_bus_dmamap_load_phys(priv->dmat, obj->dmamap,
seg_phys, seg_len, BUS_DMA_NOWAIT,
&seg, &nseg) != 0) {
bus_dmamap_unload(priv->dmat, obj->dmamap);
bus_dmamap_destroy(priv->dmat, obj->dmamap);
mtx_unlock(&priv->dma_lock);
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
mtx_unlock(&priv->dma_lock);
KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
sg_dma_address(dma_sg) = seg.ds_addr;
sg_dma_len(dma_sg) = seg.ds_len;
dma_sg = sg_next(dma_sg);
dma_nents++;
}
obj->dma_addr = sg_dma_address(sgl);
mtx_lock(&priv->ptree_lock);
error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
mtx_unlock(&priv->ptree_lock);
if (error != 0) {
mtx_lock(&priv->dma_lock);
bus_dmamap_unload(priv->dmat, obj->dmamap);
bus_dmamap_destroy(priv->dmat, obj->dmamap);
mtx_unlock(&priv->dma_lock);
uma_zfree(linux_dma_obj_zone, obj);
return (0);
}
return (dma_nents);
}
void
linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
priv = dev->dma_priv;
mtx_lock(&priv->ptree_lock);
obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, sg_dma_address(sgl));
if (obj == NULL) {
mtx_unlock(&priv->ptree_lock);
return;
}
LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, sg_dma_address(sgl));
mtx_unlock(&priv->ptree_lock);
mtx_lock(&priv->dma_lock);
bus_dmamap_unload(priv->dmat, obj->dmamap);
bus_dmamap_destroy(priv->dmat, obj->dmamap);
mtx_unlock(&priv->dma_lock);
uma_zfree(linux_dma_obj_zone, obj);
}
static inline int
dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
{
struct linux_dma_obj *obj = mem;
struct dma_pool *pool = arg;
int error, nseg;
bus_dma_segment_t seg;
nseg = -1;
mtx_lock(&pool->pool_dma_lock);
error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
&seg, &nseg);
mtx_unlock(&pool->pool_dma_lock);
if (error != 0) {
return (error);
}
KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
obj->dma_addr = seg.ds_addr;
return (0);
}
static void
dma_pool_obj_dtor(void *mem, int size, void *arg)
{
struct linux_dma_obj *obj = mem;
struct dma_pool *pool = arg;
mtx_lock(&pool->pool_dma_lock);
bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
mtx_unlock(&pool->pool_dma_lock);
}
static int
dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
int flags)
{
struct dma_pool *pool = arg;
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
int error, i;
priv = pool->pool_pdev->dev.dma_priv;
for (i = 0; i < count; i++) {
obj = uma_zalloc(linux_dma_obj_zone, flags);
if (obj == NULL)
break;
error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
BUS_DMA_NOWAIT, &obj->dmamap);
if (error!= 0) {
uma_zfree(linux_dma_obj_zone, obj);
break;
}
store[i] = obj;
}
return (i);
}
static void
dma_pool_obj_release(void *arg, void **store, int count)
{
struct dma_pool *pool = arg;
struct linux_dma_priv *priv;
struct linux_dma_obj *obj;
int i;
priv = pool->pool_pdev->dev.dma_priv;
for (i = 0; i < count; i++) {
obj = store[i];
bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
uma_zfree(linux_dma_obj_zone, obj);
}
}
struct dma_pool *
linux_dma_pool_create(char *name, struct device *dev, size_t size,
size_t align, size_t boundary)
{
struct linux_dma_priv *priv;
struct dma_pool *pool;
priv = dev->dma_priv;
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
pool->pool_pdev = to_pci_dev(dev);
pool->pool_entry_size = size;
if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
align, boundary, /* alignment, boundary */
priv->dma_mask, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsz */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&pool->pool_dmat)) {
kfree(pool);
return (NULL);
}
pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
dma_pool_obj_release, pool, 0);
mtx_init(&pool->pool_dma_lock, "linux_dma_pool", NULL, MTX_DEF);
mtx_init(&pool->pool_ptree_lock, "linux_dma_pool_ptree", NULL,
MTX_DEF);
pctrie_init(&pool->pool_ptree);
return (pool);
}
void
linux_dma_pool_destroy(struct dma_pool *pool)
{
uma_zdestroy(pool->pool_zone);
bus_dma_tag_destroy(pool->pool_dmat);
mtx_destroy(&pool->pool_ptree_lock);
mtx_destroy(&pool->pool_dma_lock);
kfree(pool);
}
void *
linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
dma_addr_t *handle)
{
struct linux_dma_obj *obj;
obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags);
if (obj == NULL)
return (NULL);
mtx_lock(&pool->pool_ptree_lock);
if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
mtx_unlock(&pool->pool_ptree_lock);
uma_zfree_arg(pool->pool_zone, obj, pool);
return (NULL);
}
mtx_unlock(&pool->pool_ptree_lock);
*handle = obj->dma_addr;
return (obj->vaddr);
}
void
linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
{
struct linux_dma_obj *obj;
mtx_lock(&pool->pool_ptree_lock);
obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
if (obj == NULL) {
mtx_unlock(&pool->pool_ptree_lock);
return;
}
LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
mtx_unlock(&pool->pool_ptree_lock);
uma_zfree_arg(pool->pool_zone, obj, pool);
}

View File

@ -60,7 +60,7 @@
* in the range 5 to 9.
*/
#undef __FreeBSD_version
#define __FreeBSD_version 1300020 /* Master, propagated to newvers */
#define __FreeBSD_version 1300021 /* Master, propagated to newvers */
/*
* __FreeBSD_kernel__ indicates that this system uses the kernel of FreeBSD,