specialized for float precision. The new polynomial has degree 8
instead of 14, and a maximum error of 2**-34.34 (absolute) instead of
2**-30.66. This doesn't affect the final error significantly; the
maximum error was and is about 0.8879 ulps on amd64 -01.
The fdlibm expf() is not used on i386's (the "optimized" asm version
is used), but probably should be since it was already significantly
faster than the asm version on athlons. The asm version has the
advantage of being more accurate, so keep using it for now.
polynomial for __kernel_tanf(). The old one was the double-precision
polynomial with coefficients truncated to float. Truncation is not
a good way to convert minimax polynomials to lower precision. Optimize
for efficiency and use the lowest-degree polynomial that gives a
relative error of less than 1 ulp. It has degree 13 instead of 27,
and happens to be 2.5 times more accurate (in infinite precision) than
the old polynomial (the maximum error is 0.017 ulps instead of 0.041
ulps).
Unlike for cosf and sinf, the old accuracy was close to being inadequate
-- the polynomial for double precision has a max error of 0.014 ulps
and nearly this small an error is needed. The new accuracy is also a
bit small, but exhaustive checking shows that even the old accuracy
was enough. The increased accuracy reduces the maximum relative error
in the final result on amd64 -O1 from 0.9588 ulps to 0.9044 ulps.
special case pi/4 <= |x| < 3*pi/4. This gives a tiny optimization (it
saves 2 subtractions, which are scheduled well so they take a whole 1
cycle extra on an AthlonXP), and simplifies the code so that the
following optimization is not so ugly.
Optimize for the range 3*pi/4 < |x| < 9*Pi/2 in the same way. On
Athlon{XP,64} systems, this gives a 25-40% optimization (depending a
lot on CFLAGS) for the cosf() and sinf() consumers on this range.
Relative to i387 hardware fcos and fsin, it makes the software versions
faster in most cases instead of slower in most cases. The relative
optimization is smaller for tanf() the inefficient part is elsewhere.
The 53-bit approximation to pi/2 is good enough for pi/4 <= |x| <
3*pi/4 because after losing up to 24 bits to subtraction, we still
have 29 bits of precision and only need 25 bits. Even with only 5
extra bits, it is possible to get perfectly rounded results starting
with the reduced x, since if x is nearly a multiple of pi/2 then x is
not near a half-way case and if x is not nearly a multiple of pi/2
then we don't lose many bits. With our intentionally imperfect rounding
we get the same results for cosf(), sinf() and tanf() as without this
optimization.
standard in C99 and POSIX.1-2001+. They are also not deprecated, since
apart from being standard they can handle special args slightly better
than the ilogb() functions.
Move their documentation to ilogb.3. Try to use consistent and improved
wording for both sets of functions. All of ieee854, C99 and POSIX
have better wording and more details for special args.
Add history for the logb() functions and ilogbl(). Fix history for
ilogb().
so that it can be faster for tiny x and avoided for reduced x.
This improves things a little differently than for cosine and sine.
We still need to reclassify x in the "kernel" functions, but we get
an extra optimization for tiny x, and an overall optimization since
tiny reduced x rarely happens. We also get optimizations for space
and style. A large block of poorly duplicated code to fix a special
case is no longer needed. This supersedes the fixes in k_sin.c revs
1.9 and 1.11 and k_sinf.c 1.8 and 1.10.
Fixed wrong constant for the cutoff for "tiny" in tanf(). It was
2**-28, but should be almost the same as the cutoff in sinf() (2**-12).
The incorrect cutoff protected us from the bugs fixed in k_sinf.c 1.8
and 1.10, except 4 cases of reduced args passed the cutoff and needed
special handling in theory although not in practice. Now we essentially
use a cutoff of 0 for the case of reduced args, so we now have 0 special
args instead of 4.
This change makes no difference to the results for sinf() (since it
only changes the algorithm for the 4 special args and the results for
those happen not to change), but it changes lots of results for sin().
Exhaustive testing is impossible for sin(), but exhaustive testing
for sinf() (relative to a version with the old algorithm and a fixed
cutoff) shows that the changes in the error are either reductions or
from 0.5-epsilon ulps to 0.5+epsilon ulps. The new method just uses
some extra terms in approximations so it tends to give more accurate
results, and there are apparently no problems from having extra
accuracy. On amd64 with -O1, on all float args the error range in ulps
is reduced from (0.500, 0.665] to [0.335, 0.500) in 24168 cases and
increased from 0.500-epsilon to 0.500+epsilon in 24 cases. Non-
exhaustive testing by ucbtest shows no differences.
commit moved it). This includes a comment that the "kernel" sine no
longer works on arg -0, so callers must now handle this case. The kernel
sine still works on all other tiny args; without the optimization it is
just a little slower on these args. I intended it to keep working on
all tiny args, but that seems to be impossible without losing efficiency
or accuracy. (sin(x) ~ x * (1 + S1*x**2 + ...) would preserve -0, but
the approximation must be written as x + S1*x**3 + ... for accuracy.)
case never occurs since pi/2 is irrational so no multiple of it can
be represented as a float and we have precise arg reduction so we never
end up with a remainder of 0 in the "kernel" function unless the
original arg is 0.
If this case occurs, then we would now fall through to general code
that returns +-Inf (depending on the sign of the reduced arg) instead
of forcing +Inf. The correct handling would be to return NaN since
we would have lost so much precision that the correct result can be
anything _except_ +-Inf.
Don't reindent the else clause left over from this, although it was already
bogusly indented ("if (foo) return; else ..." just marches the indentation
to the right), since it will be removed too.
Index: k_tan.c
===================================================================
RCS file: /home/ncvs/src/lib/msun/src/k_tan.c,v
retrieving revision 1.10
diff -r1.10 k_tan.c
88,90c88
< if (((ix | low) | (iy + 1)) == 0)
< return one / fabs(x);
< else {
---
> {
a declaration was not translated to "float" although bit fiddling on
double variables was translated. This resulted in garbage being put
into the low word of one of the doubles instead of non-garbage being
put into the only word of the intended float. This had no effect on
any result because:
- with doubles, the algorithm for calculating -1/(x+y) is unnecessarily
complicated. Just returning -1/((double)x+y) would work, and the
misdeclaration gave something like that except for messing up some
low bits with the bit fiddling.
- doubles have plenty of bits to spare so messing up some of the low
bits is unlikely to matter.
- due to other bugs, the buggy code is reached for a whole 4 args out
of all 2**32 float args. The bug fixed by 1.8 only affects a small
percentage of cases and a small percentage of 4 is 0. The 4 args
happen to cause no problems without 1.8, so they are even less likely
to be affected by the bug in 1.8 than average args; in fact, neither
1.8 nor this commit makes any difference to the result for these 4
args (and thus for all args).
Corrections to the log message in 1.8: the bug only applies to tan()
and not tanf(), not because the float type can't represent numbers
large enough to trigger the problem (e.g., the example in the fdlibm-5.3
readme which is > 1.0e269), but because:
- the float type can't represent small enough numbers. For there to be
a possible problem, the original arg for tanf() must lie very near an
odd multiple of pi/2. Doubles can get nearer in absolute units. In
ulps there should be little difference, but ...
- ... the cutoff for "small" numbers is bogus in k_tanf.c. It is still
the double value (2**-28). Since this is 32 times smaller than
FLT_EPSILON and large float values are not very uniformly distributed,
only 6 args other than ones that are initially below the cutoff give
a reduced arg that passes the cutoff (the 4 problem cases mentioned
above and 2 non-problem cases).
Fixing the cutoff makes the bug affect tanf() and much easier to detect
than for tan(). With a cutoff of 2**-12 on amd64 with -O1, 670102
args pass the cutoff; of these, there are 337604 cases where there
might be an error of >= 1 ulp and 5826 cases where there is such an
error; the maximum error is 1.5382 ulps.
The fix in 1.8 works with the reduced cutoff in all cases despite the
bug in it. It changes the result in 84492 cases altogether to fix the
5826 broken cases. Fixing the fix by translating "double" to "float"
changes the result in 42 cases relative to 1.8. In 24 cases the
(absolute) error is increased and in 18 cases it is reduced, but it
remains less than 1 ulp in all cases.
rewritten, now timers created with same sigev_notify_attributes will
run in same thread, this allows user to organize which timers can
run in same thread to save some thread resource.
The log message for 1.5 said that some small (one or two ulp) inaccuracies
were fixed, and a comment implied that the critical change is to switch
the rounding mode to to-nearest, with a switch of the precision to
extended at no extra cost. Actually, the errors are very large (ucbtest
finds ones of several hundred ulps), and it is the switch of the
precision that is critical.
Another comment was wrong about NaNs being handled sloppily.
and medium size args too: instead of conditionally subtracting a float
17+24, 17+17+24 or 17+17+17+24 bit approximation to pi/2, always
subtract a double 33+53 bit one. The float version is now closer to
the double version than to old versions of itself -- it uses the same
33+53 bit approximation as the simplest cases in the double version,
and where the float version had to switch to the slow general case at
|x| == 2^7*pi/2, it now switches at |x| == 2^19*pi/2 the same as the
double version.
This speeds up arg reduction by a factor of 2 for |x| between 3*pi/4 and
2^7*pi/4, and by a factor of 7 for |x| between 2^7*pi/4 and 2^19*pi/4.
using under FreeBSD. Before this commit, all float precision functions
except exp2f() were implemented using only float precision, apparently
because Cygnus needed this in 1993 for embedded systems with slow or
inefficient double precision. For FreeBSD, except possibly on systems
that do floating point entirely in software (very old i386 and now
arm), this just gives a more complicated implementation, many bugs,
and usually worse performance for float precision than for double
precision. The bugs and worse performance were particulary large in
arg reduction for trig functions. We want to divide by an approximation
to pi/2 which has as many as 1584 bits, so we should use the widest
type that is efficient and/or easy to use, i.e., double. Use fdlibm's
__kernel_rem_pio2() to do this as Sun apparently intended. Cygnus's
k_rem_pio2f.c is now unused. e_rem_pio2f.c still needs to be separate
from e_rem_pio2.c so that it can be optimized for float args. Similarly
for long double precision.
This speeds up cosf(x) on large args by a factor of about 2. Correct
arg reduction on large args is still inherently very slow, so hopefully
these args rarely occur in practice. There is much more efficiency
to be gained by using double precision to speed up arg reduction on
medium and small float args.
__kernel_sinf(). The old ones were the double-precision polynomials
with coefficients truncated to float. Truncation is not a good way
to convert minimax polynomials to lower precision. Optimize for
efficiency and use the lowest-degree polynomials that give a relative
error of less than 1 ulp -- degree 8 instead of 14 for cosf and degree
9 instead of 13 for sinf. For sinf, the degree 8 polynomial happens
to be 6 times more accurate than the old degree 14 one, but this only
gives a tiny amount of extra accuracy in results -- we just need to
use a a degree high enough to give a polynomial whose relative accuracy
in infinite precision (but with float coefficients) is a small fraction
of a float ulp (fdlibm generally uses 1/32 for the small fraction, and
the fraction for our degree 8 polynomial is about 1/600).
The maximum relative errors for cosf() and sinf() are now 0.7719 ulps
and 0.7969 ulps, respectively.
This supersedes the fix for the old algorithm in rev.1.8 of k_cosf.c.
I want this change mainly because it is an optimization. It helps
make software cos[f](x) and sin[f](x) faster than the i387 hardware
versions for small x. It is also a simplification, and reduces the
maximum relative error for cosf() and sinf() on machines like amd64
from about 0.87 ulps to about 0.80 ulps. It was validated for cosf()
and sinf() by exhaustive testing. Exhaustive testing is not possible
for cos() and sin(), but ucbtest reports a similar reduction for the
worst case found by non-exhaustive testing. ucbtest's non-exhaustive
testing seems to be good enough to find problems in algorithms but not
maximum relative errors when there are spikes. E.g., short runs of
it find only 3 ulp error where the i387 hardware cos() has an error
of about 2**40 ulps near pi/2.
to floats (mainly i386's). All errors of more than 1 ulp for float
precision trig functions were supposed to have been fixed; however,
compiling with gcc -O2 uncovered 18250 more such errors for cosf(),
with a maximum error of 1.409 ulps.
Use essentially the same fix as in rev.1.8 of k_rem_pio2f.c (access a
non-volatile variable as a volatile). Here the -O1 case apparently
worked because the variable is in a 2-element array and it takes -O2
to mess up such a variable by putting it in a register.
The maximum error for cosf() on i386 with gcc -O2 is now 0.5467 (it
is still 0.5650 with gcc -O1). This shows that -O2 still causes some
extra precision, but the extra precision is now good.
Extra precision is harmful mainly for implementing extra precision in
software. We want to represent x+y as w+r where both "+" operations
are in infinite precision and r is tiny compared with w. There is a
standard algorithm for this (Knuth (1981) 4.2.2 Theorem C), and fdlibm
uses this routinely, but the algorithm requires w and r to have the
same precision as x and y. w is just x+y (calculated in the same
finite precision as x and y), and r is a tiny correction term. The
i386 gcc bugs tend to give extra precision in w, and then using this
extra precision in the calculation of r results in the correction
mostly staying in w and being missing from r. There still tends to
be no problem if the result is a simple expression involving w and r
-- modulo spills, w keeps its extra precision and r remains the right
correction for this wrong w. However, here we want to pass w and r
to extern functions. Extra precision is not retained in function args,
so w gets fixed up, but the change to the tiny r is tinier, so r almost
remains as a wrong correction for the right w.
{cos_sin}[f](x) so that x doesn't need to be reclassified in the
"kernel" functions to determine if it is tiny (it still needs to be
reclassified in the cosine case for other reasons that will go away).
This optimization is quite large for exponentially distributed x, since
x is tiny for almost half of the domain, but it is a pessimization for
uniformally distributed x since it takes a little time for all cases
but rarely applies. Arg reduction on exponentially distributed x
rarely gives a tiny x unless the reduction is null, so it is best to
only do the optimization if the initial x is tiny, which is what this
commit arranges. The imediate result is an average optimization of
1.4% relative to the previous version in a case that doesn't favour
the optimization (double cos(x) on all float x) and a large
pessimization for the relatively unimportant cases of lgamma[f][_r](x)
on tiny, negative, exponentially distributed x. The optimization should
be recovered for lgamma*() as part of fixing lgamma*()'s low-quality
arg reduction.
Fixed various wrong constants for the cutoff for "tiny". For cosine,
the cutoff is when x**2/2! == {FLT or DBL}_EPSILON/2. We round down
to an integral power of 2 (and for cos() reduce the power by another
1) because the exact cutoff doesn't matter and would take more work
to determine. For sine, the exact cutoff is larger due to the ration
of terms being x**2/3! instead of x**2/2!, but we use the same cutoff
as for cosine. We now use a cutoff of 2**-27 for double precision and
2**-12 for single precision. 2**-27 was used in all cases but was
misspelled 2**27 in comments. Wrong and sloppy cutoffs just cause
missed optimizations (provided the rounding mode is to nearest --
other modes just aren't supported).
readable on certain random memory configurations. If the libkvm consumer
tried to read something that was in the very last pdpe, pde or pte slot,
it would bogusly fail.
This is broken in RELENG_6 too.
expr and printf are not available during installworld, so
use /bin/sh arithmetic expansion instead of expr and simply
give up on vanity formatting. ;-)
systems (or on FreeBSD systems when using ports).
2) Overhaul the versioning logic. In particular,
SHLIB_MAJOR number is now computed as "major+minor",
which ensures library versions are the same for
the FreeBSD build system and the portable
libtool/autoconf/automake build system.
link names, usernames, or group names that contain
non-ASCII characters.
In particular, this corrects an inconsistency reported
by Ed Maste when archiving symlinks with odd characters:
long symlinks would get preserved, short ones would
be changed.
broken assignment to floats (e.g., i386 with gcc -O, but not amd64 or
ia64; i386 with gcc -O0 worked accidentally).
Use an unnamed volatile temporary variable to trick gcc -O into clipping
extra precision on assignment. It's surprising that only 1 place needed
to be changed.
For tanf() on i386 with gcc -O, the bug caused errors > 1 ulp with a
density of 2.3% for args larger in magnitude than 128*pi/2, with a
maximum error of 1.624 ulps.
After this fix, exhaustive testing shows that range reduction for
floats works as intended assuming that it is in within a factor of
about 2^16 of working as intended for doubles. It provides >= 8
extra bits of precision for all ranges. On i386:
range max error in double/single ulps extra precision
----- ------------------------------- ---------------
0 to 3*pi/4 0x000d3132 / 0.0016 9+ bits
3*pi/4 to 128*pi/2 0x00160445 / 0.0027 8+
128*pi/2 to +Inf 0x00000030 / 0.00000009 23+
128*pi/2 up, -O0 before fix 0x00000030 / 0.00000009 23+
128*pi/2 up, -O1 before fix 0x10000000 / 0.5 1
The 23+ bits of extra precision for large multiples corresponds to almost
perfect reduction to a pair of floats (24 extra would be perfect).
After this fix, the maximum relative error (relative to the corresponding
fdlibm double precision function) is < 1 ulp for all basic trig functions
on all 2^32 float args on all machines tested:
amd64 ia64 i386-O0 i386-O1
------ ------ ------ ------
cosf: 0.8681 0.8681 0.7927 0.5650
sinf: 0.8733 0.8610 0.7849 0.5651
tanf: 0.9708 0.9329 0.9329 0.7035
of pi/2 (1 line) and expand a comment about related magic (many lines).
The bug was essentially the same as for the +-pi/2 case (a mistranslated
mask), but was smaller so it only significantly affected multiples
starting near +-13*pi/2. At least on amd64, for cosf() on all 2^32
float args, the bug caused 128 errors of >= 1 ulp, with a maximum error
of 1.2393 ulps.
and add a comment about related magic (many lines)).
__kernel_cos[f]() needs a trick to reduce the error to below 1 ulp
when |x| >= 0.3 for the range-reduced x. Modulo other bugs, naive
code that doesn't use the trick would have an error of >= 1 ulp
in about 0.00006% of cases when |x| >= 0.3 for the unreduced x,
with a maximum relative error of about 1.03 ulps. Mistransation
of the trick from the double precision case resulted in errors in
about 0.2% of cases, with a maximum relative error of about 1.3 ulps.
The mistranslation involved not doing implicit masking of the 32-bit
float word corresponding to to implicit masking of the lower 32-bit
double word by clearing it.
sinf() uses __kernel_cosf() for half of all cases so its errors from
this bug are similar. tanf() is not affected.
The error bounds in the above and in my other recent commit messages
are for amd64. Extra precision for floats on i386's accidentally masks
this bug, but only if k_cosf.c is compiled with -O. Although the extra
precision helps here, this is accidental and depends on longstanding
gcc precision bugs (not clipping extra precision on assignment...),
and the gcc bugs are mostly avoided by compiling without -O. I now
develop libm mainly on amd64 systems to simplify error detection and
debugging.
17+17+24 bit pi/2 must only be used when subtraction of the first 2
terms in it from the arg is exact. This happens iff the the arg in
bits is one of the 2**17[-1] values on each side of (float)(pi/2).
Revert to the algorithm in rev.1.7 and only fix its threshold for using
the 3-term pi/2. Use the threshold that maximizes the number of values
for which the 3-term pi/2 is used, subject to not changing the algorithm
for comparing with the threshold. The 3-term pi/2 ends up being used
for about half of its usable range (about 64K values on each side).
a maximum error of 2.905 ulps for cosf(), but the algorithm for cosf()
is good for < 1 ulps and happens to give perfect rounding (< 0.5 ulps)
near +-pi/2 except for the bug. The extra relative errors for tanf()
were similar (slightly larger). The bug didn't affect sinf() since
sinf'(+-pi/2) is 0.
For range reduction in ~[-3pi/4, -pi/4] and ~[pi/4, 3pi/4] we must
subtract +-pi/2 and the only complication is that this must be done
in extra precision. We have handy 17+24-bit and 17+17+24-bit
approximations to pi/2. If we always used the former then we would
lose up to 24 bits of accuracy due to cancelation of leading bits, but
we need to keep at least 24 bits plus a guard digit or 2, and should
keep as many guard bits as efficiency permits. So we used the
less-precise pi/2 not very near +-pi/2 and switched to using the
more-precise pi/2 very near +-pi/2. However, we got the threshold for
the switch wrong by allowing 19 bits to cancel, so we ended up with
only 21 or 22 bits of accuracy in some cases, which is even worse than
naively subtracting pi/2 would have done.
Exhaustive checking shows that allowing only 17 bits to cancel (min.
accuracy ~24 bits) is sufficient to reduce the maximum error for cosf()
near +-pi/2 to 0.726 ulps, but allowing only 6 bits to cancel (min.
accuracy ~35-bits) happens to give perfect rounding for cosf() at
little extra cost so we prefer that.
We actually (in effect) allow 0 bits to cancel and always use the
17+17+24-bit pi/2 (min. accuracy ~41 bits). This is simpler and
probably always more efficient too. Classifying args to avoid using
this pi/2 when it is not needed takes several extra integer operations
and a branch, but just using it takes only 1 FP operation.
The patch also fixes misspelling of 17 as 24 in many comments.
For the double-precision version, the magic numbers include 33+53 bits
for the less-precise pi/2 and (53-32-1 = 20) bits being allowed to
cancel, so there are ~33-20 = 13 guard bits. This is sufficient except
probably for perfect rounding. The more-precise pi/2 has 33+33+53
bits and we still waste time classifying args to avoid using it.
The bug is apparently from mistranslation of the magic 32 in 53-32-1.
The number of bits allowed to cancel is not critical and we use 32 for
double precision because it allows efficient classification using a
32-bit comparison. For float precision, we must use an explicit mask,
and there are fewer bits so there is less margin for error in their
allocation. The 32 got reduced to 4 but should have been reduced
almost in proportion to the reduction of mantissa bits.
in 1993 in rev.1.5 of the i386 a.out version (csu/i386/crt0.c).
Profiling uses a magic label "eprol" to delimit the start of the part
of the text section covered by profiling. This label must be placed
before the call to main() to get main() properly profiled. It was
placed there in rev.1.1 of crt0.c. Rev.1.5 imported the initial
implementation of shared libraries in FreeBSD and misplaced the label.
Fortunately, the misplaced label was misspelled and the old label
wasn't removed, so the new label had no effect. Unfortunately, when
profiling was implemented for the ELF in 1998 in rev.1.2 of
csu/i386-elf/crt1.c, only the incorrectly placed label was copied
(after fixing its name). The bug was then copied to all other arches.
The label seems to be still misplaced in NetBSD for most arches. It
is in common.c for most arches so it is even further from being inside
the function that calls main().
I think "eprol" is short for "end of prologue", but it must be placed
before the end of the prologue so that it covers main(). crt0.c has
it before the calls atexit(_mcleanup) and monstartup(...), but it
cannot affect these calls so I moved it after the call to monstartup().
It now also covers the call to _init() but not the newer call to
_init_tls(). Profiling of _init() seems to be harmless, and the call
to _init_tls() seems to be misplaced.
Reviewed by: jdp (long ago, for a slightly different i386 version)
host name. This is matches the documented behaviro. The previous
behavior would remove the domain name even if the result retained a dot.
This fixes rsh connections from a.example.com to example.com.
Reviewed by: ceri (at least the concept)
o Don't reinitialise the atfork() handler list in the child. We
are meant to call the child handler, and on subsequent fork()s
should call all three functions as normal.
o Don't reinitialise the thread specific keyed data in the
child after a fork. Applications may require this for context.
o Reinitialise curthread->tlflags after removing ourselves from
(and reinitialising) the various internal thread lists.
o Reinitialise __malloc_lock in the child after fork() (to balance
our explicitly taking the lock prior to the fork()).
With these changes, it is possible to enable the NOTYET code in
thr_kern.c to allow the use of non-async-safe functions after
fork()ing from a threaded program.
Reviewed by: Daniel Eischen <deischen@freebsd.org>
[_malloc_lock reinitialisation has since been moved to avoid polluting the
!NOTYET code]