quality to 950. HPET on modern platforms usually have better resolution and
lower latency than ACPI timer. Effectively this changes default timecounter
hardware from ACPI-fast to HPET by default when both are available.
Discussed with: avg
driver would verify that requests for child devices were confined to any
existing I/O windows, but the driver relied on the firmware to initialize
the windows and would never grow the windows for new requests. Now the
driver actively manages the I/O windows.
This is implemented by allocating a bus resource for each I/O window from
the parent PCI bus and suballocating that resource to child devices. The
suballocations are managed by creating an rman for each I/O window. The
suballocated resources are mapped by passing the bus_activate_resource()
call up to the parent PCI bus. Windows are grown when needed by using
bus_adjust_resource() to adjust the resource allocated from the parent PCI
bus. If the adjust request succeeds, the window is adjusted and the
suballocation request for the child device is retried.
When growing a window, the rman_first_free_region() and
rman_last_free_region() routines are used to determine if the front or
end of the existing I/O window is free. From using that, the smallest
ranges that need to be added to either the front or back of the window
are computed. The driver will first try to grow the window in whichever
direction requires the smallest growth first followed by the other
direction if that fails.
Subtractive bridges will first attempt to satisfy requests for child
resources from I/O windows (including attempts to grow the windows). If
that fails, the request is passed up to the parent PCI bus directly
however.
The PCI-PCI bridge driver will try to use firmware-assigned ranges for
child BARs first and only allocate a "fresh" range if that specific range
cannot be accommodated in the I/O window. This allows systems where the
firmware assigns resources during boot but later wipes the I/O windows
(some ACPI BIOSen are known to do this) to "rediscover" the original I/O
window ranges.
The ACPI Host-PCI bridge driver has been adjusted to correctly honor
hw.acpi.host_mem_start and the I/O port equivalent when a PCI-PCI bridge
makes a wildcard request for an I/O window range.
The new PCI-PCI bridge driver is only enabled if the NEW_PCIB kernel option
is enabled. This is a transition aide to allow platforms that do not
yet support bus_activate_resource() and bus_adjust_resource() in their
Host-PCI bridge drivers (and possibly other drivers as needed) to use the
old driver for now. Once all platforms support the new driver, the
kernel option and old driver will be removed.
PR: kern/143874 kern/149306
Tested by: mav
safer for i386 because it can be easily over 4 GHz now. More worse, it can
be easily changed by user with 'machdep.tsc_freq' tunable (directly) or
cpufreq(4) (indirectly). Note it is intentionally not used in performance
critical paths to avoid performance regression (but we should, in theory).
Alternatively, we may add "virtual TSC" with lower frequency if maximum
frequency overflows 32 bits (and ignore possible incoherency as we do now).
show that there are perfectly working PM timers with occasional "hiccups",
probably because of an SMI. Now we ignore the maximum if it happens once in
the test loop and the width is small enough. Also, relax normal width a bit
to count in a boundary case.
on the fact that real hardware has almost fixed cost to read the ACPI timer.
It is virtually always false for hardware emulation and it makes no sense to
read it multiple times, which is already quite expensive for full emulation.
doesn't "fail", it may merely return garbage if it is not a valid ivar
for a given device. Our parent device must be a 'pcib' device, so we
can just assume it implements pcib IVARs, and all pcib devices have a
bus number.
Submitted by: clang via rdivacky
install or remove non-SCI interrupt handlers per ACPI Component Architecture
User Guide and Programmer Reference. ACPICA may install such interrupt
handler when a GPE block device is found, for example. Add a wrapper for
ACPI_OSD_HANDLER, convert its return values to ours, and make it a filter.
Prefer KASSERT(9) over panic(9) as we have never seen those in reality.
Clean up some style(9) nits and add my copyright.
table is present, then the acpi_ec(4) driver will allocate its resources
from nexus0 before the acpi0 device reserves resources for child devices.
Reviewed by: jkim
This is based on the patch submitted by Yuri Skripachov.
Overview of the changes:
- clarify double-use of some ACPI_BATT_STAT_* definitions
- clean up undefined/extended status bits returned by _BST
- warn about charging+discharging bits being set at the same time
PR: kern/124744
Submitted by: Yuri Skripachov <y.skripachov@gmail.com>
Tested by: Yuri Skripachov <y.skripachov@gmail.com>
MFC after: 2 weeks
- Avoid side-effect assignments in if statements when possible.
- Don't use ! to check for NULL pointers, explicitly check against NULL.
- Explicitly check error return values against 0.
- Don't use INTR_MPSAFE for interrupt handlers with only filters as it is
meaningless.
- Remove unneeded function casts.
function always returned the nominal frequency instead of current frequency
because we use RDTSC instruction to calculate difference in CPU ticks, which
is supposedly constant for the case. Now we support cpu_get_nominal_mhz()
for the case, instead. Note it should be just enough for most usage cases
because cpu_est_clockrate() is often times abused to find maximum frequency
of the processor.
looking to see if there is an existing IRQ resource for a given IRQ
provided by the BIOS and using that RID if so. Otherwise, allocate a new
RID for the new IRQ.
Reviewed by: mav (a while ago)
copied as a template for _SRS, a string pointer for descriptor name is also
copied and it becomes stale as soon as it gets de-allocated[2]. Now _CRS is
used as a template for _SRS as ACPI specification suggests if it is usable.
The template from _PRS is still utilized but only when _CRS is not available
or broken. To avoid use-after-free the problem in this case, however, only
mandatory fields are copied, optional data is removed, and structure length
is adjusted accordingly.
Reported by: hps[1]
Analyzed by: avg[2]
Tested by: hps
'hw.acpi.remove_interface'. hw.acpi.install_interface lets you install new
interfaces. Conversely, hw.acpi.remove_interface lets you remove OS
interfaces from the pre-defined list in ACPICA. For example,
hw.acpi.install_interface="FreeBSD"
lets _OSI("FreeBSD") method to return 0xffffffff (or success) and
hw.acpi.remove_interface="Windows 2009"
lets _OSI("Windows 2009") method to return zero (or failure). Both are
comma-separated lists and leading white spaces are ignored. For example,
the following examples are valid:
hw.acpi.install_interface="Linux, FreeBSD"
hw.acpi.remove_interface="Windows 2006, Windows 2006.1"