When we are detecting a partition table and didn't find PMBR, try to
read backup GPT header from the last sector and if it is correct,
assume that we have GPT.
Reviewed by: rpokala
MFC after: 1 month
Differential Revision: https://reviews.freebsd.org/D4282
partitions of types other than "freebsd-boot" (in particular, "efi").
This allows the removal of some nasty hacks for supporting PowerPC systems,
in particular aliasing freebsd-boot to apple-boot on APM and an IBM-specific
code on MBR.
This changes the installer to use the correct names, which also breaks a
degeneracy in the meaning of "freebsd-boot" that allows the addition
of support for some newer IBM systems that can boot from GPT in addition to
MBR. Since I have no idea how to detect which those systems are, leave
the default on IBM PPC systems as MBR for now.
The purpose of the PMBR is to have the disk appear in use to GPT
unaware utilities (like fdisk). However, if the PMBR has been changed
by a GPT unaware utlity then we must assume that this was deliberate
(as it involved removal of the special slice) and we should not treat
the unmodified GPT-specific sectors as being valid. By lowering the
probe priority in that case, the MBR scheme will take precedence and
the kernel will end up using the MBR and not the GPT. We will still
use the GPT if the kernel does not support the MBR scheme.
When parent provider has been resized, the scheme specific G_PART_RESIZE
method does an update of scheme's metadata. But all changes are not saved
to disk, until `gpart commit` will be called.
Discussed with: trasz
MFC after: 1 month
the GEOM_PART. Instead of just using number of entries from the GPT
header, calculate this limit based on the reserved space between
GPT header and first available LBA.
MFC after: 2 weeks
This allows setting attributes on tables. One simply does not provide
an index in that case. Otherwise the entry corresponding the index has
the attribute set or unset.
Use this change to fix a relatively longstanding bug in our GPT scheme
that's the result of rev 198097 (relatively harmless) followed by rev
237057 (damaging). The damaging part being that our GPT scheme always
has the active flag set on the PMBR slice. This is in violation with
EFI. Existing EFI implementions for both x86 and ia64 reject the GPT.
As such, GPT disks created by us aren't usable under EFI because of
that.
After this change, GPT disks never have the active flag set on the PMBR
slice. In order to make the GPT disk bootable under some x86 BIOSes,
the reason of rev 198097, one must now set the active attribute on the
gpt table. The kernel will apply this to the PMBR slice For (S)ATA:
gpart set -a active ada0
To fix an existing GPT disk that has the active flag set in the PMBR,
and that does not need the flag, use (again for (S)ATA):
gpart unset -a active ada0
The EBR, MBR & PC98 schemes, which also impement at least 1 attribute,
now check to make sure the entry passed is valid. They do not have
attributes that apply to the table.
o Detect when Boot Camp is enabled (i.e. the MBR mirrors the GPT).
o When Boot Camp is enabled, update the MBR whenever we write the GPT.
o Creation of a Boot Camp enabled GPT is not supported.
o Automatically disable Boot Camp when the GPT has been changed so that
there's either no EFI partition or no HFS+ partition.
o The first 4 partitions (by index) get mirrored in the MBR.
Requested by, discussed with and tested by: kris@pcbsd.org
MFC after: 1 week
This fixes the problem, when the secondary GPT header is not erased when
partition table destroyed. Move equal operations from g_part_gpt_create
and g_part_gpt_recover to the separate function g_gpt_set_defaults.
Reported by: dwhite
MFC after: 1 week
No FreeBSD version bump, the userland application to query the features will
be committed last and can serve as an indication of the availablility if
needed.
Sponsored by: Google Summer of Code 2010
Submitted by: kibab
Reviewed by: silence on geom@ during 2 weeks
X-MFC after: to be determined in last commit with code from this project
EBR schemes: fat32, ebr, linux-data, linux-raid, linux-swap and
linux-lvm. Add bios-boot GUID and alias for the GPT scheme. It used by
GRUB 2 loader. Also do sorting definitions of types in diskmbr.h
and in g_part.c.
PR: bin/120990, kern/147664
MFC after: 2 weeks
and can prevent kernel memory exhausting when big value is specified
from command line.
Split reading and writing operation to several iteration to do not
trigger KASSERT when data length is greater than MAXPHYS.
PR: kern/144962, kern/147851
MFC after: 2 weeks
was specified incorrectly, causing the bzero to run past the end of a
malloc(9)'d object.
Submitted by: Eric Youngblut < eyoungblut AT isilon DOT com >
MFC after: 3 days
This was needed for recover implementation.
Implement the recover command for GPT. Now GPT will marked as
corrupt when any of three types of corruption will be detected:
1. Damaged primary GPT header or table
2. Damaged secondary GPT header or table
3. Secondary header is not located in the last LBA
Marked GPT becomes read-only. Any changes with corrupt table
are prohibited. Only "destroy" and "recover" commands are allowed.
Discussed with: geom@ (mostly silence)
Tested by: Ilya A. Arhipov
Approved by: mav (mentor)
MFC after: 2 weeks
attribute (it should be allowed only to unset it), but for test purposes it
might be useful, so the current code allows it.
Reviewed by: arch@ (Message-ID: <20100917234542.GE1902@garage.freebsd.pl>)
MFC after: 2 weeks
This fixes a null pointer dereference with "gpart create -s GPT" after
the previous commit.
Reported by: Yuri Pankov
Pointyhat to: me
MFC after: 1 week
It is valid for an on-disk GPT header to report a header size which is
greater than 92 bytes. Previously, we would read in the sector and copy
only the 92 bytes that we know how to deal with before calculating the
checksum for comparison. This meant that when we did the checksum, we
overshot the buffer and took in random memory, so the checksum would fail.
We now determine the size of the header and allocate enough space to
preserve the entire on-disk contents. This allows us to be correctly
calculate the checksum and be able to modify and write the header back
to the disk, while preserving data that we might not understand.
Reported by: Kris Weston
Approved by: marcel@
MFC after: 2 weeks
by CHS addressing. Don't define these fields as 0xff, but rather define
them correctly. This prevents boot problems on PCs where GPT is being
used.
PR: 115406
Submitted by: Kent Hauser <kent@khauser.net>
Approved by: re (kib)
still valid. We were checking the state of the header and
not the table.
PR: 119868
Based on a patch from: Jaakko Heinonen <jh@saunalahti.fi>
MFC after: 1 week
the method for the (indent == NULL) case (i.e. the kern.geom.conftxt
sysctl). The purpose is to extend the conftxt output with scheme-
specific fields which can be used by libdisk. In particular, have
the schemes dump the xs and xt fields, which contain the backward
compatible values for class type and partition type. This allows
libdisk to work with the legacy slicers as well as with gpart and
helps/promotes migration.
to declaring a proper module. The module event handler is part of the
gpart core and will add the scheme to an internal list on module load
and will remove the scheme from the internal list on module unload.
This makes it possible to dynamically load and unload partitioning
schemes.
on i386 and amd64 machines. The overall process is that /boot/pmbr lives
in the PMBR (similar to /boot/mbr for MBR disks) and is responsible for
locating and loading /boot/gptboot. /boot/gptboot is similar to /boot/boot
except that it groks GPT rather than MBR + bsdlabel. Unlike /boot/boot,
/boot/gptboot lives in its own dedicated GPT partition with a new
"FreeBSD boot" type. This partition does not have a fixed size in that
/boot/pmbr will load the entire partition into the lower 640k. However,
it is limited in that it can only be 545k. That's still a lot better than
the current 7.5k limit for boot2 on MBR. gptboot mostly acts just like
boot2 in that it reads /boot.config and loads up /boot/loader. Some more
details:
- Include uuid_equal() and uuid_is_nil() in libstand.
- Add a new 'boot' command to gpt(8) which makes a GPT disk bootable using
/boot/pmbr and /boot/gptboot. Note that the disk must have some free
space for the boot partition.
- This required exposing the backend of the 'add' function as a
gpt_add_part() function to the rest of gpt(8). 'boot' uses this to
create a boot partition if needed.
- Don't cripple cgbase() in the UFS boot code for /boot/gptboot so that
it can handle a filesystem > 1.5 TB.
- /boot/gptboot has a simple loader (gptldr) that doesn't do any I/O
unlike boot1 since /boot/pmbr loads all of gptboot up front. The
C portion of gptboot (gptboot.c) has been repocopied from boot2.c.
The primary changes are to parse the GPT to find a root filesystem
and to use 64-bit disk addresses. Currently gptboot assumes that the
first UFS partition on the disk is the / filesystem, but this algorithm
will likely be improved in the future.
- Teach the biosdisk driver in /boot/loader to understand GPT tables.
GPT partitions are identified as 'disk0pX:' (e.g. disk0p2:) which is
similar to the /dev names the kernel uses (e.g. /dev/ad0p2).
- Add a new "freebsd-boot" alias to g_part() for the new boot UUID.
MFC after: 1 month
Discussed with: marcel (some things might still change, but am committing
what I have so far)