used with Terasic's DE-4 and other similar FPGA boards. This display
is 800x480 and includes a capacitive touch screen, multi-touch
gesture recognition, etc. This device driver depends on a Cambridge-
provided IP core that allows the MTL device to be hooked up to the
Altera Avalon SoC bus, and also provides a VGA-like text frame buffer.
Although it is compiled as a single device driver, it actually
implements a number of different device nodes exporting various
aspects of this multi-function device to userspace:
- Simple memory-mapped driver for the MTL 24-bit pixel frame buffer.
- Simple memory-mapped driver for the MTL control register set.
- Simple memory-mapped driver for the MTL text frame buffer.
- syscons attachment for the MTL text frame buffer.
This driver attaches directly to Nexus as is common for SoC device
drivers, and for the time being is considered BERI-specific, although
in principle it might be used with other hard and soft cores on
Altera FPGAs.
Control registers, including touchscreen input, are simply memory
mapped; in the future it would be desirable to hook up a more
conventional device node that can stream events, support kqueue(2)/
poll(2)/select(2), etc.
This is the first use of syscons on MIPS, as far as I can tell, and
there are some loose ends, such as an inability to use the hardware
cursor. More fundamentally, it appears that syscons(4) assumes that
either a host is PC-like (i386, amd64) *or* it must be using a
graphical frame buffer. While the MTL supports a graphical frame
buffer, using the text frame buffer is preferable for console use.
Fixing this issue in syscons(4) requires non-trivial changes, as the
text frame buffer support assumes that direct memory access can be
done to the text frame buffer without using bus accessor methods,
which is not the case on MIPS. As a workaround for this, we instead
double-buffer and pretend to be a graphical frame buffer exposing
text accessor methods, leading to some quirks in syscons behaviour.
Sponsored by: DARPA, AFRL
The driver attempts to support all documented parts, but has only been
tested with the 512Mbit part on the Terasic DE4 FPGA board. It should be
trivial to adapt the driver's attach routine to other embedded boards
using with any parts in the family.
Also import isfctl(8) which can be used to erase sections of the flash.
Sponsored by: DARPA, AFRL
which presents a UART-like interface over the Avalon bus that can be
addressed over JTAG. This IP core proves extremely useful, allowing us to
connect trivially to the FreeBSD console over JTAG for FPGA-embedded hard
and soft cores. As interrupts are optionally configured for this soft
core, we support both interrupt-driven and polled modes of operation,
which must be selected using device.hints. UART instances appear in /dev
as ttyu0, ttyu1, etc.
However, it also contains a number of quirks, which make it difficult to
tell when JTAG is connected, and some buffering issues. We work around
these as best we can, using various heuristics.
While the majority of this device driver is not only not BERI-specific,
but also not MIPS-specific, for now add its defines in the BERI files
list, as the console-level parts are aware of where the first JTAG UART
is mapped on Avalon, and contain MIPS-specific address translation, to
use before Newbus and device.hints are available.
Sponsored by: DARPA, AFRL
which can be synthesised in Altera FPGAs. An altera_sdcardc device
probes during the boot, and /dev/altera_sdcard devices come and go as
inserted and removed. The device driver attaches directly to the
Nexus, as is common for system-on-chip device drivers.
This IP core suffers a number of significant limitations, including a
lack of interrupt-driven I/O -- we must implement timer-driven polling,
only CSD 0 cards (up to 2G) are supported, there are serious memory
access issues that require the driver to verify writes to memory-mapped
buffers, undocumented alignment requirements, and erroneous error
returns. The driver must therefore work quite hard, despite a fairly
simple hardware-software interface. The IP core also supports at most
one outstanding I/O at a time, so is not a speed demon.
However, with the above workarounds, and subject to performance
problems, it works quite reliably in practice, and we can use it for
read-write mounts of root file systems, etc.
Sponsored by: DARPA, AFRL
CPU cores on Altera FPGAs. The device driver allows memory-mapped devices
on Altera's Avalon SoC bus to be exported to userspace via device nodes.
device.hints directories dictate device name, permissible access methods,
physical address and length, and I/O alignment. Devices can be accessed
using read(2)/write(2), but also memory mapped in userspace using mmap(2).
Devices attach directly to the Nexus, as is common for embedded device
drivers; in the future something more mature might be desirable. There is
currently no facility to support directing device-originated interrupts to
userspace.
In the future, this device driver may be renamed to socgen(4), as it can
in principle also be used with other system-on-chip (SoC) busses, such as
Axi on ASICs and FPGAs. However, we have only tested it on Avalon busses
with memory-mapped ROMs, frame buffers, etc.
Sponsored by: DARPA, AFRL
on PowerPC support. This was clearly not something syscons was
designed to do (very specific assumptions about the nature of VGA
consoles on PCs), but fortunately others have long since blazed
the way on making it work regardless of that.
Sponsored by: DARPA, AFRL
relative priority of the gxemul console in line with its role as a
"seiral console". This allows it to override video console drivers
that might otherwise take precdence, subject to that boot flag.
Sponsored by: DARPA, AFRL
This ensures that any ccbs which immediately start during the call to
xpt_release_devq see an accurate picture of the frozen_lun_mask.
Sponsored by: Intel
MFC after: 3 days
DFS parameters fetched from the HAL.
Check whether the specific chipset supports RADAR reporting before
enabling DFS; or some of the (unset) DFS methods may fail.
Tested:
* AR5210 (correctly didn't enable radar PHY reporting)
* AR5212 (correctly enabled radar PHY reporting w/ the correct default
parameters.)
TODO:
* Now that I have this capability check in place, I could remove the
(empty) DFS methods from AR5210/AR5211.
* Test on AR5416, AR9160, AR9280.
PR: kern/170904
* mfp support;
* 4.9ghz support in the HAL;
* device type - specifically, the bus type and whether it's a HB63
NIC (which requires some subtle chainmask handling differences
in the AR5416 HAL.)
Obtained from: Qualcomm Atheros
Report errors indicated by the transport. If this is too chatty, I'll
throw it behind a debug write.
Remove commented out debugs that are no longer useful.
This addresses kernel panic observed when sending SCSI UNMAP
commands to SATA disks attached to isci(4).
1) Flesh out callback routines to allocate/free buffers needed for
translating SCSI UNMAP data to ATA DSM data.
2) Add controller-level pool for storing buffers previously allocated
for UNMAP translation, to lessen chance of no buffer available
under memory pressure.
3) Ensure driver properly handles case where buffer pool is empty
and contigmalloc returns NULL.
Sponsored by: Intel
Reported by: Maksim Yevmenkin <max at netflix dot com>
Discussed with: scottl
MFC after: 3 days
evicted from the syncache but a later syncache_expand succeeds because
of syncookies. The TOE driver has to resort to more direct means to
install its hooks in the socket in this case.
the TOE driver reports that an active open failed. toe_connect_failed is
supposed to handle this but it should be provided the inpcb instead of the
tcpcb which may no longer be around.
Note: This is totally sub-optimal and a work in progress.
* Support filling an empty FIFO TXQ with frames from the ath_buf queue
in the ath_txq list. However, since there's (currently) no clean, easy
way to separate the frames that are in the FIFO versus just waiting,
the code waits for the FIFO to be totally empty before it attempts to
queue more. This is highly sub-optimal but is enough to get the ball
rolling.
* A _lot_ of the code assumes that the TX status is filled out in the
struct ath_buf bf_status field. So for now, memcpy() the completion over.
* None of the TX drain / reset routines will attempt to complete completed
frames before draining, so it can't be used for 802.11n TX aggregation.
(This won't work anyway, as the aggregation TX descriptor API hasn't
yet been converted; and that'll happen in some future commits.)
* Fix an issue where the FIFO counter wasn't being incremented, leading
to the queue logic just plain not working.
* HAL_EIO means "descriptor wasn't valid", versus "not finished, don't
continue." So don't stop processing descriptors when HAL_EIO is hit.
* Don't service frame completion from the beacon queue. It isn't currently
fully setup like a real queue and the first attempt at accessing the
queue lock will panic the kernel.
Tested:
* AR9380, STA mode
This commit is brought to you by said AR9380 in STA mode.
sizeof(struct ath_desc). This isn't correct for EDMA TX descriptors.
This popped up during iperf tests. Ping tests never created frames that
had enough segments to overflow into a second descriptor. However,
an iperf TCP test would do that after a few seconds; the second descriptor
would almost always certainly have garbage.
Tested:
* AR9380, STA mode
* AR9280, STA mode (802.11n TX, legacy TX)
EDMA code.
* create a new TX EDMA descriptor struct to represent TX EDMA descriptors
when doing debugging;
* implement an EDMA printing function which:
+ hardcodes the TX map size to 4 for now;
+ correctly prints out the number of segments - there's one descriptor
for up to 4 buffers (segments), not one for each segment;
+ print out 4 DS buffer and len pointers;
+ print out the correct number of DWORDs in the TX descriptor.
TODO:
* Remove all of the hard-coded stuff. Ew.
is marked correctly.
The existing logic assumed that the first descriptor is i == 0, which
doesn't hold for EDMA TX. In this instance, the first time filltxdesc()
is called can be up to i == 3.
So for a two-buffer descriptor:
* firstSeg is set to 0;
* lastSeg is set to 1;
* the ath_hal_filltxdesc() code will treat it as the last segment in
a descriptor chain and blank some of the descriptor fields, causing
the TX to stop.
When firstSeg is set to 1 (regardless of lastSeg), it overrides the
lastSeg setting. Thus, ath_hal_filltxdesc() won't blank out these
fields.
Tested: AR9380, STA mode. With this, association is successful.
Basically, this is automatic rx zero copy when feasible. TCP payload is
DMA'd directly into the userspace buffer described by the uio submitted
in soreceive by an application.
- Works with sockets that are being handled by the TCP offload engine
of a T4 chip (you need t4_tom.ko module loaded after cxgbe, and an
"ifconfig +toe" on the cxgbe interface).
- Does not require any modification to the application.
- Not enabled by default. Use hw.t4nex.<X>.toe.ddp="1" to enable it.
- Setup multiple DDP page sizes. When the driver attempts DDP it will
try to combine physically contiguous pages into regions of these sizes.
- Set the indicate size such that the payload carried in the indicate can
be copied in the header mbuf (and the 16K rx buffer can be recycled).
- Set DDP threshold to the max payload that the chip will coalesce and
deliver to the driver (this is ~16K by default, which is also why the
offload rx queue is backed by 16K buffers). If the chip is able to
coalesce up to the max it's allowed to, it's a good sign that the peer
is transmitting in bulk without any TCP PSH.
MFC after: 2 weeks
TCB. Filters are programmed by modifying the TCB too (via a different
routine) and the reply to any TCB update is delivered via a
CPL_SET_TCB_RPL. Figure out whether the reply is for a filter-write or
something else and route it appropriately.
MFC after: 2 weeks
"m_getjcl:invalid cluster type" that occurred some
time back with the igb driver. This happens often when
booting over the net. I believe the NIC hardware is left
in a warm state when handed over to the driver, and a stray
RX interrupt happens earlier than the code is prepared for
it to happen. This change was verified to fix the problem,
its kind of a bandaid... but it is similar to what was done
in the igb code.
1) It is not useful to call "devfs_clear_cdevpriv()" from
"d_close" callbacks, hence for example read, write, ioctl and
so on might be sleeping at the time of "d_close" being called
and then then freed private data can still be accessed.
Examples: dtrace, linux_compat, ksyms (all fixed by this patch)
2) In sys/dev/drm* there are some cases in which memory will
be freed twice, if open fails, first by code in the open
routine, secondly by the cdevpriv destructor. Move registration
of the cdevpriv to the end of the drm open routines.
3) devfs_clear_cdevpriv() is not called if the "d_open" callback
registered cdevpriv data and the "d_open" callback function
returned an error. Fix this.
Discussed with: phk
MFC after: 2 weeks
"device_free_softc()" and "device_claim_softc()",
to allow USB serial drivers refcounting the softc.
These functions are used to grab the softc from
auto-free and to free the softc back to the correct
malloc type, respectivly.
Discussed with: jhb
MFC after: 2 weeks
* the descriptor ID, and
* the multi-buffer support that the EDMA chips support.
This is required for successful MAC transmission of multi-descriptor
frames. The MAC simply hangs if there are NULL buffers + 0 length pointers,
but the descriptor did have TxMore set.
This won't be done for the 11n aggregate path, as that will be modified
to use the newer API (ie, ath_hal_filltxdesc() and then set first|middle|
last_aggr), which will deprecate some of the current code.
TODO:
* Populate the numTxMaps field in the HAL, then make sure that's fetched
by the driver. Then I can undo that hack.
Tested:
* AR9380, AP mode, TX'ing non-aggregate 802.11n frames;
* AR9280, STA/AP mode, doing aggregate and non-aggregate traffic.
This is required to support > MCS15 as more than 32 bit rate entries are
suddenly available.
This is quite messy - instead of doing typecasts at each mask operation,
this should be migrated to use a macro and have that do the typecast.
r233822:
Remove useless and wrong piece of code in fdt_get_range() which i
overwrites passed phandle_t node. Modify debug printf in fdt_reg_to_rl()
to be consistent (that is, print start and end *virtual* addresses).
r230560:
Handle "ranges;"
Make fdt_reg_to_rl() responsible for mapping the device memory, instead
on just hoping that there's only one simplebus, and using fdt_immr_va as
the base VA.
r230315
Add a function to get the PA from range, instead of (ab)using
fdt_immr_pa, and use it for the UART driver
interface's MTU. Initialize such freelists with correct values.
This wasn't a problem for common MTUs (1500 and 9000) as the buffers (2048
and 9216 in size) happened to have enough spare room. I ran into it when
playing around with unusual MTUs.
MFC after: 2 weeks
re-used by the upcoming EDMA TX completion code.
Make ath_stoptxdma() public, again so the EDMA TX code can use it.
Don't check for the TXQ bitmap in the ISR when doing EDMA work as it
doesn't apply for EDMA.
make maintaining this driver from the documentation easier in the future.
This is a mostly mechanical change.
In uslcom_param(), move the zeroing of the final two fields of the
flowctrl structure outside of the "if CRTSCTS" section - not only were
they being zeroed in both the clauses, but these two fields have nothing
to do with hardware flow control anyway.
values).
- cong_drop specifies what to do on congestion: nothing, backpressure,
or drop.
- fl_pktshift specifies the padding before Ethernet payload.
- fl_pad specifies the boundary upto which to pad Ethernet payload.
- spg_len controls the length of the status page.
MFC after: 2 weeks
- Add per-controller configuration (sx) and I/O (mutex) locks. The
configuration lock protects the relationship of volumes and drives
while the I/O lock protects access to the controller's registers and
the main I/O path.
- Remove some checks for M_WAITOK malloc()'s failing.
- Remove the explicit bus space tag/handle from the softc and use
bus_*() rather than bus_space_*().
- Reuse the existing new-bus sysctl context instead of creating a
new one.
- Remove compat shims for FreeBSD 4.x.
- Use pci_enable_busmaster() rather than doing it by hand, and rely
on bus_alloc_resource() to enable PCI I/O decoding.
Tested by: Mike Tancsa mike sentex net
Reviewed by: scottl (partially)
MFC after: 1 month
in SUPER-speed mode, USB 3.0.
This feature has not been tested yet, due to lack of hardware.
This feature is useful when implementing protocols like UASP,
USB attached SCSI which promises higher USB mass storage throughput.
This patch also implements support for hardware processing of endpoints
for increased performance. The switching to hardware processing
of an endpoint is done via a callback to the USB controller driver. The
stream feature is implemented like a variant of a hardware USB protocol.
USB controller drivers implementing device mode needs to be updated to
implement the new "xfer_stall" USB controller method and remove the
"xfer" argument from the "set_stall" method.
The API's toward existing USB drivers are preserved. To setup a USB transfer
in stream mode, set the "stream_id" field of the USB config structure to
the desired value.
The maximum number of BULK streams is currently hardcoded and limited to 8
via a define in usb_freebsd.h.
All USB drivers should be re-compiled after this change.
LibUSB will be updated next week to support streams mode. A new IOCTL to
setup BULK streams as already been implemented. The ugen device nodes
currently only supports stream ID zero.
The FreeBSD version has been bumped.
MFC after: 2 weeks
necessary to "do" EDMA.
It was just using the TX completion status for logging information about
the descriptor completion. Since with EDMA we don't know this without
checking the TX completion FIFO, we can't provide this information.
So don't.
Now that I understand what's going on with this, I've realised that
it's going to be quite difficult to implement a processq method in
the EDMA case. Because there's a separate TX status FIFO, I can't
just run processq() on each EDMA TXQ to see what's finished.
i have to actually run the TX status queue and handle individual
TXQs.
So:
* unmethodize ath_tx_processq();
* leave ath_tx_draintxq() as a method, as it only uses the completion status
for debugging rather than actively completing the frames (ie, all frames
here are failed);
* Methodize ath_draintxq().
The EDMA ath_draintxq() will have to take care of running the TX
completion FIFO before (potentially) freeing frames in the queue.
The only two places where ath_tx_draintxq() (on a single TXQ) are used:
* ath_draintxq(); and
* the CABQ handling in the beacon setup code - it drains the CABQ before
populating the CABQ with frames for a new beacon (when doing multi-VAP
operation.)
So it's quite possible that once I methodize the CABQ and beacon handling,
I can just drop ath_tx_draintxq() in its entirety.
Finally, it's also quite possible that I can remove ath_tx_draintxq()
in the future and just "teach" it to not check the status when doing
EDMA.
EDMA HAL hardware.
* The EDMA HAL code assumes the nexttbtt and intval values are in TU/8
units, rather than TU. For now, just "hack" around that here, at least
until I code up something to translate it in the HAL.
* Setup some different TXQ flags for EDMA hardware.
* The EDMA HAL doesn't support setting the first rate series via
ath_hal_setuptxdesc() - instead, a call to ath_hal_set11nratescenario()
is always required. So for now, just do an 11n rate series setup
for EDMA beacon frames.
This allows my AR9380 to successfully transmit beacon frames.
However, CABQ TX and all normal data frame TX and TX completion is
still not functional and will require some more significant code churn
to make work.
I was having TX hang issues, which I root caused to having the
legacy ath_hal_setupxtxdesc() called, rather than the 11n rate scenario
setup code. This meant that rate control information wasn't being
put into frames, causing the MAC to stall/hang.
* Add ATH_TXQ_FIRST() for easy tasting of what's on the list;
* Add an "axq_fifo_depth" for easy tracking of how deep the current
FIFO is;
* Flesh out the handoff (mcast, hw) functions;
* Begin fleshing out a TX ISR proc, which tastes the TX status FIFO.
The legacy hardware stuffs the TX completion at the end of the final frame
descriptor (or final sub-frame when doing aggregate.) So it's feasible
to do a per-TXQ drain and process, as the needed info is right there.
For EDMA hardware, there's a separate TX completion FIFO. So the TX
process routine needs to read the single FIFO and then process the
frames in each hardware queue.
This makes it difficult to do a per-queue process, as you'll end up with
frames in the TX completion FIFO for a different TXQ to the one you've
passed to ath_tx_draintxq() or ath_tx_processq().
Testing:
I've tested the TX queue and TX completion code in hostap mode on an
AR9380. Beacon frames successfully transmit and the completion routine
is called. Occasional data frames end up in TXQ 1 and are also
successfully completed.
However, this requires some changes to the beacon code path as:
* The AR9380 beacon configuration API is now in TU/8, rather than
TU;
* The AR9380 TX API requires the rate control is setup using a call
to setup11nratescenario, rather than having the try0 series setup
(rate/tries for the first series); so the beacon won't go out.
I'll follow this up with commits to the beacon code.
the device_detach() function doesn't block on UCOM device
drivers until the TTY handle is closed by the userspace
application. This is implemented by a postpone of the
softc free where the UCOM structures reside until the
TTY references are gone.
Discussed with: kib, ed
MFC after: 2 weeks
Extend the callback table of UCOM to include a
"ucom_free" function pointer which is called when
all refs on a UCOM super structure is gone.
Implement various helper functions to handle
refcounting and draining on the UCOM super
structure.
Implement macro which can be used in device
drivers to avoid module unload before all
pending TTY references are gone.
The UCOM API is backwards compatible after this
change and device drivers require no changes
to function with this change. Only a recompilation
of UCOM device drivers is required. The FreeBSD
version has been bumped in that regard.
Discussed with: kib, ed
MFC after: 2 weeks
- Move destruction of per-ring locks to netmap_dtor_locked to mirror the
initialization that happens in NIOCREGIF. Otherwise unloading a netmap-
capable interface that was never put into netmap mode would try to
mtx_destroy an uninitialized mutex, and panic.
- Destroy core_lock in netmap_detach, mirroring init in netmap_attach.
- Also comment out the knlist_destroy for now as there is currently no
knlist_init.
Sponsored by: ADARA Networks
Reviewed by: luigi@
CCB at a time outstanding reliable. It's not there yet, but this
is the direction to go in so might as well commit. So far,
multiple at a time CCBs work (see ISP_INTERNAL_TARGET test mode),
but it fails if there are more downstream than the SIM wants
to handle and SRR is sort of confused when this happens, plus
it is not entirely quite clear what one does if a CCB/CTIO fails
and you have more in flight (that don't fail, say) and more queued
up at the SIM level that haven't been started yet.
Some of this is driven because there apparently is no flow control
to requeue XPT_CONTINUE_IO requests like there are for XPT_SCSI_IO
requests. It is also more driven in that the few target mode
periph drivers there are are not really set up for handling pushback-
heck most of them don't even check for errors (and what would they
really do with them anyway? It's the initiator's problem, really....).
The data transfer arithmetic has been worked over again to handle
multiple outstanding commands, so you have a notion of what's been
moved already as well as what's currently in flight. It turns that
this led to uncovering a REPORT_LUNS bug in the ISP_INTERNAL_TARGET
code which was sending back 24 bytes of rpl data instead of the
specified 16. What happened furthermore here is that sending back
16 bytes and reporting an overrun of 8 bytes made the initiator
(running FC-Tape aware f/w) mad enough to request, and keep
requesting, another FCP response (I guess it didn't like the answer
so kept asking for it again).
Sponsored by: Spectralogic
MFC after: 1 month
Starting or stopping the IPMI watchdog is rather expensive with the
current implementation as all IPMI requests are bounced via thread.
This is not viable during shutdown or dumps, and this avoids headache
in the common case that the watchdog is not enabled. The IPMI watchdog
should probably be reworked to not use a separate thread to fix this
in the case when the watchdog timer is enabled.
MFC after: 2 weeks
packet delivery, always enqueue when possible. Also
correct the DEPLETED test as multiple bits might be
set. Thanks to Randall Stewart for the changes!
on the secondary side of a bridge will not be propagated to the primary
bus unless this is enabled. Busmastering is not enabled by default (we
have relied on firmware to set this bit to date). The OS needs to set it
for any bridges not configured by system firmware.
Tested by: Steve Polyack korvus comcast net
MFC after: 2 weeks
'fw_hdr_intfver' into an anonymous enum, which avoids a clang 3.2
warning about all the enum values being the same value.
Reviewed by: np
MFC after: 1 week
When issuing a non-DMA command, make sure to set the "remaining length of
command to be transferred via DMA" (sc_cmdlen) to zero up-front, otherwise
we might get confused on command competition interrupt (no DMA active but
still data left to transfer).
- Implement handling of MSG_IGN_WIDE_RESIDUE which some targets produce, as
just rejecting these leads to a resend and disconnect loop.
Reported and tested by: mjacob
MFC after: 3 days
to pull vm_param.h was removed. Other big dependency of vm_page.h on
vm_param.h are PA_LOCK* definitions, which are only needed for
in-kernel code, because modules use KBI-safe functions to lock the
pages.
Stop including vm_param.h into vm_page.h. Include vm_param.h
explicitely for the kernel code which needs it.
Suggested and reviewed by: alc
MFC after: 2 weeks
that the wrong UART reference clock will be used for a few of the IDs.
It is currently not possible to figure that out because the Linux FTDI
driver detects this run-time and not compile time based on the bcdDevice
field of the USB device descriptor. Some of the ID's in usbdevs are not
sorted according to the product ID value. Please feel free to fix this.
I'm out of my xemacs magic today.
This syncronises us with the linux kernel at kernel.org (HEAD).
MFC after: 2 weeks
array, similar to what filltxdesc() uses.
This removes the last reference to ds_data in the TX path outside of
debugging statements. These need to be adjusted/fixed.
Tested:
* AR9280 STA/AP with iperf TCP traffic
The existing API only exposes 'seglen' (the current buffer (segment) length)
with the data buffer pointer set in 'ds_data'. This is fine for the legacy
DMA engine but it won't work for the EDMA engines.
The EDMA engine has a significantly different TX descriptor layout.
* The legacy DMA engine had a ds_data pointer at the same offset in the
descriptor for both TX and RX buffers;
* The EDMA engine has no ds_data for RX - the data is DMAed after the
descriptor;
* The EDMA engine has support for 4 TX buffer/segment pairs in the TX
DMA descriptor;
* The EDMA TX completion is in a different FIFO, and the driver will
'link' the status completion entry to a QCU by a "QCU ID".
I don't know why it's just not filled in by the hardware, alas.
So given that, here are the changes:
* Instead of directly fondling 'ds_data' in ath_desc, change the
ath_hal_filltxdesc() to take an array of buffer pointers as well
as segment len pointers;
* The EDMA TX completion status wants a descriptor and queue id.
This (for now) uses bf_state.bfs_txq and will extract the hardware QCU
ID from that.
* .. and this is ugly and wasteful; it should change to just store
the QCU in the bf_state and save 3/7 bytes in the process.
Now, the weird crap:
* The aggregate TX path was using bf_state->bfs_txq for the TXQ, rather than
taking a function argument. I've tidied that up.
* The multicast queue frames get put on a software TXQ and then that is
appended to the hardware CABQ when appropriate. So for now, make sure
that bf_state->bfs_txq points at the CABQ when adding frames to the
multicast queue.
* .. but the multicast queue TX path for now doesn't use the software
queue and instead
(a) directly sets up the descriptor contents at that point;
(b) the frames on the vap->avp_mcastq are then just appended wholesale
to the CABQ.
So for now, I don't have to worry about making the multicast path
work with aggregation or the per-TID software queue. Phew.
What's left to do:
* I need to modify the 11n ath_hal_chaintxdesc() API to do the same.
I'll do that in a subsequent commit.
* Remove bf_state.bfs_txq entirely and store the QCU as appropriate.
* .. then do the runtime "is this going on the right HWQ?" checks using
that, rather than comparing pointer values.
Tested on:
* AR9280 STA/AP
* AR5416 STA/AP
Use the interface number from the USB interface descriptor
like in the other USB serial drivers. These numbers are not
supposed to be different, though in theory they can. Make sure
that the driver then uses the interface number given by the USB
descriptor, and not the logical index of the USB stack.
For the future:
Whenever the term "index" is used in the USB code, it refers to
a number computed by the USB stack.
Whenever the term "number" is used in the USB code, it refers to
a number in a USB descriptor.
MFC after: 2 weeks
support for only the first port, but the CP2105 can have multiple ports.
Although this allowed the first port to mostly work on multi port devices,
there could be issues with this arrangement.
Update the man page to reflect support for both ports and the CP2105.
Many thanks to Silicon Labs (www.silabs.com) for providing a CP2105-EK
dev board for testing.
MFC after: 2 weeks
When forming aggregates, the last descriptor was now not being
correctly setup - instead, the "setuplasttxdesc" call was being
handed the first descriptor in the last subframe, rather than the
last descriptor in the last subframe.
This showed up as "bad series0 hwrate" messages, as the final
descriptor just didn't have any of the rate control information
squirreled away.
Tested:
* AR9280 STA -> 11n AP, iperf TCP
system with sparse CPU IDs, you can have a valid CPU ID > mp_ncpus (e.g. if
you have two CPUs 0 and 4, with mp_maxid == 4 and mp_ncpus == 2).
Introduced at svn r235210
Submitted by: jhb@
Reviewed by: jfv@
- remove special handling of zero length transfers in mpi_pre_fw_upload();
- add missing MPS_CM_FLAGS_DATAIN flag in mpi_pre_fw_upload();
- move mps_user_setup_request() call into proper place;
- increase user command timeout from 30 to 60 seconds;
- avoid NULL dereference panic in case of firmware crash.
Set max DMA segment size to 24bit, as MPI SGE supports it.
Use mps_add_dmaseg() to add empty SGE instead of custom code.
Tune endianness safety.
Reviewed by: Desai, Kashyap <Kashyap.Desai@lsi.com>
Sponsored by: iXsystems, Inc.
enabled.
The legacy (pre-802.11n) hardware doesn't support this - although
the AR5212 era hardware supports MRR, it doesn't have all the bits
needed to support MRR + RTS/CTS. The AR5416 and later support
a packet duration and RTS/CTS flags per rate scenario, so we should
support it.
Tested:
* AR9280, STA
PR: kern/170302
This allows my TI1510 cardbus/PCI bridge to work after a suspend/resume,
without having to unload/reload the cbb driver.
I've also tested this on stable/9. I'll MFC it shortly.
PR: kern/170058
Reviewed by: jhb
MFC after: 1 day
code is called and remove it from ath_buf_set_rate().
For the legacy (non-11n API) TX routines, ath_hal_filltxdesc() takes care
of setting up the intermediary and final descriptors right, complete
with copying the rate control info into the final descriptor so the
rate modules can grab it.
The 11n version doesn't do this - ath_hal_chaintxdesc() doesn't
copy the rate control bits over, nor does it clear isaggr/moreaggr/
pad delimiters. So the call to setuplasttxdesc() is needed here.
So:
* legacy NICs - never call the 11n rate control stuff, so filltxdesc
copies the rate control info right;
* 11n NICs transmitting legacy or 11n non-aggregate frames -
ath_hal_set11nratescenario() is called to setup rate control and
then ath_hal_filltxdesc() chains them together - so the rate control
info is right;
* 11n aggregate frames - set11nratescenario() is called, then
ath_hal_chaintxdesc() is called to chain a list of aggregate and subframes
together. This requires a call to ath_hal_setuplasttxdesc() to complete
things.
Tested:
* AR9280 in station mode
TODO:
* I really should make sure that the descriptor contents get blanked
out correctly or garbage left over from aggregate frames may show
up in non-aggregate frames, leading to badness.
functions, for both legacy and 802.11n.
This will simplify supporting the EDMA chipsets as these two descriptor
setup functions can just be overridden in their entirety, hiding all of
the subtle differences in setting things up.
It's not a permanent solution, as eventually the AR5416 HAL should grow
similar versions of the 11n descriptor functions and then those can be
used.
TODO:
* Push the "clr11naggr" call into the legacy setds, just to ensure
that retried frames don't end up with the aggregate bits set
inappropriately;
* Remove the "setlasttxdesc" call from the 11n TX path and push it
into setds_11n.
* Ensure that setds_11n will work correctly for non-aggregate frames;
* .. and then when it does, just unconditionally call "setds_11n" for
11n NICs and "setds" for non-11n NICs.
For C1 and C2 states use cpu_ticks() to measure sleep time instead of much
slower ACPI timer. We can't do it for C3, as TSC may stop there. But it is
less important there as wake up latency is high any way.
For C1 and C2 states do not check/clear bus mastering activity status, as
it is important only for C3. As side effect it can make CPU enter C2 instead
of C3 if last BM activity was two sleeps back (unlike one before), but
that may be even good because of collecting more statistics. Premature BM
wakeup from C3, entered because of overestimation, can easily be worse then
entering C2 from both performance and power consumption points of view.
Together on dual Xeon E5645 system on sequential 512 bytes read test this
change makes cpu_idle_acpi() as fast as simplest cpu_idle_hlt() and only
few percents slower then cpu_idle_mwait(), while deeper states are still
actively used during idle periods.
To help with diagnostics, add C-state type into dev.cpu.X.cx_supported.
Sponsored by: iXsystems, Inc.
* Changed KASSERT to be debug printf (DWTAP_PRINTF). If state is not
IEEE80211_S_RUN we return without scheduling a new callout;
* When net80211 stack changes state to IEEE802_11_INIT we stop the
beacon callout task;
These (and a few others) will differ based on the underlying DMA
implementation.
For the EDMA NICs, simply stub them out in a fashion which will let
me focus on implementing the necessary descriptor API changes.
a tinderbox myself and caught the error.
Change to isp_send_cmd needs a final ecmd argument.
Sponsored by: Spectralogic
MFC after: 1 month
X-MFC: 238869
The correct ordering for non-aggregate TX is:
* call ath_hal_setuptxdesc() to setup the first TX descriptor complete
with the first TX rate/try count;
* call ath_hal_setupxtxdesc() to setup the multi-rate retry;
* .. or for 802.11n NICs, call ath_hal_set11nratescenario() for MRR and
802.11n flags;
* then call ath_hal_filltxdesc() to setup intermediary descriptors
in a multi-descriptor single frame.
The call to ath_hal_filltxdesc() routines seem to correctly (consistently?)
handle the intermediary descriptor flags, including copying the rate
control information to the final descriptor in the frame. That's used
by the rate control module rather than the hardware.
Tested:
* Only on AR9280 STA mode, however it should work on other chips in
both STA and AP mode.
wrapping.
The previous code was only wrapping descriptor "block" boundaries rather
than individual descriptors. It sounds equivalent but it isn't.
r238824 changed the descriptor allocation to enforce that an individual
descriptor doesn't wrap a 4KiB boundary rather than the whole block
of descriptors. Eg, for TX descriptors, they're allocated in blocks
of 10 descriptors for each ath_buf (for scatter/gather DMA.)
MISC CHANGES
Add a new async event- ISP_TARGET_NOTIFY_ACK, that will guarantee
eventual delivery of a NOTIFY ACK. This is tons better than just
ignoring the return from isp_notify_ack and hoping for the best.
Clean up the lower level lun enable code to be a bit more sensible.
Fix a botch in isp_endcmd which was messing up the sense data.
Fix notify ack for SRR to use a sensible error code in the case
of a reject.
Clean up and make clear what kind of firmware we've loaded and
what capabilities it has.
-----------
FULL (252 byte) SENSE DATA
In CTIOs for the ISP, there's only a limimted amount of space
to load SENSE DATA for associated CHECK CONDITIONS (24 or 26
bytes). This makes it difficult to send full SENSE DATA that can
be up to 252 bytes.
Implement MODE 2 responses which have us build the FCP Response
in system memory which the ISP will put onto the wire directly.
On the initiator side, the same problem occurs in that a command
status response only has a limited amount of space for SENSE DATA.
This data is supplemented by status continuation responses that
the ISP pushes onto the response queue after the status response.
We now pull them all together so that full sense data can be
returned to the periph driver.
This is supported on 23XX, 24XX and 25XX cards.
This is also preparation for doing >16 byte CDBs.
-----------
FC TAPE
Implement full FC-TAPE on both initiator and target mode side. This
capability is driven by firmware loaded, board type, board NVRAM
settings, or hint configuration options to enable or disable. This
is supported for 23XX, 24XX and 25XX cards.
On the initiator side, we pretty much just have to generate a command
reference number for each command we send out. This is FCP-4 compliant
in that we do this per ITL nexus to generate the allowed 1 thru 255
CRN.
In order to support the target side of FC-TAPE, we now pay attention
to more of the PRLI word 3 parameters which will tell us whether
an initiator wants confirmed responses. While we're at it, we'll
pay attention to the initiator view too and report it.
On sending back CTIOs, we will notice whether the initiator wants
confirmed responses and we'll set up flags to do so.
If a response or data frame is lost the initiator sends us an SRR
(Sequence Retransmit Request) ELS which shows up as an SRR notify
and all outstanding CTIOs are nuked with SRR Received status. The
SRR notify contains the offset that the initiator wants us to restart
the data transfer from or to retransmit the response frame.
If the ISP driver still has the CCB around for which the data segment
or response applies, it will retransmit.
However, we typically don't know about a lost data frame until we
send the FCP Response and the initiator totes up counters for data
moved and notices missing segments. In this case we've already
completed the data CCBs already and sent themn back up to the periph
driver. Because there's no really clean mechanism yet in CAM to
handle this, a hack has been put into place to complete the CTIO
CCB with the CAM_MESSAGE_RECV status which will have a MODIFY DATA
POINTER extended message in it. The internal ISP target groks this
and ctl(8) will be modified to deal with this as well.
At any rate, the data is retransmitted and an an FCP response is
sent. The whole point here is to successfully complete a command
so that you don't have to depend on ULP (SCSI) to have to recover,
which in the case of tape is not really possible (hence the name
FC-TAPE).
Sponsored by: Spectralogic
MFC after: 1 month
The existing method for testing for MRR is to call the "SetupXTXDesc"
HAL method and see if it returns AH_TRUE or AH_FALSE. This capability
explicitly lists what number of multi-rate attempts are possible.
"1" means "one rate attempt supported".
* shuffle things around so things fall on natural padding boundaries;
* add a couple of new flags to specify LDPC and whether to switch to the
low power RX chain configuration after this TX has completed.
Obtained from: Qualcomm Atheros
Specifically, however:
* AR9280 and later support 1-stream STBC RX;
* AR9280 and AR9287 support 1-stream STBC TX.
The STBC support isn't announced (yet) via net80211 and it isn't at all
chosen by the rate control code, so there's no real consumer of this
yet.
Obtained from: Qualcomm Atheros
(future) TPC support in the AR9300 HAL.
This is effectively a no-op for the moment as (a) TPC isn't really
supported, (b) the AR9300 HAL isn't yet public, and (c) the existing
HAL code doesn't use these fields.
Obtained from: Qualcomm Atheros
buffers.
ath_descdma is now being used for things other than the classical
combination of ath_buf + ath_desc allocations. In this particular case,
don't try to free and blank out the ath_buf list if it's not passed in.
of buffers, only the number of descriptors.
This involves:
* Change the allocation function to not use nbuf at all;
* When calling it, pass in "nbuf * ndesc" to correctly update how many
descriptors are being allocated.
Whilst here, fix the descriptor allocation code to correctly allocate
a larger buffer size if the Merlin 4KB WAR is required. It overallocates
descriptors when allocating a block that doesn't ever have a 4KB boundary
being crossed, but that can be fixed at a later stage.
http://info.iet.unipi.it/~luigi/vale/
VALE lets you dynamically instantiate multiple software bridges
that talk the netmap API (and are *extremely* fast), so you can test
netmap applications without the need for high end hardware.
This is particularly useful as I am completing a netmap-aware
version of ipfw, and VALE provides an excellent testing platform.
Also, I also have netmap backends for qemu mostly ready for commit
to the port, and this too will let you interconnect virtual machines
at high speed without fiddling with bridges, tap or other slow solutions.
The API for applications is unchanged, so you can use the code
in tools/tools/netmap (which i will update soon) on the VALE ports.
This commit also syncs the code with the one in my internal repository,
so you will see some conditional code for other platforms.
The code should run mostly unmodified on stable/9 so people interested
in trying it can just copy sys/dev/netmap/ and sys/net/netmap*.h
from HEAD
VALE is joint work with my colleague Giuseppe Lettieri, and
is partly supported by the EU Projects CHANGE and OPENLAB