other comments. Clarify that the next two things needed for SMP are
two lines.
- Expand mii abbreviation to miibus for clarity in the USB ethernet
comment.
system from an AP at runtime (i.e., calling cpu_reset from ddb). Someday,
if we move to an NMI for stopping cpus instead, we can do away with this.
Requested by: jhb
though these aren't used yet.
- Add missing function prototypes for some static functions.
- Allow lvt_mode() to handle an LVT entry with a delivery mode of fixed.
- Consolidate code duplicated in lapic_init() and lapic_setup() to program
the spurious vector register of a local APIC in a static lapic_enable()
function.
- Dump the timer, thermal, error, and performance counter LVT entries
during lapic_dump().
- Program LVT pins (currently only LINT0 and LINT1) after the local
APIC has been software enabled via lapic_enable() since otherwise the
LVT programming will not be able to unmask LVT sources.
on entry and it assumes the responsibility for releasing the page queues
lock if it must sleep.
Remove a bogus comment from pmap_enter_quick().
Using the first change, modify vm_map_pmap_enter() so that the page queues
lock is acquired and released once, rather than each time that a page
is mapped.
Currently this is only used to initiailize the TPR to 0 during initial
setup.
- Reallocate vectors for the local APIC timer, error, and thermal LVT
entries. The timer entry is allocated from the top of the I/O interrupt
range reducing the number of vectors available for hardware interrupts
to 191. Linux happens to use the same exact vector for its timer
interrupt as well. If the timer vector shared the same priority queue
as the IPI handlers, then the frequency that the timer vector will
eventually be firing at can interact badly with the IPIs resulting in
the queue filling and the dreaded IPI stuck panics, hence it being located
at the top of the previous priority queue instead.
- Fixup various minor nits in comments.
In such cases, the busying of the page and the unlocking of the
containing object by vm_map_pmap_enter() and vm_fault_prefault() is
unnecessary overhead. To eliminate this overhead, this change
modifies pmap_enter_quick() so that it expects the object to be locked
on entry and it assumes the responsibility for busying the page and
unlocking the object if it must sleep. Note: alpha, amd64, i386 and
ia64 are the only implementations optimized by this change; arm,
powerpc, and sparc64 still conservatively busy the page and unlock the
object within every pmap_enter_quick() call.
Additionally, this change is the first case where we synchronize
access to the page's PG_BUSY flag and busy field using the containing
object's lock rather than the global page queues lock. (Modifications
to the page's PG_BUSY flag and busy field have asserted both locks for
several weeks, enabling an incremental transition.)
the ISA and CBUS (called isa on pc98) attachments. Eliminate all PC98
ifdefs in the process (the driver in pc98/pc98/mse.c was a copy of the one
in i386/isa/mse.c with PC98 ifdefs). Create a module for this driver.
I've tested this my PC-9821RaS40 with moused. I've not tested this on i386
because I have no InPort cards, or similar such things. NEC standardized
on bus mice very early, long before ps/2 mice ports apeared, so all PC-98
machines supported by FreeBSD/pc98 have bus mice, I believe.
Reviewed by: nyan-san
between object code generated without the flag but it makes sense and might
make a difference in the future.
PR: kern/53008
Submitted by: Jens Rehsack rehsack at liwing de
stepped the process to the system call), we need to clear the trap flag
from the new frame unless the debugger had set PF_FORK on the parent.
Otherwise, the child will receive a (likely unexpected) SIGTRAP when it
executes the first instruction after returning to userland.
Reviewed by: bde
MFC after: 3 days
as this may cause deadlocks.
This should fix kern/72123.
Discussed with: jhb
Tested by: Nik Azim Azam, Andy Farkas, Flack Man, Aykut KARA
Izzet BESKARDES, Jens Binnewies, Karl Keusgen
Approved by: sam (mentor)
These devices should be probed first because they are at fixed
locations and cannot be turned off. ISA PNP devices, on the other
hand, can be turned off and often can be flexible in the resources
they use. Probe them last, as always.
actually is a property of the northbridge and applies to all PCI/PCI-X/PCIe
devices in the system, though only PCIe devices will respond to registers
higher than 256. This uses per-CPU pools of temporary mappings so that
the whole 256MB of configuration space doesn't have to be mapped all at
once. While the sf_buf API was considered for this, the fact that it
requires sleep locks and can return failure made it unsuitable for this use.
For now only the Intel Grantsdale and Lindenhurst (925 and 752x) chipsets are
supported. Since there doesn't appear to be a compatible way to determine
northbridge support, new chipsets will have to be explicitely added in the
future.
specified register, but a pointer to the in-memory representation of
that value. The reason for this is twofold:
1. Not all registers can be represented by a register_t. In particular
FP registers fall in that category. Passing the new register value
by reference instead of by value makes this point moot.
2. When we receive a G or P packet, both are for writing a register,
the packet will have the register value in target-byte order and
in the memory representation (modulo the fact that bytes are sent
as 2 printable hexadecimal numbers of course). We only need to
decode the packet to have a pointer to the register value.
This change fixes the bug of extracting the register value of the P
packet as a hexadecimal number instead of as a bit array. The quick
(and dirty) fix to bswap the register value in gdb_cpu_setreg() as
it has been added on i386 and amd64 can therefore be removed and has
in fact been that.
Tested on: alpha, amd64, i386, ia64, sparc64
Consolidate all of the bounce tests into the BUS_DMA_COULD_BOUNCE flag.
Allocate the bounce zone at either tag creation or map creation to help
avoid null-pointer derefs later on. Track total pages per zone so that
each zone can get a minimum allocation at tag creation time instead of
being defeated by mis-behaving tags that suck up the max amount.