front-end and the LSI64854 and NCR53C9x code in case one of these
functions fails. Add detach functions to these parts and make esp(4)
detachable.
- Revert rev. 1.7 of esp_sbus.c, since rev. 1.34 of sbus.c the clockfreq
IVAR defaults to the per-child values.
- Merge ncr53c9x.c rev. 1.111 from NetBSD (partial):
On reset, clear state flags and the msgout queue.
In NetBSD code to notify the upper layer (i.e. CAM in FreeBSD) on reset
was also added with this revision. This is believed to be not necessary
in FreeBSD and was not merged.
This makes ncr53c9x.c to be in sync with NetBSD up to rev. 1.114.
- Conditionalize the LSI64854 support on sbus(4) only instead of sbus(4)
and esp(4) as it's also required for the 'dma', 'espdma' and 'ledma'
busses/devices as well as the 'SUNW,bpp' device (printer port) which
all hang off of sbus(4).
- Add a driver for the 'dma', 'espdma' and 'ledma' (pseudo-)busses/
devices. These busses and devices actually represent the LSI64854 DMA
engines for the ESP SCSI and LANCE Ethernet controllers found on the
SBus of Ultra 1 and SBus add-on cards. With 'espdma' and 'ledma' the
'esp' and 'le' devices hang off of the respective DMA bus instead of
directly from the SBus. The 'dma' devices are either also used in this
manner or on some add-on cards also as a companion device to an 'esp'
device which also hangs off directly from the SBus. With the latter
variant it's a bit tricky to glue the DMA engine to the core logic of
the respective 'esp' device. With rev. 1.35 of sbus.c we are however
guaranteed that such a 'dma' device is probed before the respective
'esp' device which simplifies things a lot. [1]
- In the esp(4) SBus front-end read the part-unique ID code of Fast-SCSI
capable chips the right way. This fixes erroneously detecting some
chips as FAS366 when in fact they are not. Add explicit checks for the
FAS100A, FAS216 and FAS236 variants instead treating all of these as
ESP200. That way we can correctly set the respective Fast-SCSI config
bits instead of driving them out of specs. This includes adding the
FAS100A and FAS236 variants to the NCR53C9x core code. We probably
still subsume some chip variants as ESP200 while in fact they are
another variant which however shouldn't really matter as this will
only happen when these chips are driven at 25MHz or less which implies
not being able to run Fast-SCSI. [3]
- Add a workaround to the NCR53C9x interrupt handler which ignores the
stray interrupt generated by FAS100A when doing path inquiry during
boot and which otherwiese would trigger a panic.
- Add support for the 'esp' devices hanging off of a 'dma' or 'espdma'
busses or which are companions of 'dma' devices to esp(4). In case of
the variants that hang off of a DMA device this is a bit hackish as
esp(4) then directly uses the softc of the respective parent to talk
to the DMA engine. It might make sense to add an interface for this
in order to implement this in a cleaner way however it's not yet clear
how the requirements for the LANCE Ethernet controllers are and the
hack works for now. [2]
This effectively adds support for the onboard SCSI controller in
Ultra 1 as well as most of the ESP-based SBus add-on cards to esp(4).
With this the code for supporting the Performance Technologies SBS430
SBus SCSI add-on cards is also largely in place the remaining bits
were however omitted as it's unclear from the NetBSD how to couple
the DMA engine and the core logic together for these cards.
Obtained from: OpenBSD [1]
Obtained from: NetBSD [2]
Clue from: BSD/OS [3]
Reviewed by: scottl (earlier version)
Tested with: FSBE/S add-on card (FAS236), SSHA add-on card (ESP100A),
Ultra 1 (onboard FAS100A), Ultra 2 (onboard FAS366)
device and which also applies to the children. This is very usefull for
drivers for the various subordinate busses so they don't need to fiddle
with the OFW node of their parent themselves. As SBus busses hang of the
nexus and we don't use the ofw_bus interface for nexus devices, yet, this
would also require special knowledge about this in the drivers for the
SBus children which these shouldn't need to have.
This includes switching to use an unshifted IGN in the sc_ign member of
the sbus(4) softc internally.
- For SBus child devices where there are variants that are actually split
split into two SBus devices (as opposed to the first half of the device
being a SBus device and the second half hanging off of the first one)
like 'auxio' and 'SUNW,fdtwo' or 'dma' and 'esp' probe the SBus device
which is a prerequisite to the driver attaching to the second one with
a lower order. This saves us from dealing with different probe orders
in the respective device drivers which generally is more hackish.
- Remove a stale comment about the 'specials' array above the attaching
of the child devices. This is a remnant of the NetBSD/sparc origin of
this code. There the 'specials' array is also used to probe certain
devices which are prerequisites to others first. Why NetBSD soley
relies on the devices having the expected order in the OFW tree on
sparc64 isn't clear to me, as far as I can tell OFW doesn't guaranteed
such things.
that use SSE. The compiler does attempt to do this in main() but not very
successfully - it still manages to use unaligned offsets from %ebp in some
cases. Also we need to have an aligned stack in case something uses SSE
via _init().
MFC After: 1 week
copying, rather than a page at a time. This was creating far
too many single-page mappings, and eventually OFW overflowed
some internal data structure and refused to map any more.
The new algorithm creates far less mappings and fixed a bug
where multiple mappings for the same page would be created.
'Twas known this was a problem, but only became urgent when the
install CD's mfs_root grew large enough to cause the overflow.
works again.
This driver uses NdisScheduleWorkItem(), and we have to take special steps
to insure that its workitems don't collide with any of the other workitems
used by the NDISulator. In particular, if one of the driver's work jobs
blocks, it can prevent NdisMAllocateSharedMemoryAsync() from completing
when expected.
The original hack to fix this was to have NdisMAllocateSharedMemoryAsync()
defer its work to the DPC queue instead of the general task queue. To
fix it now, I decided to add some additional workitem threads. (There's
supposed to be a pool of worker threads in Windows anyway.) Currently,
there are 4. There should be at least 2. One is reserved for the legacy
ExQueueWorkItem() API, while the others are used in round-robin by the
IoQueueWorkItem() API. NdisMAllocateSharedMemoryAsync() uses the latter
API while NdisScheduleWorkItem() uses the former, so the deadlock is
avoided.
Fixed NdisMRegisterDevice()/NdisMDeregisterDevice() to work a little
more sensibly with the new driver_object/device_object framework. It
doesn't really register a working user-mode interface, but the existing
code was completely wrong for the new framework.
Fixed a couple of bugs dealing with the cancellation of events and
DPCs. When cancelling an event that's still on the timer queue (i.e.
hasn't expired yet), reset dh_inserted in its dispatch header to FALSE.
Previously, it was left set to TRUE, which would make a cancelled
timer appear to have not been cancelled. Also, when removing a DPC
from a queue, reset its list pointers, otherwise a cancelled DPC
might mistakenly be treated as still pending.
Lastly, fix the behavior of ntoskrnl_wakeup() when dealing with
objects that have nobody waiting on them: sync event objects get
their signalled state reset to FALSE, but notification objects
should still be set to TRUE.
connections to Bluetooth HID device. As soon as Bluetooth HID device
is powered off (or goes out of RF range) the stack will terminate both
connections. File descriptors for both connections will become active
on next select(2) call. Because bthidd(8) processes file descriptors
in order, it will detect descriptor for one of the closed connections
first and kill the session. However, there is still a second (active)
descriptor that used to point to the same session. bthidd(8) used to
assert() if it cant find session by file descriptor, which was wrong.
While I'm here fix a couple of typos in parser.y
Reported by: Eric Anderson anderson AT centtech DOT com
MFC after: 3 days
occur on a filesystem running with soft updates after a crash and
before a background fsck has been run. To prevent discrepancies
from arising in a background fsck that may already be running,
the directory is removed but its inode is not freed and is left
with the residual reference count. When encountered by the
background fsck it will be reclaimed.
Group's documentation is `/usr/share/examples/mdoc/POSIX-copyright',
not the one I copied from `/usr/share/examples/etc/bsd-copyright'.
Suggested by: simon
2nd pointy hat of the day: yours truly
the Open Group manpage for pthread_atfork(), available online at:
http://www.opengroup.org/onlinepubs/009695399/functions/pthread_atfork.html
which should be ok, since Daniel Eischen had mailed me about Open
Group manpages and the fact that they have granted permission to
FreeBSD to use their material. Any differences from the OG text are
my changes to the original manpage text submitted by Alex Vasylenko:
- In an effort to clean up the part that describes hooks and their
calling order, I used a list instead of a single paragraph for all the three
types of fork() hooks.
- After a short discussion with Dima Dorfman a long long time ago in a
far away galaxy, I changed the RETURN VALUES section to look more
like the rest of the pthread_xxx.3 manpages.
PR: docs/68201
Submitted by: Alex Vasylenko <lxv@omut.org>
introduce a struct that holds all the information about an argument
vector and pass that around.
Author: Max Okumoto <okumoto@ucsd.edu>
Obtained from: DragonFlyBSD
have been noticed by running top(1) in terminals that are too narrow
(or on systems with usernames that were too long, pushing everything
too far to the right).
Note that this does *not* solve the wrap-around problem of the system
statistics, which is an entirely different matter :-/
Tested on: i386, sparc64 (panther), amd64 (sledge)
Approved by: davidxu (in principle)
command that toggles between the two and update the ORDER_PCTCPU()
macro to sort correctly by the visible "cpu" value.
This saves 6 more columns in 80-column terminals, making things a lot
better for the COMMAND column.
Tested on: i386, sparc64 (panther), amd64 (sledge)
Approved by: davidxu (in principle)
initially written by Roland, but hacked for a while by me. Any
good parts are the results of Roland's hard work. Any typos or
style mistakes are mine.
Submitted by: Roland Smith <rsmith@xs4all.nl>
PR: docs/63808, docs/75433, docs/80458, docs/80459
MFC after: 2 weeks