us when <sys/pmc.h> is included.
o Replace "#if __i386__" and "#if __amd64__" with the equivalent of
"#ifdef __i386__" and "#ifdef __amd64__" (resp.) These tokens are
not defined on all platforms.
o Conditionally compile pmc_parse_mask() on i386 and amd64 only. It's
only referenced there. This will change when support for other
platforms is added, of course.
Ok'd by: jkoshy@
getnameinfo(3). POSIX standard does not require a sa_len field
in sockaddr struct, hence such requirement will cause problem
for portability.
PR: standards/80008
Requested by: Xin Liu <lx@knight.6test.edu.cn>
Reviewed by: freebsd-standards (das)
MFC After: 2 weeks
check the password or group database before attempting to parse as an
integer, as is done for the first {uid,gid} in an identity phrase.
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
a return instruction. (The latter is discouraged by the Opteron
optimization manual because it disables branch prediction for the return
instruction.)
Reviewed by: bde
* Handles entries with compressed size >2GB (signed/unsigned cleanup)
* Handles entries with compressed size >4GB ("ZIP64" extension)
* Handles Unix extensions (ctime, atime, mtime, mode, uid, etc)
* Format-specific "skip data" override allows ZIP reader to skip
entries without decompressing them, which makes "tar -t"
a lot faster.
* Handles "length-at-end" entries generated by, e.g., "zip -r - foo"
Many thanks to: Dan Nelson, who contributed the code and test files for
the first three items above and suggested the fourth.
libalias.
In /usr/src/lib/libalias/alias.c, the functions LibAliasIn and
LibAliasOutTry call the legacy PacketAliasIn/PacketAliasOut instead
of LibAliasIn/LibAliasOut when the PKT_ALIAS_REVERSE option is set.
In this case, the context variable "la" gets lost because the legacy
compatibility routines expect "la" to be global. This was obviously
an oversight when rewriting the PacketAlias* functions to the
LibAlias* functions.
The fix (as shown in the patch below) is to remove the legacy
subroutine calls and replace with the new ones using the "la" struct
as the first arg.
Submitted by: Gil Kloepfer <fgil@kloepfer.org>
Confirmed by: <nicolai@catpipe.net>
PR: 76839
MFC after: 3 days
implementations inspired by the ones in DragonFly. Unlike the
DragonFly versions, these have a small data cache footprint, and my
tests show that they're never slower than the old code except when the
charset or the span is 0 or 1 characters. This implementation is
generally faster than DragonFly until either the charset or the span
gets in the ballpark of 32 to 64 characters.
these at the moment, but applications that test for them will now
have a better chance of compiling.
I have intentionally omitted errnos that are only good for STREAMS,
since apps that use STREAMS won't compile anyway. The exception is
EPROTO, which was apparently intended for STREAMS, but worth having
anyway because Linux (mis)uses it for other things.
1. fast simple type mutex.
2. __thread tls works.
3. asynchronous cancellation works ( using signal ).
4. thread synchronization is fully based on umtx, mainly, condition
variable and other synchronization objects were rewritten by using
umtx directly. those objects can be shared between processes via
shared memory, it has to change ABI which does not happen yet.
5. default stack size is increased to 1M on 32 bits platform, 2M for
64 bits platform.
As the result, some mysql super-smack benchmarks show performance is
improved massivly.
Okayed by: jeff, mtm, rwatson, scottl
floating-point arithmetic on i386. Now I'm going to make excuses
for why this code is kinda scary:
- To avoid breaking the ABI with 5.3-RELEASE, we can't change
sizeof(fenv_t). I stuck the saved mxcsr in some discontiguous
reserved bits in the existing structure.
- Attempting to access the mxcsr on older processors results
in an illegal instruction exception, so support for SSE must
be detected at runtime. (The extra baggage is optimized away
if either the application or libm is compiled with -msse{,2}.)
I didn't run tests to ensure that this doesn't SIGILL on older 486's
lacking the cpuid instruction or on other processors lacking SSE.
Results from running the fenv regression test on these processors
would be appreciated. (You'll need to compile the test with
-DNO_STRICT_DFL_ENV.) If you have an 80386, or if your processor
supports SSE but the kernel didn't enable it, then you're probably out
of luck.
Also, I un-inlined some of the functions that grew larger as a result
of this change, moving them from fenv.h to fenv.c.
fedisableexcept(), and fegetexcept(). These two sets of routines
provide the same functionality. I implemented the former as an
undocumented internal interface to make the regression test easier to
write. However, fe(enable|disable|get)except() is already part of
glibc, and I would like to avoid gratuitous differences. The only
major flaw in the glibc API is that there's no good way to report
errors on processors that don't support all the unmasked exceptions.
to mistakes from day 1, it has always had semantics inconsistent with
SVR4 and its successors. In particular, given argument M:
- On Solaris and FreeBSD/{alpha,sparc64}, it clobbers the old flags
and *sets* the new flag word to M. (NetBSD, too?)
- On FreeBSD/{amd64,i386}, it *clears* the flags that are specified in M
and leaves the remaining flags unchanged (modulo a small bug on amd64.)
- On FreeBSD/ia64, it is not implemented.
There is no way to fix fpsetsticky() to DTRT for both old FreeBSD apps
and apps ported from other operating systems, so the best approach
seems to be to kill the function and fix any apps that break. I
couldn't find any ports that use it, and any such ports would already
be broken on FreeBSD/ia64 and Linux anyway.
By the way, the routine has always been undocumented in FreeBSD,
except for an MLINK to a manpage that doesn't describe it. This
manpage has stated since 5.3-RELEASE that the functions it describes
are deprecated, so that must mean that functions that it is *supposed*
to describe but doesn't are even *more* deprecated. ;-)
Note that fpresetsticky() has been retained on FreeBSD/i386. As far
as I can tell, no other operating systems or ports of FreeBSD
implement it, so there's nothing for it to be inconsistent with.
PR: 75862
Suggested by: bde
particularly good reason to do this, except that __strong_reference
does type checking, whereas __weak_reference does not.
On Alpha, the compiler won't accept a 'long double' parameter in
place of a 'double' parameter even thought the two types are
identical.
an invalid exception and return an NaN.
- If a long double has 113 bits of precision, implement fma in terms
of simple long double arithmetic instead of complicated double arithmetic.
- If a long double is the same as a double, alias fma as fmal.
identical to scalbnf, which is now aliased as ldexpf. Note that the
old implementations made the mistake of setting errno and were the
only libm routines to do so.
- Add nexttoward{,f,l} and nextafterl. On all platforms,
nexttowardl is an alias for nextafterl.
- Add fmal.
- Add man pages for new routines: fmal, nextafterl,
nexttoward{,f,l}, scalb{,l}nl.
Note that on platforms where long double is the same as double, we
generally just alias the double versions of the routines, since doing
so avoids extra work on the source code level and redundant code in
the binary. In particular:
ldbl53 ldbl64/113
fmal s_fma.c s_fmal.c
ldexpl s_scalbn.c s_scalbnl.c
nextafterl s_nextafter.c s_nextafterl.c
nexttoward s_nextafter.c s_nexttoward.c
nexttowardf s_nexttowardf.c s_nexttowardf.c
nexttowardl s_nextafter.c s_nextafterl.c
scalbnl s_scalbn.c s_scalbnl.c
sparc64's 128-bit long doubles.
- Define FP_FAST_FMAL for ia64.
- Prototypes for fmal, frexpl, ldexpl, nextafterl, nexttoward{,f,l},
scalblnl, and scalbnl.
- In scalbln and scalblnf, check the bounds of the second argument.
This is probably unnecessary, but strictly speaking, we should
report an error if someone tries to compute scalbln(x, INT_MAX + 1ll).
nexttowardl. These are not needed on machines where long doubles
look like IEEE-754 doubles, so the implementation only supports
the usual long double formats with 15-bit exponents.
Anything bizarre, such as machines where floating-point and integer
data have different endianness, will cause problems. This is the case
with big endian ia64 according to libc/ia64/_fpmath.h. Please contact
me if you managed to get a machine running this way.
that are intended to raise underflow and inexact exceptions.
- On systems where long double is the same as double, nextafter
should be aliased as nexttoward, nexttowardl, and nextafterl.
bit in a long double. For architectures that don't have such a bit,
LDBL_NBIT is 0. This makes it possible to say `mantissa & ~LDBL_NBIT'
in places that previously used an #ifdef to select the right expression.
The optimizer should dispense with the extra arithmetic when LDBL_NBIT
is 0 anyway.
- Add an XXX comment for the big endian case.
bit in a long double. For architectures that don't have such a bit,
LDBL_NBIT is 0. This makes it possible to say `mantissa & ~LDBL_NBIT'
in places that previously used an #ifdef to select the right expression.
The optimizer should dispense with the extra arithmetic when LDBL_NBIT
is 0.