Virtualize bdevsw[] from cdevsw. bdevsw() is now an (inline)
function.
Join CDEV_MODULE and BDEV_MODULE to DEV_MODULE (please pay attention
to the order of the cmaj/bmaj arguments!)
Join CDEV_DRIVER_MODULE and BDEV_DRIVER_MODULE to DEV_DRIVER_MODULE
(ditto!)
(Next step will be to convert all bdev dev_t's to cdev dev_t's
before they get to do any damage^H^H^H^H^H^Hwork in the kernel.)
Mark the GDB port in the config file with flags 0x80. Currently
only the sio driver checks these flags and sets up a GDB port,
but adding similar code to other serial drivers would be easy.
For backward compatibility, if an sio port is marked as the console
and no port is marked as the gdb port, the GDB port will be mapped
to the console port. This hack should go away at some point.
power management. This will only work on newer firmware revisions; older
firmware will silently ignore the attempts to turn power management on.
Patches supplied by: Brad Karp <karp@eecs.harvard.edu>
files at once on a filesystem running soft updates. The root of
the problem is that soft updates limits the amount of memory that
may be allocated to dependency structures so as to avoid hogging
kernel memory. The original algorithm just waited for the disk I/O
to catch up and reduce the number of dependencies. This new code
takes a much more aggressive approach. Basically there are two
resources that routinely hit the limit. Inode dependencies during
periods with a high file creation rate and file and block removal
dependencies during periods with a high file removal rate. I have
attacked these problems from two fronts. When the inode dependency
limits are reached, I pick a random inode dependency, UFS_UPDATE
it together with all the other dirty inodes contained within its
disk block and then write that disk block. This trick usually
clears 5-50 inode dependencies in a single disk I/O. For block and
file removal dependencies, I pick a random directory page that has
at least one remove pending and VOP_FSYNC its directory. That
releases all its removal dependencies to the work queue. To further
hasten things along, I also immediately start the work queue process
rather than waiting for its next one second scheduled run.
NOTE: These changes will require recompilation of any userland
applications, like cdrecord, xmcd, etc., that use the CAM passthrough
interface. A make world is recommended.
camcontrol.[c8]:
- We now support two new commands, "tags" and "negotiate".
- The tags commands allows users to view the number of tagged
openings for a device as well as a number of other related
parameters, and it allows users to set tagged openings for
a device.
- The negotiate command allows users to enable and disable
disconnection and tagged queueing, set sync rates, offsets
and bus width. Note that not all of those features are
available for all controllers. Only the adv, ahc, and ncr
drivers fully support all of the features at this point.
Some cards do not allow the setting of sync rates, offsets and
the like, and some of the drivers don't have any facilities to
do so. Some drivers, like the adw driver, only support enabling
or disabling sync negotiation, but do not support setting sync
rates.
- new description in the camcontrol man page of how to format a disk
- cleanup of the camcontrol inquiry command
- add support in the 'devlist' command for skipping unconfigured devices if
-v was not specified on the command line.
- make use of the new base_transfer_speed in the path inquiry CCB.
- fix CCB bzero cases
cam_xpt.c, cam_sim.[ch], cam_ccb.h:
- new flags on many CCB function codes to designate whether they're
non-immediate, use a user-supplied CCB, and can only be passed from
userland programs via the xpt device. Use these flags in the transport
layer and pass driver to categorize CCBs.
- new flag in the transport layer device matching code for device nodes
that indicates whether a device is unconfigured
- bump the CAM version from 0x10 to 0x11
- Change the CAM ioctls to use the version as their group code, so we can
force users to recompile code even when the CCB size doesn't change.
- add + fill in a new value in the path inquiry CCB, base_transfer_speed.
Remove a corresponding field from the cam_sim structure, and add code to
every SIM to set this field to the proper value.
- Fix the set transfer settings code in the transport layer.
scsi_cd.c:
- make some variables volatile instead of just casting them in various
places
- fix a race condition in the changer code
- attach unless we get a "logical unit not supported" error. This should
fix all of the cases where people have devices that return weird errors
when they don't have media in the drive.
scsi_da.c:
- attach unless we get a "logical unit not supported" error
scsi_pass.c:
- for immediate CCBs, just malloc a CCB to send the user request in. This
gets rid of the 'held' count problem in camcontrol tags.
scsi_pass.h:
- change the CAM ioctls to use the CAM version as their group code.
adv driver:
- Allow changing the sync rate and offset separately.
adw driver
- Allow changing the sync rate and offset separately.
aha driver:
- Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs.
ahc driver:
- Allow setting offset and sync rate separately
bt driver:
- Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs.
NCR driver:
- Fix the ultra/ultra 2 negotiation bug
- allow setting both the sync rate and offset separately
Other HBA drivers:
- Put code in to set the base_transfer_speed field for
XPT_GET_TRAN_SETTINGS CCBs.
Reviewed by: gibbs, mjacob (isp), imp (aha)