handling.
The current sequence number code does a few things incorrectly:
* It didn't try eliminating duplications from HT nodes. I guess it's assumed
that out of order / retransmission handling would be handled by the AMPDU RX
routines. If a HT node isn't doing AMPDU RX, then retransmissions need to
be eliminated. Since most of my debugging is based on this (as AMPDU TX
software packet aggregation isn't yet handled), handle this corner case.
* When a sequence number of 4095 was received, any subsequent sequence number
is going to be (by definition) less than 4095. So if the following sequence
number (0) doesn't initially occur and the retransmit is received, it's
incorrectly eliminated by the IEEE80211_FC1_RETRY && SEQ_LEQ() check.
Try to handle this better.
This almost completely eliminates out of order TCP statistics showing up during
iperf testing for the 11a, 11g and non-aggregate 11n AMPDU RX case. The only
other packet loss conditions leading to this are due to baseband resets or
heavy interference.
clean up parts of the *_recv_mgmt() functions.
- make sure appropriate counters are bumped and debug messages are printed
- order the unhandled subtypes by value and add a few missing ones
- fix some whitespace nits
- remove duplicate code in adhoc_recv_mgmt()
- remove a useless comment, probably left in while c&p
o Process the BAR frame on the adhoc, mesh and sta modes
o Fix the format of the ADDBA reply frame
o Fix references to the spec section numbers
Also, print the all the MCS rates in bootverbose.
Sponsored by: iXsystems, Inc.
Obtained from: //depot/user/rpaulo/80211n/...
o add a new facility for components to register send+recv handlers
o ieee80211_send_action and ieee80211_recv_action now use the registered
handlers to dispatch operations
o rev ieee80211_send_action api to enable passing arbitrary data
o rev ieee80211_recv_action api to pass the 802.11 frame header as it may
be difficult to locate
o update existing IEEE80211_ACTION_CAT_BA and IEEE80211_ACTION_CAT_HT handling
o update mwl for api rev
Reviewed by: rpaulo
Approved by: re (kensmith)
o do not attach DLT_IEEE802_11_RADIO unless both tx and rx headers are
present; this is assumed in the capture code paths
o verify the above with asserts in ieee80211_radiotap_{rx,tx}
o add missing checks for active taps before calling ieee80211_radiotap_rx
o replace DLT_IEEE802_11 support in net80211 with DLT_IEEE802_11_RADIO
and remove explicit bpf support from wireless drivers; drivers now
use ieee80211_radiotap_attach to setup shared data structures that
hold the radiotap header for each packet tx/rx
o remove rx timestamp from the rx path; it was used only by the tdma support
for debugging and was mostly useless due to it being 32-bits and mostly
unavailable
o track DLT_IEEE80211_RADIO bpf attachments and maintain per-vap and
per-com state when there are active taps
o track the number of monitor mode vaps
o use bpf tap and monitor mode vap state to decide when to collect radiotap
state and dispatch frames; drivers no longer explicitly directly check
bpf state or use bpf calls to tap frames
o handle radiotap state updates on channel change in net80211; drivers
should not do this (unless they bypass net80211 which is almost always
a mistake)
o update various drivers to be more consistent/correct in handling radiotap
o update ral to include TSF in radiotap'd frames
o add promisc mode callback to wi
Reviewed by: cbzimmer, rpaulo, thompsa
o add net80211 support for a tdma vap that is built on top of the
existing adhoc-demo support
o add tdma scheduling of frame transmission to the ath driver; it's
conceivable other devices might be capable of this too in which case
they can make use of the 802.11 protocol additions etc.
o add minor bits to user tools that need to know: ifconfig to setup and
configure, new statistics in athstats, and new debug mask bits
While the architecture can support >2 slots in a TDMA BSS the current
design is intended (and tested) for only 2 slots.
Sponsored by: Intel
capabilities reported by the ap. These need to be cross-checked
against the local configuration in the vap. Previously we were
only checking the ap capabilities which meant that if an ap reported
it was ff-capable but we were not setup to use them we'd try to do
ff aggregation and drop the frame.
There are a number of problems to be fixed here but applying this
fix immediately as the problem causes all traffic to stop (and has
not workaround).
Reported by: Ashish Shukla
in sta and adhoc modes; this should've been done forever ago as most all
drivers use this hook to set per-station transmit parameters such as for
tx rate control
o adjust drivers to remove explicit calls to the driver newassoc method
For receive:
o explicitly tag rx frames w/ M_AMPDU instead of passing frames through
the reorder processing according to the node having HT and the frame
being QoS data
o relax ieee80211_ampdu_reorder asserts to allow any frame to be passed
in, unsuitable frames are returned to the caller for normal processing;
this permits drivers that cannot inspect the PLCP to mark all data
frames as potential ampdu candidates with only a small penalty
o add M_AMPDU_MPDU to identify frames resubmitted from the reorder q
For transmit:
o tag aggregation candidates with M_AMPDU_MPDU
o fix the QoS ack policy set in ampdu subframes; we only support immediate
BA streams which should be marked for "normal ack" to get implicit block
ack behaviour; interestingly certain vendor parts BA'd frames with the
11e BA ack policy set
o do not assign a sequence # to aggregation candidates; this must be done
when frames are submitted for transmit (NB: this can/will be handled
better when aggregation is pulled up to net80211)
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)