threshold, according to the 'F' MALLOC_OPTIONS flag. This obsoletes the
'H' flag.
Try to realloc() large objects in place. This substantially speeds up
incremental large reallocations in the common case.
Fix a bug in arena_ralloc() that caused relocation of sub-page objects
even if the old and new sizes were in the same size class.
Maintain trees of runs and simplify the per-chunk page map. This allows
logarithmic-time searching for sufficiently large runs in
arena_run_alloc(), whereas the previous algorithm required linear time
in the worst case.
Break various large functions into smaller sub-functions, and inline
only the functions that are in the fast path for small object
allocation/deallocation.
Remove an unnecessary check in base_pages_alloc_mmap().
Avoid integer division in choose_arena() for the NO_TLS case on
single-CPU systems.
referencing the files VM pages are returned from the network stack,
making changes to the file safe.
This flag does not guarantee that the data has been transmitted to the
other end.
fields in FTS and FTSENT structs being too narrow. In addition,
the narrow types creep from there into fts.c. As a result, fts(3)
consumers, e.g., find(1) or rm(1), can't handle file trees an ordinary
user can create, which can have security implications.
To fix the historic implementation of fts(3), OpenBSD and NetBSD
have already changed <fts.h> in somewhat incompatible ways, so we
are free to do so, too. This change is a superset of changes from
the other BSDs with a few more improvements. It doesn't touch
fts(3) functionality; it just extends integer types used by it to
match modern reality and the C standard.
Here are its points:
o For C object sizes, use size_t unless it's 100% certain that
the object will be really small. (Note that fts(3) can construct
pathnames _much_ longer than PATH_MAX for its consumers.)
o Avoid the short types because on modern platforms using them
results in larger and slower code. Change shorts to ints as
follows:
- For variables than count simple, limited things like states,
use plain vanilla `int' as it's the type of choice in C.
- For a limited number of bit flags use `unsigned' because signed
bit-wise operations are implementation-defined, i.e., unportable,
in C.
o For things that should be at least 64 bits wide, use long long
and not int64_t, as the latter is an optional type. See
FTSENT.fts_number aka FTS.fts_bignum. Extending fts_number `to
satisfy future needs' is pointless because there is fts_pointer,
which can be used to link to arbitrary data from an FTSENT.
However, there already are fts(3) consumers that require fts_number,
or fts_bignum, have at least 64 bits in it, so we must allow for them.
o For the tree depth, use `long'. This is a trade-off between making
this field too wide and allowing for 64-bit inode numbers and/or
chain-mounted filesystems. On the one hand, `long' is almost
enough for 32-bit filesystems on a 32-bit platform (our ino_t is
uint32_t now). On the other hand, platforms with a 64-bit (or
wider) `long' will be ready for 64-bit inode numbers, as well as
for several 32-bit filesystems mounted one under another. Note
that fts_level has to be signed because -1 is a magic value for it,
FTS_ROOTPARENTLEVEL.
o For the `nlinks' local var in fts_build(), use `long'. The logic
in fts_build() requires that `nlinks' be signed, but our nlink_t
currently is uint16_t. Therefore let's make the signed var wide
enough to be able to represent 2^16-1 in pure C99, and even 2^32-1
on a 64-bit platform. Perhaps the logic should be changed just
to use nlink_t, but it can be done later w/o breaking fts(3) ABI
any more because `nlinks' is just a local var.
This commit also inludes supporting stuff for the fts change:
o Preserve the old versions of fts(3) functions through libc symbol
versioning because the old versions appeared in all our former releases.
o Bump __FreeBSD_version just in case. There is a small chance that
some ill-written 3-rd party apps may fail to build or work correctly
if compiled after this change.
o Update the fts(3) manpage accordingly. In particular, remove
references to fts_bignum, which was a FreeBSD-specific hack to work
around the too narrow types of FTSENT members. Now fts_number is
at least 64 bits wide (long long) and fts_bignum is an undocumented
alias for fts_number kept around for compatibility reasons. According
to Google Code Search, the only big consumers of fts_bignum are in
our own source tree, so they can be fixed easily to use fts_number.
o Mention the change in src/UPDATING.
PR: bin/104458
Approved by: re (quite a while ago)
Discussed with: deischen (the symbol versioning part)
Reviewed by: -arch (mostly silence); das (generally OK, but we didn't
agree on some types used; assuming that no objections on
-arch let me to stick to my opinion)
instead of 32+32+15+1) on all arches that have such long doubles (amd64,
ia64 and i386). Large objects should be be accessed in large units,
and the 32+32+15+1[+padding] decomposition asks for almost the opposite
of that, sometimes resulting in very slow accesses depending on how
well the compiler ignores what we ask for and converts to the best
units for the given machine. E.g., on Athlons, there is a 10-20 cycle
penalty for accessing the middle 32-bit word immediately after an
80-bit store.
Whether actually using the alternative view is better is very machine-
dependent. A 32+32+16 view is probably best with old 32-bit systems
and gcc through 4.2.1. The compiler should mostly avoid the view and
generate best accesses, but gcc-4.2.1 is far from doing that. I think
64+16 is best for now. Similarly for doubles -- they should be using
64+0 especially on 64-bit machines, but fdlibm uses 32+32 extensively
for them. Fortunately, in 64-bit mode for doubles, gcc already ignores
the 32+32-bit view and generates best accesses in many cases.
into slowsort for some sequences because different parts of the
code used 'r' to store two different things, one of which was
signed. Clean things up by splitting 'r' into two variables, and
use a more meaningful name.
implement shm_open(2) and shm_unlink(2) in the kernel:
- Each shared memory file descriptor is associated with a swap-backed vm
object which provides the backing store. Each descriptor starts off with
a size of zero, but the size can be altered via ftruncate(2). The shared
memory file descriptors also support fstat(2). read(2), write(2),
ioctl(2), select(2), poll(2), and kevent(2) are not supported on shared
memory file descriptors.
- shm_open(2) and shm_unlink(2) are now implemented as system calls that
manage shared memory file descriptors. The virtual namespace that maps
pathnames to shared memory file descriptors is implemented as a hash
table where the hash key is generated via the 32-bit Fowler/Noll/Vo hash
of the pathname.
- As an extension, the constant 'SHM_ANON' may be specified in place of the
path argument to shm_open(2). In this case, an unnamed shared memory
file descriptor will be created similar to the IPC_PRIVATE key for
shmget(2). Note that the shared memory object can still be shared among
processes by sharing the file descriptor via fork(2) or sendmsg(2), but
it is unnamed. This effectively serves to implement the getmemfd() idea
bandied about the lists several times over the years.
- The backing store for shared memory file descriptors are garbage
collected when they are not referenced by any open file descriptors or
the shm_open(2) virtual namespace.
Submitted by: dillon, peter (previous versions)
Submitted by: rwatson (I based this on his version)
Reviewed by: alc (suggested converting getmemfd() to shm_open())
default. This has the disadvantage of rendering the datasize resource
limit irrelevant, but without this change, legitimate uses of more
memory than will fit in the data segment are thwarted by default.
Fix chunk_alloc_mmap() to work correctly if initial mapping is not
chunk-aligned and mapping extension fails.
Clean up DSS-related locking and protect all pertinent variables with
dss_mtx (remove dss_chunks_mtx). This fixes race conditions that could
cause chunk leaks.
Reported by: [1] kris
This is a long-standing bug, but until recent changes it was difficult
to trigger, and even then its impact was non-catastrophic, with the
exception of revision 1.157.
Optimize chunk_alloc_mmap() to avoid the need for unmapping pages in the
common case. Thanks go to Kris Kennaway for a patch that inspired this
change.
Do not maintain a record of previously mmap'ed chunk address ranges.
The original intent was to avoid the extra system call overhead in
chunk_alloc_mmap(), which is no longer a concern. This also allows some
simplifications for the tree of unused DSS chunks.
Introduce huge_mtx and dss_chunks_mtx to replace chunks_mtx. There was
no compelling reason to use the same mutex for these disjoint purposes.
Avoid memset() for huge allocations when possible.
Maintain two trees instead of one for tracking unused DSS address
ranges. This allows scalable allocation of multi-chunk huge objects in
the DSS. Previously, multi-chunk huge allocation requests failed if the
DSS could not be extended.
order to support re-use of multi-chunk unused regions within the DSS for
huge allocations. This generalization is important to correct function
when mmap-based allocation is disabled.
Avoid zeroing re-used memory in the DSS unless it really needs to be
zeroed.
memory is acquired from the system via sbrk(2) and/or mmap(2). By default,
use sbrk(2) only, in order to support traditional use of resource limits.
Additionally, when both options are enabled, prefer the data segment to
anonymous mappings, in order to coexist better with large file mappings
in applications on 32-bit platforms. This change has the potential to
increase memory fragmentation due to the linear nature of the data
segment, but from a performance perspective this is mitigated by the use
of madvise(2). [1]
Add the ability to interpret integer prefixes in MALLOC_OPTIONS
processing. For example, MALLOC_OPTIONS=lllllllll can now be specified as
MALLOC_OPTIONS=9l.
Reported by: [1] rwatson
Design review: [1] alc, peter, rwatson
- Use PTY* for all pty(4) related constants.
- Use PTMX* for all pts(4) related constants.
- Consistently use _PATH_DEV PTMX rather than "/dev/ptmx".
- Revert 1.7 and properly fix it by using the correct prefix string for
pts(4) masters.
MFC after: 3 days
my original implementation made both use the same code. Unfortunately,
this meant libm depended on a vendor header at compile time and previously-
unexposed vendor bits in libc at runtime.
Hence, I just wrote my own version of the relevant vendor routine. As it
turns out, mine has a factor of 8 fewer of lines of code, and is a bit more
readable anyway. The strtod() and *scanf() routines still use vendor code.
Reviewed by: bde
calculating run sizes. Use of the floating point unit was a potential
pessimization to context switching for applications that do not otherwise
use floating point math. [1]
Reformat cpp macro-related comments to improve consistency.
Submitted by: das
deallocation and dynamic load balancing via the MALLOC_LAZY_FREE and
MALLOC_BALANCE knobs. This is a non-functional change, since these
features are still enabled when possible.
Clean up a few things that more pedantic compiler settings would cause
complaints over.
adds two new directories in msun: ld80 and ld128. These are for
long double functions specific to the 80-bit long double format
used on x86-derived architectures, and the 128-bit format used on
sparc64, respectively.
when particular function can't be found in nsswitch-module. For
example, getgrouplist(3) will use module-supplied 'getgroupmembership'
function (which can work in an optimal way for such source as LDAP) and
will fall back to the stanard iterate-through-all-groups implementation
otherwise.
PR: ports/114655
Submitted by: Michael Hanselmann <freebsd AT hansmi DOT ch>
Reviewed by: brooks (mentor)