Although vchiq_build_date and vchiq_build_time are not used in current
vchi driver at the moment, make sure these value will not leak into
build later on if at some point they will be refered in some new
imported code
PR: 215494
Reported by: emaste
MFC after: 1 week
Drop the tracking down to the pmap layer, with optimizations to only track
necessary pages. This should give a (slight) performance improvement, as well
as a stability improvement, as the tracking is already mostly handled by the
pmap layer.
As part of an effort to extend Book-E to the 64-bit world, make the necessary
changes to the DPAA/dTSEC driver set to be integer-pointer conversion clean.
This means no more casts to int, and use uintptr_t where needed.
Since the NCSW source is effectively obsolete, direct changes to the source tree
are safe.
All devices:
- add support for rate adaptation via ieee80211_amrr(9);
- use short preamble for transmitted frames when needed;
- multi-bss support:
* for RTL8821AU: 2 VAPs at the same time;
* other: 1 any VAP + 1 sta VAP.
RTL8188CE:
- fix IQ calibration bug (reason of significant speed degradation);
- add h/w crypto acceleration support.
USB:
- A-MPDU Tx support;
- short GI support;
Other:
- add support for RTL8812AU / RTL8821AU chipsets
(a/b/g/n only; no ac yet);
- split merged code into subparts:
* bus glue (usb/*, pci/*, rtl*/usb/*, rtl*/pci/*)
* common (if_rtwn*)
* chip-specific (rtl*/*)
- various other bugfixes.
Due to code reorganization, module names / requirements were changed too:
urtwn urtwnfw -> rtwn rtwn_usb rtwnfw
rtwn rtwnfw -> rtwn rtwn_pci rtwnfw
Tested with RTL8188CE, RTL8188CUS, RTL8188EU and RTL8821AU.
Tested by: kevlo, garga,
Peter Garshtja <peter.garshtja@ambient-md.com>,
Kevin McAleavey <kevin.mcaleavey@knosproject.com>,
Ilias-Dimitrios Vrachnis <id@vrachnis.com>,
<otacilio.neto@bsd.com.br>
Relnotes: yes
buildkernel failed with GCC 5.3 with
error: comparison of constant '852736' with boolean expression is always true
Sponsored by: The FreeBSD Foundation
Linux's copy of the Cavium SDK does not have these non-ASCII characters
and this reduces noise in diffs when comparing the two.
Sponsored by: The FreeBSD Foundation
Don't call pmap_kextract() multiple times, it wastes CPU cycles, which in a high
performance environment can be very expensive.
Inline XX_FindTracker() to allow more optimizations as well.
Since if_addrlist is used only for ipfilter(4), add a macro if_addrlist
in ip_compat.h.
Reviewed by: cy
Differential Revision: https://reviews.freebsd.org/D8059
alpine-hal SerDes file was omitted in the previous commit.
Files added here.
All unnecessary (old) files were also removed.
Merge from vendor-sys, r306017
- Use conditional instruction to simplify the ARMv6 vDSO. This means
that we no longer perform any branching. In the failure case, we
simply slide over the assignments of the return values.
The vDSO could be improved even further by using stmia to do
assignments in parallel. Unfortunately, the script used to generate
these is not smart enough for that (yet).
Spotted by: andrew@.
- Make the style of the i686 vDSO more similar to the others by using
decimal literals.
Bugs in the Python code used to generate this vDSO caused us to
miscompute the register numbers/stack offsets at which addresses of the
system call output arguments were stored.
Together with some other patches, this vDSO allows us to make all of the
cloudlibc unit tests pass.
Obtained from: https://github.com/NuxiNL/cloudabi
In order to make CloudABI work on ARMv6, start off by copying over the
sysvec for ARM64 and adjust it to use 32-bit registers. Also add code
for fetching arguments from the stack if needed, as there are fewer
register than on ARM64.
Also import the vDSO that is needed to invoke system calls. This vDSO
uses the intra procedure call register (ip) to store the system call
number. This is a bit simpler than what native FreeBSD does, as FreeBSD
uses r7, while preserving the original r7 into ip.
This sysvec seems to be complete enough to start CloudABI processes.
These processes are capable of linking in the vDSO and are therefore
capable of executing (most?) system calls successfully. Unfortunately,
the biggest show stopper is still that TLS is completely broken:
- The linker used by CloudABI, LLD, still has troubles with some of the
relocations needed for TLS. See LLVM bug 30218 for more details.
- Whereas FreeBSD uses the tpidruro register for TLS, for CloudABI I
want to make use of tpidrurw, so that userspace can modify the base
address directly. This is needed for efficient emulation.
Unfortunately, this register doesn't seem to be preserved across
context switches yet.
Obtained from: https://github.com/NuxiNL/cloudabi (the vDSO)
macro is defined in lots of different places in ipfilter, so replace all
of the nonportable definitions with portable ones.
Pointy hat to: dim
X-MFC-With: r304959, r304953
MFC after: 3 days
cnv API is a set of functions for managing name/value pairs by cookie.
The cookie can be obtained by nvlist_next(), nvlist_get_parent() or
nvlist_get_pararr() function. This patch also includes unit tests.
Submitted by: Adam Starak <starak.adam@gmail.com>
A nice thing about requiring a vDSO is that it makes it incredibly easy
to provide full support for running 32-bit processes on 64-bit systems.
Instead of letting the kernel be responsible for composing/decomposing
64-bit arguments across multiple registers/stack slots, all of this can
now be done in the vDSO. This means that there is no need to provide
duplicate copies of certain system calls, like the sys_lseek() and
freebsd32_lseek() we have for COMPAT_FREEBSD32.
This change imports a new vDSO from the CloudABI repository that has
automatically generated code in it that copies system call arguments
into a buffer, padding them to eight bytes and zero-extending any
pointers/size_t arguments. After returning from the kernel, it does the
inverse: extracting return values, in the process truncating
pointers/size_t values to 32 bits.
Obtained from: https://github.com/NuxiNL/cloudabi
The native CloudABI data types header file used to be pulled in by the
vDSOs when they were still written in C. Since they are now all
rewritten in assembly, this can go away.
Copy over amd64's cloudabi64_sysvec.c into i386 and tailor it to work.
Again, we use a system call convention similar to FreeBSD, except that
there is no support for indirect system calls (%eax == 0).
Where i386 differs from amd64 is that we have to store thread/process
entry arguments on the stack instead of using registers. We also have to
put an extra pointer on the stack for TLS (for GSBASE). Place that
pointer in the empty slot that is normally used to hold return
addresses. That seems to keep the code simple.
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D7590
The reason why the old vDSOs were written in C using inline assembly was
purely because they were embedded in the C library directly as static
inline functions. This was practical during development, because it
meant you could invoke system calls without any library dependencies.
The vDSO was simply a copy of these functions.
Now that we require the use of the vDSO, there is no longer any need for
embedding them in C code directly. Rewriting them in assembly has the
advantage that they are closer to ideal (less useless branching, less
assumptions about registers remaining unclobbered by the kernel, etc).
They are also easier to build, as they no longer depend on the C type
information for CloudABI.
Obtained from: https://github.com/NuxiNL/cloudabi
Now that we've switched over to using the vDSO on CloudABI, it becomes a
lot easier for us to phase out old features. System call numbering is no
longer something that's part of the ABI. It's fully based on names. As
long as the numbering used by the kernel and the vDSO is consistent
(which it always is), it's all right.
Let's put this to the test by removing a system call (thread_tcb_set())
that's already unused for quite some time now, but was only left intact
to serve as a placeholder. Sync in the new system call table that uses
alphabetic sorting of system calls.
Obtained from: https://github.com/NuxiNL/cloudabi
Several files use the internal name of `struct device` instead of
`device_t` which is part of the public API. This patch changes all
`struct device *` to `device_t`.
The remaining occurrences of `struct device` are those referring to the
Linux or OpenBSD version of the structure, or the code is not built on
FreeBSD and it's unclear what to do.
Submitted by: Matthew Macy <mmacy@nextbsd.org> (previous version)
Approved by: emaste, jhibbits, sbruno
MFC after: 3 days
Differential Revision: https://reviews.freebsd.org/D7447
CloudABI executables that are emulated on Mac OS X do not invoke system
calls through "syscall". Instead, they make use of a vDSO that is
provided by the emulator that provides symbols for all of the system
call routines. The emulator can implement these any way it likes.
At some point in time we want to do this for native execution as well,
so that CloudABI executables are entirely oblivious of how system calls
need to be performed. They will simply call into functions and let that
deal with all of the details.
These source files can be used to generate a simple vDSO that does
nothing more than invoke "syscall". All we need to do now is map it into
the processes.
Obtained from: https://github.com/NuxiNL/cloudabi