This is needed for Xen PV(H) guests, since there's no hardware lapic
available on this kind of domains. This commit should not change
functionality.
Sponsored by: Citrix Systems R&D
Reviewed by: jhb
Approved by: gibbs
amd64/include/cpu.h:
amd64/amd64/mp_machdep.c:
i386/include/cpu.h:
i386/i386/mp_machdep.c:
- Remove lapic_ipi_vectored hook from cpu_ops, since it's now
implemented in the lapic hooks.
amd64/amd64/mp_machdep.c:
i386/i386/mp_machdep.c:
- Use lapic_ipi_vectored directly, since it's now an inline function
that will call the appropiate hook.
x86/x86/local_apic.c:
- Prefix bare metal public lapic functions with native_ and mark them
as static.
- Define default implementation of apic_ops.
x86/include/apicvar.h:
- Declare the apic_ops structure and create inline functions to
access the hooks, so the change is transparent to existing users of
the lapic_ functions.
x86/xen/hvm.c:
- Switch to use the new apic_ops.
amd64 and i386.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (blanket Xen)
MFC after: 2 weeks
sys/amd64/amd64/mp_machdep.c:
sys/amd64/include/cpu.h:
sys/i386/i386/mp_machdep.c:
sys/i386/include/cpu.h:
- Introduce two new CPU hooks for initialization and resume
purposes. This allows us to get rid of the XENHVM ifdefs in
mp_machdep, and also sets some hooks into common code that can be
used by other hypervisor implementations.
sys/amd64/conf/XENHVM:
sys/i386/conf/XENHVM:
- Remove these configs now that GENERIC has builtin support for Xen
HVM.
sys/kern/subr_smp.c:
- Make sure there are no pending IPIs when suspending a system.
sys/x86/xen/hvm.c:
- Add cpu init and resume vectors that are called from mp_machdep
using the new hooks.
- Only clear the vcpu_info mapping data on resume. It is already
clear for the BSP on a cold boot and is set correctly as APs
are started.
- Gate xen_hvm_init_cpu only to systems running under Xen.
sys/x86/xen/xen_intr.c:
- Gate the setup of event channels only to systems running under Xen.
IPI implmementations.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Submitted by: gibbs (misc cleanup, table driven config)
Reviewed by: gibbs
MFC after: 2 weeks
sys/amd64/include/cpufunc.h:
sys/amd64/amd64/pmap.c:
Move invltlb_globpcid() into cpufunc.h so that it can be
used by the Xen HVM version of tlb shootdown IPI handlers.
sys/x86/xen/xen_intr.c:
sys/xen/xen_intr.h:
Rename xen_intr_bind_ipi() to xen_intr_alloc_and_bind_ipi(),
and remove the ipi vector parameter. This api allocates
an event channel port that can be used for ipi services,
but knows nothing of the actual ipi for which that port
will be used. Removing the unused argument and cleaning
up the comments surrounding its declaration helps clarify
its actual role.
sys/amd64/amd64/mp_machdep.c:
sys/amd64/include/cpu.h:
sys/i386/i386/mp_machdep.c:
sys/i386/include/cpu.h:
Implement a generic framework for amd64 and i386 that allows
the implementation of certain CPU management functions to
be selected at runtime. Currently this is only used for
the ipi send function, which we optimize for Xen when running
on a Xen hypervisor, but can easily be expanded to support
more operations.
sys/x86/xen/hvm.c:
Implement Xen PV IPI handlers and operations, replacing native
send IPI.
sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
sys/i386/include/smp.h:
Remove NR_VIRQS and NR_IPIS from FreeBSD headers. NR_VIRQS
is defined already for us in the xen interface files.
NR_IPIS is only needed in one file per Xen platform and is
easily inferred by the IPI vector table that is defined in
those files.
sys/i386/xen/mp_machdep.c:
Restructure to more closely match the HVM implementation by
performing table driven IPI setup.
at run-time on i386. cpu_ticks() is set to use RDTSC early enough on i386
where it is available. Otherwise, cpu_ticks() is driven by the current
timecounter hardware as binuptime(9) does. This also avoids unnecessary
namespace pollution from <machine/cputypes.h>.
Unfortunately, it pulls in <machine/cputypes.h> but it is small enough and
namespace pollution is minimal, I hope.
Pointed out by: bde
Pointy hat: jkim
soon as possible for stack protector. However, dummy timecounter does not
have enough entropy and we don't need to sacrifice Pentium class and later.
Pointed out by: Maxim Dounin (mdounin at mdounin dot ru)
passing a pointer to an opaque clockframe structure and requiring the
MD code to supply CLKF_FOO() macros to extract needed values out of the
opaque structure, just pass the needed values directly. In practice this
means passing the pair (usermode, pc) to hardclock() and profclock() and
passing the boolean (usermode) to hardclock_cpu() and hardclock_process().
Other details:
- Axe clockframe and CLKF_FOO() macros on all architectures. Basically,
all the archs were taking a trapframe and converting it into a clockframe
one way or another. Now they can just extract the PC and usermode values
directly out of the trapframe and pass it to fooclock().
- Renamed hardclock_process() to hardclock_cpu() as the latter is more
accurate.
- On Alpha, we now run profclock() at hz (profhz == hz) rather than at
the slower stathz.
- On Alpha, for the TurboLaser machines that don't have an 8254
timecounter, call hardclock() directly. This removes an extra
conditional check from every clock interrupt on Alpha on the BSP.
There is probably room for even further pruning here by changing Alpha
to use the simplified timecounter we use on x86 with the lapic timer
since we don't get interrupts from the 8254 on Alpha anyway.
- On x86, clkintr() shouldn't ever be called now unless using_lapic_timer
is false, so add a KASSERT() to that affect and remove a condition
to slightly optimize the non-lapic case.
- Change prototypeof arm_handler_execute() so that it's first arg is a
trapframe pointer rather than a void pointer for clarity.
- Use KCOUNT macro in profclock() to lookup the kernel profiling bucket.
Tested on: alpha, amd64, arm, i386, ia64, sparc64
Reviewed by: bde (mostly)
being defined, define and use a new MD macro, cpu_spinwait(). It only
expands to something on i386 and amd64, so the compiled code should be
identical.
Name of the macro found by: jhb
Reviewed by: jhb
prototypes of cpu_halt(), cpu_reset() and swi_vm() from md_var.h to
cpu.h. This affects db_command.c and kern_shutdown.c.
ia64: move all MD prototypes from cpu.h to md_var.h. This affects
madt.c, interrupt.c and mp_machdep.c. Remove is_physical_memory().
It's not used (vm_machdep.c).
alpha: the MD prototypes have been left in cpu.h with a comment
that they should be there. Moving them is left for later. It was
expected that the impact would be significant enough to be done in
a seperate commit.
powerpc: MD prototypes left in cpu.h. Comment added.
Suggested by: bde
Tested with: make universe (pc98 incomplete)
- The MI portions of struct globaldata have been consolidated into a MI
struct pcpu. The MD per-CPU data are specified via a macro defined in
machine/pcpu.h. A macro was chosen over a struct mdpcpu so that the
interface would be cleaner (PCPU_GET(my_md_field) vs.
PCPU_GET(md.md_my_md_field)).
- All references to globaldata are changed to pcpu instead. In a UP kernel,
this data was stored as global variables which is where the original name
came from. In an SMP world this data is per-CPU and ideally private to each
CPU outside of the context of debuggers. This also included combining
machine/globaldata.h and machine/globals.h into machine/pcpu.h.
- The pointer to the thread using the FPU on i386 was renamed from
npxthread to fpcurthread to be identical with other architectures.
- Make the show pcpu ddb command MI with a MD callout to display MD
fields.
- The globaldata_register() function was renamed to pcpu_init() and now
init's MI fields of a struct pcpu in addition to registering it with
the internal array and list.
- A pcpu_destroy() function was added to remove a struct pcpu from the
internal array and list.
Tested on: alpha, i386
Reviewed by: peter, jake
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
the process of exiting the kernel. The ast() function now loops as long
as the PS_ASTPENDING or PS_NEEDRESCHED flags are set. It returns with
preemption disabled so that any further AST's that arrive via an
interrupt will be delayed until the low-level MD code returns to user
mode.
- Use u_int's to store the tick counts for profiling purposes so that we
do not need sched_lock just to read p_sticks. This also closes a
problem where the call to addupc_task() could screw up the arithmetic
due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
clear_resched(), and resched_wanted() in favor of direct bit operations
on p_sflag.
- Fix up locking with sched_lock some. In addupc_intr(), use sched_lock
to ensure pr_addr and pr_ticks are updated atomically with setting
PS_OWEUPC. In ast() we clear pr_ticks atomically with clearing
PS_OWEUPC. We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.
Reviewed by: bde (mostly)
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
always on curproc. This is needed to implement signal delivery properly
(see a future log message for kern_sig.c).
Debogotified the definition of aston(). aston() was defined in terms
of signotify() (perhaps because only the latter already operated on
a specified process), but aston() is the primitive.
Similar changes are needed in the ia64 versions of cpu.h and trap.c.
I didn't make them because the ia64 is missing the prerequisite changes
to make astpending and need_resched per-process and those changes are
too large to make without testing.
tsc_present in the right places (together with other variables of the
same linkage), and don't use messy ifdefs just to avoid exporting it in
some cases.
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
process is on the alternate stack or not. For compatibility
with sigstack(2) state is being updated if such is needed.
We now determine whether the process is on the alternate
stack by looking at its stack pointer. This allows a process
to siglongjmp from a signal handler on the alternate stack
to the place of the sigsetjmp on the normal stack. When
maintaining state, this would have invalidated the state
information and causing a subsequent signal to be delivered
on the normal stack instead of the alternate stack.
PR: 22286
counter register in-CPU.
This is to be used as a fast "timer", where linearity is more important
than time, and multiple lines in the linearity caused by multiple CPUs
in an SMP machine is not a problem.
This adds no code whatsoever to the FreeBSD kernel until it is actually
used, and then as a single-instruction inline routine (except for the
80386 and 80486 where it is some more inline code around nanotime(9).
Reviewed by: bde, kris, jhb
return through doreti to handle ast's. This is necessary for the
clock interrupts to work properly.
- Change the clock interrupts on the x86 to be fast instead of threaded.
This is needed because both hardclock() and statclock() need to run in
the context of the current process, not in a separate thread context.
- Kill the prevproc hack as it is no longer needed.
- We really need Giant when we call psignal(), but we don't want to block
during the clock interrupt. Instead, use two p_flag's in the proc struct
to mark the current process as having a pending SIGVTALRM or a SIGPROF
and let them be delivered during ast() when hardclock() has finished
running.
- Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was
broken on the x86 if it was turned on since cpl is gone. It's only use
was to bogusly run softclock() directly during hardclock() rather than
scheduling an SWI.
- Remove the COM_LOCK simplelock and replace it with a clock_lock spin
mutex. Since the spin mutex already handles disabling/restoring
interrupts appropriately, this also lets us axe all the *_intr() fu.
- Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use
temporary fast interrupts for the APIC trial.
- Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending
signals in hardclock() that are to be delivered in ast().
Submitted by: jakeb (making statclock safe in a fast interrupt)
Submitted by: cp (concept of delaying signals until ast())
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
- stop using the evil 'struct trapframe' argument for mi_startup()
(formerly main()). There are much better ways of doing it.
- do not use prepare_usermode() - setregs() in execve() will do it
all for us as long as the p_md.md_regs pointer is set. (which is
now done in machdep.c rather than init_main.c. The Alpha port did it
this way all along and is much cleaner).
- collect all the magic %cr0 etc register settings into one place and
have the AP's call that instead of using magic numbers (!!) that keep
changing over and over again.
- Make it safe to call kthread_create() earlier, including during the
device probe sequence. It doesn't need the callback mechanism that
NetBSD's version uses.
- kthreads created this way are root-less as they exist before the root
filesystem is mounted. init(1) is set up so that it aquires the root
pointers prior to running. If other kthreads want filesystem acccess
we can make this code more generic.
- set all threads start times once we have decided what time it is.
- init uses a trampoline rather than the evil prepare_usermode() hack.
- kern_descrip.c has a couple of tweaks to deal with forking when there
is no rootdir or cwd etc.
- adjust the early SYSINIT() sequence so that a few prereqisites are in
place. eg: make sure the run queue is initialized before doing forks.
With this, the USB code can easily create a kthread to do the device
tree discovery. (I have tested it, it works nicely).
There are still some open issues before this is truely useful.
- tsleep() does not like working before the clock is running. It
sort-of tries to spin wait, but it can do more useful things now.
- stopping a kthread in kld code at unload time is "interesting" but
we have a solution for that.
The Alpha code needs no changes for this. It already uses pretty much the
same strategies, but a little cleaner.
syscall path inward. A system call may select whether it needs the MP
lock or not (the default being that it does need it).
A great deal of conditional SMP code for various deadended experiments
has been removed. 'cil' and 'cml' have been removed entirely, and the
locking around the cpl has been removed. The conditional
separately-locked fast-interrupt code has been removed, meaning that
interrupts must hold the CPL now (but they pretty much had to anyway).
Another reason for doing this is that the original separate-lock for
interrupts just doesn't apply to the interrupt thread mechanism being
contemplated.
Modifications to the cpl may now ONLY occur while holding the MP
lock. For example, if an otherwise MP safe syscall needs to mess with
the cpl, it must hold the MP lock for the duration and must (as usual)
save/restore the cpl in a nested fashion.
This is precursor work for the real meat coming later: avoiding having
to hold the MP lock for common syscalls and I/O's and interrupt threads.
It is expected that the spl mechanisms and new interrupt threading
mechanisms will be able to run in tandem, allowing a slow piecemeal
transition to occur.
This patch should result in a moderate performance improvement due to
the considerable amount of code that has been removed from the critical
path, especially the simplification of the spl*() calls. The real
performance gains will come later.
Approved by: jkh
Reviewed by: current, bde (exception.s)
Some work taken from: luoqi's patch
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.