a very hard time to fully understand) with much more intuitive rights:
CAP_EVENT - when set on descriptor, the descriptor can be monitored
with syscalls like select(2), poll(2), kevent(2).
CAP_KQUEUE_EVENT - When set on a kqueue descriptor, the kevent(2)
syscall can be called on this kqueue to with the eventlist
argument set to non-NULL value; in other words the given
kqueue descriptor can be used to monitor other descriptors.
CAP_KQUEUE_CHANGE - When set on a kqueue descriptor, the kevent(2)
syscall can be called on this kqueue to with the changelist
argument set to non-NULL value; in other words it allows to
modify events monitored with the given kqueue descriptor.
Add alias CAP_KQUEUE, which allows for both CAP_KQUEUE_EVENT and
CAP_KQUEUE_CHANGE.
Add backward compatibility define CAP_POLL_EVENT which is equal to CAP_EVENT.
Sponsored by: The FreeBSD Foundation
MFC after: 3 days
in the future in a backward compatible (API and ABI) way.
The cap_rights_t represents capability rights. We used to use one bit to
represent one right, but we are running out of spare bits. Currently the new
structure provides place for 114 rights (so 50 more than the previous
cap_rights_t), but it is possible to grow the structure to hold at least 285
rights, although we can make it even larger if 285 rights won't be enough.
The structure definition looks like this:
struct cap_rights {
uint64_t cr_rights[CAP_RIGHTS_VERSION + 2];
};
The initial CAP_RIGHTS_VERSION is 0.
The top two bits in the first element of the cr_rights[] array contain total
number of elements in the array - 2. This means if those two bits are equal to
0, we have 2 array elements.
The top two bits in all remaining array elements should be 0.
The next five bits in all array elements contain array index. Only one bit is
used and bit position in this five-bits range defines array index. This means
there can be at most five array elements in the future.
To define new right the CAPRIGHT() macro must be used. The macro takes two
arguments - an array index and a bit to set, eg.
#define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL)
We still support aliases that combine few rights, but the rights have to belong
to the same array element, eg:
#define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL)
#define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL)
#define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP)
There is new API to manage the new cap_rights_t structure:
cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);
void cap_rights_set(cap_rights_t *rights, ...);
void cap_rights_clear(cap_rights_t *rights, ...);
bool cap_rights_is_set(const cap_rights_t *rights, ...);
bool cap_rights_is_valid(const cap_rights_t *rights);
void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src);
void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src);
bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little);
Capability rights to the cap_rights_init(), cap_rights_set(),
cap_rights_clear() and cap_rights_is_set() functions are provided by
separating them with commas, eg:
cap_rights_t rights;
cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);
There is no need to terminate the list of rights, as those functions are
actually macros that take care of the termination, eg:
#define cap_rights_set(rights, ...) \
__cap_rights_set((rights), __VA_ARGS__, 0ULL)
void __cap_rights_set(cap_rights_t *rights, ...);
Thanks to using one bit as an array index we can assert in those functions that
there are no two rights belonging to different array elements provided
together. For example this is illegal and will be detected, because CAP_LOOKUP
belongs to element 0 and CAP_PDKILL to element 1:
cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL);
Providing several rights that belongs to the same array's element this way is
correct, but is not advised. It should only be used for aliases definition.
This commit also breaks compatibility with some existing Capsicum system calls,
but I see no other way to do that. This should be fine as Capsicum is still
experimental and this change is not going to 9.x.
Sponsored by: The FreeBSD Foundation
int bindat(int fd, int s, const struct sockaddr *addr, socklen_t addrlen);
int connectat(int fd, int s, const struct sockaddr *name, socklen_t namelen);
which allow to bind and connect respectively to a UNIX domain socket with a
path relative to the directory associated with the given file descriptor 'fd'.
- Add manual pages for the new syscalls.
- Make the new syscalls available for processes in capability mode sandbox.
- Add capability rights CAP_BINDAT and CAP_CONNECTAT that has to be present on
the directory descriptor for the syscalls to work.
- Update audit(4) to support those two new syscalls and to handle path
in sockaddr_un structure relative to the given directory descriptor.
- Update procstat(1) to recognize the new capability rights.
- Document the new capability rights in cap_rights_limit(2).
Sponsored by: The FreeBSD Foundation
Discussed with: rwatson, jilles, kib, des
- Capability is no longer separate descriptor type. Now every descriptor
has set of its own capability rights.
- The cap_new(2) system call is left, but it is no longer documented and
should not be used in new code.
- The new syscall cap_rights_limit(2) should be used instead of
cap_new(2), which limits capability rights of the given descriptor
without creating a new one.
- The cap_getrights(2) syscall is renamed to cap_rights_get(2).
- If CAP_IOCTL capability right is present we can further reduce allowed
ioctls list with the new cap_ioctls_limit(2) syscall. List of allowed
ioctls can be retrived with cap_ioctls_get(2) syscall.
- If CAP_FCNTL capability right is present we can further reduce fcntls
that can be used with the new cap_fcntls_limit(2) syscall and retrive
them with cap_fcntls_get(2).
- To support ioctl and fcntl white-listing the filedesc structure was
heavly modified.
- The audit subsystem, kdump and procstat tools were updated to
recognize new syscalls.
- Capability rights were revised and eventhough I tried hard to provide
backward API and ABI compatibility there are some incompatible changes
that are described in detail below:
CAP_CREATE old behaviour:
- Allow for openat(2)+O_CREAT.
- Allow for linkat(2).
- Allow for symlinkat(2).
CAP_CREATE new behaviour:
- Allow for openat(2)+O_CREAT.
Added CAP_LINKAT:
- Allow for linkat(2). ABI: Reuses CAP_RMDIR bit.
- Allow to be target for renameat(2).
Added CAP_SYMLINKAT:
- Allow for symlinkat(2).
Removed CAP_DELETE. Old behaviour:
- Allow for unlinkat(2) when removing non-directory object.
- Allow to be source for renameat(2).
Removed CAP_RMDIR. Old behaviour:
- Allow for unlinkat(2) when removing directory.
Added CAP_RENAMEAT:
- Required for source directory for the renameat(2) syscall.
Added CAP_UNLINKAT (effectively it replaces CAP_DELETE and CAP_RMDIR):
- Allow for unlinkat(2) on any object.
- Required if target of renameat(2) exists and will be removed by this
call.
Removed CAP_MAPEXEC.
CAP_MMAP old behaviour:
- Allow for mmap(2) with any combination of PROT_NONE, PROT_READ and
PROT_WRITE.
CAP_MMAP new behaviour:
- Allow for mmap(2)+PROT_NONE.
Added CAP_MMAP_R:
- Allow for mmap(PROT_READ).
Added CAP_MMAP_W:
- Allow for mmap(PROT_WRITE).
Added CAP_MMAP_X:
- Allow for mmap(PROT_EXEC).
Added CAP_MMAP_RW:
- Allow for mmap(PROT_READ | PROT_WRITE).
Added CAP_MMAP_RX:
- Allow for mmap(PROT_READ | PROT_EXEC).
Added CAP_MMAP_WX:
- Allow for mmap(PROT_WRITE | PROT_EXEC).
Added CAP_MMAP_RWX:
- Allow for mmap(PROT_READ | PROT_WRITE | PROT_EXEC).
Renamed CAP_MKDIR to CAP_MKDIRAT.
Renamed CAP_MKFIFO to CAP_MKFIFOAT.
Renamed CAP_MKNODE to CAP_MKNODEAT.
CAP_READ old behaviour:
- Allow pread(2).
- Disallow read(2), readv(2) (if there is no CAP_SEEK).
CAP_READ new behaviour:
- Allow read(2), readv(2).
- Disallow pread(2) (CAP_SEEK was also required).
CAP_WRITE old behaviour:
- Allow pwrite(2).
- Disallow write(2), writev(2) (if there is no CAP_SEEK).
CAP_WRITE new behaviour:
- Allow write(2), writev(2).
- Disallow pwrite(2) (CAP_SEEK was also required).
Added convinient defines:
#define CAP_PREAD (CAP_SEEK | CAP_READ)
#define CAP_PWRITE (CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_R (CAP_MMAP | CAP_SEEK | CAP_READ)
#define CAP_MMAP_W (CAP_MMAP | CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_X (CAP_MMAP | CAP_SEEK | 0x0000000000000008ULL)
#define CAP_MMAP_RW (CAP_MMAP_R | CAP_MMAP_W)
#define CAP_MMAP_RX (CAP_MMAP_R | CAP_MMAP_X)
#define CAP_MMAP_WX (CAP_MMAP_W | CAP_MMAP_X)
#define CAP_MMAP_RWX (CAP_MMAP_R | CAP_MMAP_W | CAP_MMAP_X)
#define CAP_RECV CAP_READ
#define CAP_SEND CAP_WRITE
#define CAP_SOCK_CLIENT \
(CAP_CONNECT | CAP_GETPEERNAME | CAP_GETSOCKNAME | CAP_GETSOCKOPT | \
CAP_PEELOFF | CAP_RECV | CAP_SEND | CAP_SETSOCKOPT | CAP_SHUTDOWN)
#define CAP_SOCK_SERVER \
(CAP_ACCEPT | CAP_BIND | CAP_GETPEERNAME | CAP_GETSOCKNAME | \
CAP_GETSOCKOPT | CAP_LISTEN | CAP_PEELOFF | CAP_RECV | CAP_SEND | \
CAP_SETSOCKOPT | CAP_SHUTDOWN)
Added defines for backward API compatibility:
#define CAP_MAPEXEC CAP_MMAP_X
#define CAP_DELETE CAP_UNLINKAT
#define CAP_MKDIR CAP_MKDIRAT
#define CAP_RMDIR CAP_UNLINKAT
#define CAP_MKFIFO CAP_MKFIFOAT
#define CAP_MKNOD CAP_MKNODAT
#define CAP_SOCK_ALL (CAP_SOCK_CLIENT | CAP_SOCK_SERVER)
Sponsored by: The FreeBSD Foundation
Reviewed by: Christoph Mallon <christoph.mallon@gmx.de>
Many aspects discussed with: rwatson, benl, jonathan
ABI compatibility discussed with: kib
via procstat(1) and fstat(1):
- Change shm file descriptors to track the pathname they are associated
with and add a shm_path() method to copy the path out to a caller-supplied
buffer.
- Use the fo_stat() method of shared memory objects and shm_path() to
export the path, mode, and size of a shared memory object via
struct kinfo_file.
- Add a struct shmstat to the libprocstat(3) interface along with a
procstat_get_shm_info() to export the mode and size of a shared memory
object.
- Change procstat to always print out the path for a given object if it
is valid.
- Teach fstat about shared memory objects and to display their path,
mode, and size.
MFC after: 2 weeks
capability mode and capabilities.
Right now no attempt is made to unwrap capabilities when operating on
a crashdump, so further refinement is required.
Approved by: re (bz)
Sponsored by: Google Inc
file and processes information retrieval from the running kernel via sysctl
in the form of new library, libprocstat. The library also supports KVM backend
for analyzing memory crash dumps. Both procstat(1) and fstat(1) utilities have
been modified to take advantage of the library (as the bonus point the fstat(1)
utility no longer need superuser privileges to operate), and the procstat(1)
utility is now able to display information from memory dumps as well.
The newly introduced fuser(1) utility also uses this library and able to operate
via sysctl and kvm backends.
The library is by no means complete (e.g. KVM backend is missing vnode name
resolution routines, and there're no manpages for the library itself) so I
plan to improve it further. I'm commiting it so it will get wider exposure
and review.
We won't be able to MFC this work as it relies on changes in HEAD, which
was introduced some time ago, that break kernel ABI. OTOH we may be able
to merge the library with KVM backend if we really need it there.
Discussed with: rwatson
owned by the current user. If kinfo_getfile() or kinfo_getvmmap() return
NULL, simply exit, and do not try and derefernce the memory.
Reviewed by: peter
Approved by: peter
This changes struct kinfo_filedesc and kinfo_vmentry such that they are
same on both 32 and 64 bit platforms like i386/amd64 and won't require
sysctl wrapping.
Two new OIDs are assigned. The old ones are available under
COMPAT_FREEBSD7 - but it isn't that simple. The superceded interface
was never actually released on 7.x.
The other main change is to pack the data passed to userland via the
sysctl. kf_structsize and kve_structsize are reduced for the copyout.
If you have a process with 100,000+ sockets open, the unpacked records
require a 132MB+ copyout. With packing, it is "only" ~35MB. (Still
seriously unpleasant, but not quite as devastating). A similar problem
exists for the vmentry structure - have lots and lots of shared libraries
and small mmaps and its copyout gets expensive too.
My immediate problem is valgrind. It traditionally achieves this
functionality by parsing procfs output, in a packed format. Secondly, when
tracing 32 bit binaries on amd64 under valgrind, it uses a cross compiled
32 bit binary which ran directly into the differing data structures in 32
vs 64 bit mode. (valgrind uses this to track file descriptor operations
and this therefore affected every single 32 bit binary)
I've added two utility functions to libutil to unpack the structures into
a fixed record length and to make it a little more convenient to use.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
semaphores. Specifically, semaphores are now represented as new file
descriptor type that is set to close on exec. This removes the need for
all of the manual process reference counting (and fork, exec, and exit
event handlers) as the normal file descriptor operations handle all of
that for us nicely. It is also suggested as one possible implementation
in the spec and at least one other OS (OS X) uses this approach.
Some bugs that were fixed as a result include:
- References to a named semaphore whose name is removed still work after
the sem_unlink() operation. Prior to this patch, if a semaphore's name
was removed, valid handles from sem_open() would get EINVAL errors from
sem_getvalue(), sem_post(), etc. This fixes that.
- Unnamed semaphores created with sem_init() were not cleaned up when a
process exited or exec'd. They were only cleaned up if the process
did an explicit sem_destroy(). This could result in a leak of semaphore
objects that could never be cleaned up.
- On the other hand, if another process guessed the id (kernel pointer to
'struct ksem' of an unnamed semaphore (created via sem_init)) and had
write access to the semaphore based on UID/GID checks, then that other
process could manipulate the semaphore via sem_destroy(), sem_post(),
sem_wait(), etc.
- As part of the permission check (UID/GID), the umask of the proces
creating the semaphore was not honored. Thus if your umask denied group
read/write access but the explicit mode in the sem_init() call allowed
it, the semaphore would be readable/writable by other users in the
same group, for example. This includes access via the previous bug.
- If the module refused to unload because there were active semaphores,
then it might have deregistered one or more of the semaphore system
calls before it noticed that there was a problem. I'm not sure if
this actually happened as the order that modules are discovered by the
kernel linker depends on how the actual .ko file is linked. One can
make the order deterministic by using a single module with a mod_event
handler that explicitly registers syscalls (and deregisters during
unload after any checks). This also fixes a race where even if the
sem_module unloaded first it would have destroyed locks that the
syscalls might be trying to access if they are still executing when
they are unloaded.
XXX: By the way, deregistering system calls doesn't do any blocking
to drain any threads from the calls.
- Some minor fixes to errno values on error. For example, sem_init()
isn't documented to return ENFILE or EMFILE if we run out of semaphores
the way that sem_open() can. Instead, it should return ENOSPC in that
case.
Other changes:
- Kernel semaphores now use a hash table to manage the namespace of
named semaphores nearly in a similar fashion to the POSIX shared memory
object file descriptors. Kernel semaphores can now also have names
longer than 14 chars (up to MAXPATHLEN) and can include subdirectories
in their pathname.
- The UID/GID permission checks for access to a named semaphore are now
done via vaccess() rather than a home-rolled set of checks.
- Now that kernel semaphores have an associated file object, the various
MAC checks for POSIX semaphores accept both a file credential and an
active credential. There is also a new posixsem_check_stat() since it
is possible to fstat() a semaphore file descriptor.
- A small set of regression tests (using the ksem API directly) is present
in src/tools/regression/posixsem.
Reported by: kris (1)
Tested by: kris
Reviewed by: rwatson (lightly)
MFC after: 1 month
directory, and jail directory within procstat. While this functionality
is available already in fstat, encapsulating it in the kern.proc.filedesc
sysctl makes it accessible without using kvm and thus without needing
elevated permissions.
The new procstat output looks like:
PID COMM FD T V FLAGS REF OFFSET PRO NAME
76792 tcsh cwd v d -------- - - - /usr/src
76792 tcsh root v d -------- - - - /
76792 tcsh 15 v c rw------ 16 9130 - -
76792 tcsh 16 v c rw------ 16 9130 - -
76792 tcsh 17 v c rw------ 16 9130 - -
76792 tcsh 18 v c rw------ 16 9130 - -
76792 tcsh 19 v c rw------ 16 9130 - -
I am also bumping __FreeBSD_version for this as this new feature will be
used in at least one port.
Reviewed by: rwatson
Approved by: rwatson
of the missing functionality from procfs(4) and new functionality for
monitoring and debugging specific processes. procstat(1) operates in
the following modes:
-b Display binary information for the process.
-c Display command line arguments for the process.
-f Display file descriptor information for the process.
-k Display the stacks of kernel threads in the process.
-s Display security credential information for the process.
-t Display thread information for the process.
-v Display virtual memory mappings for the process.
Further revision and modes are expected.
Testing, ideas, etc: cognet, sam, Skip Ford <skip at menantico dot com>
Wesley Shields <wxs at atarininja dot org>