o replace DLT_IEEE802_11 support in net80211 with DLT_IEEE802_11_RADIO
and remove explicit bpf support from wireless drivers; drivers now
use ieee80211_radiotap_attach to setup shared data structures that
hold the radiotap header for each packet tx/rx
o remove rx timestamp from the rx path; it was used only by the tdma support
for debugging and was mostly useless due to it being 32-bits and mostly
unavailable
o track DLT_IEEE80211_RADIO bpf attachments and maintain per-vap and
per-com state when there are active taps
o track the number of monitor mode vaps
o use bpf tap and monitor mode vap state to decide when to collect radiotap
state and dispatch frames; drivers no longer explicitly directly check
bpf state or use bpf calls to tap frames
o handle radiotap state updates on channel change in net80211; drivers
should not do this (unless they bypass net80211 which is almost always
a mistake)
o update various drivers to be more consistent/correct in handling radiotap
o update ral to include TSF in radiotap'd frames
o add promisc mode callback to wi
Reviewed by: cbzimmer, rpaulo, thompsa
sleepable context for net80211 driver callbacks. This removes the need for USB
and firmware based drivers to roll their own code to defer the chip programming
for state changes, scan requests, channel changes and mcast/promisc updates.
When a driver callback completes the hardware state is now guaranteed to have
been updated and is in sync with net80211 layer.
This nukes around 1300 lines of code from the wireless device drivers making
them more readable and less race prone.
The net80211 layer has been updated as follows
- all state/channel changes are serialised on the taskqueue.
- ieee80211_new_state() always queues and can now be called from any context
- scanning runs from a single taskq function and executes to completion. driver
callbacks are synchronous so the channel, phy mode and rx filters are
guaranteed to be set in hardware before probe request frames are
transmitted.
Help and contributions from Sam Leffler.
Reviewed by: sam
o add net80211 support for a tdma vap that is built on top of the
existing adhoc-demo support
o add tdma scheduling of frame transmission to the ath driver; it's
conceivable other devices might be capable of this too in which case
they can make use of the 802.11 protocol additions etc.
o add minor bits to user tools that need to know: ifconfig to setup and
configure, new statistics in athstats, and new debug mask bits
While the architecture can support >2 slots in a TDMA BSS the current
design is intended (and tested) for only 2 slots.
Sponsored by: Intel
indicates if an association id is required before outbound traffic
is permitted. This cleans up the previous change that broke mcast
traffic "to the stack" in ap mode as a side effect.
Reviewed by: sephe, thompsa, weongyo
don't duplicate this. These are setup according to the role of the
node--the bss node for ap and adhoc modes need to use parameters
that are the least common denomimator of all nodes in the bss;
otherwise we are setting up params for a station joining a bss and
we select those according to the capabilities of the station.
This stuff needs more work as we do extra work due to having setup
in common code paths shared by nodes using both roles.
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)
o add driver callback to handle notification of beacon changes;
this is required for devices that manage beacon frames themselves
(devices must override the default handler which does nothing)
o move beacon update-related flags from ieee80211com to the beacon
offsets storage (or handle however a driver wants)
o expand beacon offsets structure with members needed for 11h/dfs
and appie's
o change calling convention for ieee80211_beacon_alloc and
ieee80211_beacon_update
o add overlapping bss support for 11g; requires driver to pass
beacon frames from overlapping bss up to net80211 which is not
presently done by any driver
o move HT beacon contents update to a routine in the HT code area
Reviewed by: avatar, thompsa, sephe
Approved by: re (blanket wireless)
o major overhaul of the way channels are handled: channels are now
fully enumerated and uniquely identify the operating characteristics;
these changes are visible to user applications which require changes
o make scanning support independent of the state machine to enable
background scanning and roaming
o move scanning support into loadable modules based on the operating
mode to enable different policies and reduce the memory footprint
on systems w/ constrained resources
o add background scanning in station mode (no support for adhoc/ibss
mode yet)
o significantly speedup sta mode scanning with a variety of techniques
o add roaming support when background scanning is supported; for now
we use a simple algorithm to trigger a roam: we threshold the rssi
and tx rate, if either drops too low we try to roam to a new ap
o add tx fragmentation support
o add first cut at 802.11n support: this code works with forthcoming
drivers but is incomplete; it's included now to establish a baseline
for other drivers to be developed and for user applications
o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates
prepending mbufs for traffic generated locally
o add support for Atheros protocol extensions; mainly the fast frames
encapsulation (note this can be used with any card that can tx+rx
large frames correctly)
o add sta support for ap's that beacon both WPA1+2 support
o change all data types from bsd-style to posix-style
o propagate noise floor data from drivers to net80211 and on to user apps
o correct various issues in the sta mode state machine related to handling
authentication and association failures
o enable the addition of sta mode power save support for drivers that need
net80211 support (not in this commit)
o remove old WI compatibility ioctls (wicontrol is officially dead)
o change the data structures returned for get sta info and get scan
results so future additions will not break user apps
o fixed tx rate is now maintained internally as an ieee rate and not an
index into the rate set; this needs to be extended to deal with
multi-mode operation
o add extended channel specifications to radiotap to enable 11n sniffing
Drivers:
o ath: add support for bg scanning, tx fragmentation, fast frames,
dynamic turbo (lightly tested), 11n (sniffing only and needs
new hal)
o awi: compile tested only
o ndis: lightly tested
o ipw: lightly tested
o iwi: add support for bg scanning (well tested but may have some
rough edges)
o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data
o wi: lightly tested
This work is based on contributions by Atheros, kmacy, sephe, thompsa,
mlaier, kevlo, and others. Much of the scanning work was supported by
Atheros. The 11n work was supported by Marvell.
o plug memory leak in adhoc mode: on rx the sender may be the
current master so simply checking against ic_bss is not enough
to identify if the packet comes from an unknown sender; must
also check the mac address
o split neighbor node creation into two routines and fillin state
of nodes faked up on xmit when a beacon or probe response frame
is later received; this ensures important state like the rate set
and advertised capabilities are correct
Obtained from: netbsd
MFC after: 1 week
o add ic_curchan and use it uniformly for specifying the current
channel instead of overloading ic->ic_bss->ni_chan (or in some
drivers ic_ibss_chan)
o add ieee80211_scanparams structure to encapsulate scanning-related
state captured for rx frames
o move rx beacon+probe response frame handling into separate routines
o change beacon+probe response handling to treat the scan table
more like a scan cache--look for an existing entry before adding
a new one; this combined with ic_curchan use corrects handling of
stations that were previously found at a different channel
o move adhoc neighbor discovery by beacon+probe response frames to
a new ieee80211_add_neighbor routine
Reviewed by: avatar
Tested by: avatar, Michal Mertl
MFC after: 2 weeks
Crypto changes:
o change driver/net80211 key_alloc api to return tx+rx key indices; a
driver can leave the rx key index set to IEEE80211_KEYIX_NONE or set
it to be the same as the tx key index (the former disables use of
the key index in building the keyix->node mapping table and is the
default setup for naive drivers by null_key_alloc)
o add cs_max_keyid to crypto state to specify the max h/w key index a
driver will return; this is used to allocate the key index mapping
table and to bounds check table loookups
o while here introduce ieee80211_keyix (finally) for the type of a h/w
key index
o change crypto notifiers for rx failures to pass the rx key index up
as appropriate (michael failure, replay, etc.)
Node table changes:
o optionally allocate a h/w key index to node mapping table for the
station table using the max key index setting supplied by drivers
(note the scan table does not get a map)
o defer node table allocation to lateattach so the driver has a chance
to set the max key id to size the key index map
o while here also defer the aid bitmap allocation
o add new ieee80211_find_rxnode_withkey api to find a sta/node entry
on frame receive with an optional h/w key index to use in checking
mapping table; also updates the map if it does a hash lookup and the
found node has a rx key index set in the unicast key; note this work
is separated from the old ieee80211_find_rxnode call so drivers do
not need to be aware of the new mechanism
o move some node table manipulation under the node table lock to close
a race on node delete
o add ieee80211_node_delucastkey to do the dirty work of deleting
unicast key state for a node (deletes any key and handles key map
references)
Ath driver:
o nuke private sc_keyixmap mechansim in favor of net80211 support
o update key alloc api
These changes close several race conditions for the ath driver operating
in ap mode. Other drivers should see no change. Station mode operation
for ath no longer uses the key index map but performance tests show no
noticeable change and this will be fixed when the scan table is eliminated
with the new scanning support.
Tested by: Michal Mertl, avatar, others
Reviewed by: avatar, others
MFC after: 2 weeks
when operating in ap mode. Previously we allocated a node from the
station table, sent the frame (using the node), then released the
reference that "held the frame in the table". But while the frame
was in flight the node might be reclaimed which could lead to
problems. The solution is to add an ieee80211_tmp_node routine
that crafts a node that does exist in a table and so isn't ever
reclaimed; it exists only so long as the associated frame is in flight.
MFC after: 5 days
stations in ap mode. Track when a node's first auth frame is
received and use this to decide whether or not to bump the refcnt.
This insures we only ever bump the refcnt once.
Reviewed by: avatar
Approved by: re (scottl)
here but it includes completed 802.11g, WPA, 802.11i, 802.1x, WME/WMM,
AP-side power-save, crypto plugin framework, authenticator plugin framework,
and access control plugin frameowrk.
o remove IEEE80211_C_RCVMGT capability
o on transmit craft new nodes as needed using new ieee80211_find_txnode routine
o add ieee80211_find_txnode routine to lookup a node by mac address and
if not present create one when operating in ibss/ahdemo mode; new nodes
are dup'd from bss and the driver is told to treat the node as if a new
association has been created so driver-private state (e.g. rate control
handling) is setup
Obtained from: netbsd (basic idea)
node lock while sending a management frame as this will potentially
result in a LOR with a driver lock. This doesn't happen for the
Atheros driver but does for the wi driver. Use a generation number
to help process each node once when scanning the node table and
drop the node lock if we need to timeout a node and send a frame.
count handling of station entries in hostap mode:
Input path:
o driver is now expected to find the node associated with the
sender of a received frame; use ic_bss if none is located
o driver passes the (referenced) node into ieee80211_input for
use within the wlan module and is responsible for cleaning up
on return
o the antenna state is no longer passed up with each frame; this
is now considered driver-private state and drivers are responsible
for keeping it in the driver-private part of a node
Output path:
Revamp output path for management frames to eliminate redundant
locking that causes problems and to correct reference counting
bogosity that occurs when stations are timed out due to inactivity
(in AP mode). On output the refcnt'd node is stashed in the pkthdr's
recvif field (yech) and retrieved by the driver. This eliminates
an unref/ref scenario and related node table unlock/lock due to the
driver looking up the node. This is particularly important when
stations are timed out as this causes a lock order reversal that
can result in a deadlock. As a byproduct we also reduce the overhead
for sending management frames (minimal). Additional fallout from
this is a change to ieee80211_encap to return a refcn't node for
tieing to the outbound frame. Node refcnts are not reclaimed until
after a frame is completely processed (e.g. in the tx interrupt
handler). This is especially important for timed out stations as
this deref will be the final one causing the node entry to be
reclaimed.
Additional semi-related changes:
o replace m_copym use with m_copypacket (optimization)
o add assert to verify ic_bss is never free'd during normal operation
o add comments explaining calling conventions by drivers for frames
going in each direction
o remove extraneous code that "cannot be executed" (e.g. because
pointers may never be null)
to override the method pointers for manipulating nodes; this fixes
a problem where the ic_bss node was not being created properly
for the ath driver causing the driver to scribble on random memory.
Noticed by: David Young <dyoung@pobox.com>
override in their sub-class; this eliminates the hack of interpreting the
EINPROGRESS return value to mean "don't do any of the normal work"
o correct active scanning so the first channel is only scanned once and so
per-channel passive mode is properly honored
o expose 802.11 FSM state names so every driver doesn't keep a private copy
o eliminate node parameter to ieee80211_begin_scan; it was not being used
o code reorg (relative to old netbsd-derived code) for future growth
o drivers now specify available channels and rates and 802.11 layer handles
almost all ifmedia actions
o multi-mode support for 11a/b/g devices
o 11g protocol additions (incomplete)
o new element id additions (for other than 11g)
o node/station table redone for proper locking and to eliminate driver
incestuousness
o split device flags and capabilities to reduce confusion and provide room
for expansion
o incomplete power management infrastructure (need to revisit)
o incomplete hooks for software retry
o more...