mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
o Use objdump instead of gensetdefs(1) to build the linker sets.
o Allow overriding of nm and objdump in resp. genassym.sh and
gensetdefs.pl for non-native toolchains.
Reviewed by: arch
Perl improvements: Jos Backus <josb@cncdsl.com>, benno
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
initialization until after malloc() is safe to call, then iterate through
all mutexes and complete their initialization.
This change is necessary in order to avoid some circular bootstrapping
dependencies.
All calls to mtx_init() for mutexes that recurse must now include
the MTX_RECURSE bit in the flag argument variable. This change is in
preparation for an upcoming (further) mutex API cleanup.
The witness code will call panic() if a lock is found to recurse but
the MTX_RECURSE bit was not set during the lock's initialization.
The old MTX_RECURSE "state" bit (in mtx_lock) has been renamed to
MTX_RECURSED, which is more appropriate given its meaning.
The following locks have been made "recursive," thus far:
eventhandler, Giant, callout, sched_lock, possibly some others declared
in the architecture-specific code, all of the network card driver locks
in pci/, as well as some other locks in dev/ stuff that I've found to
be recursive.
Reviewed by: jhb
exactly the same functionality via a sysctl, making this feature
a run-time option.
The default is 1(ON), which means that /dev/random device will
NOT block at startup.
setting kern.random.sys.seeded to 0(OFF) will cause /dev/random
to block until the next reseed, at which stage the sysctl
will be changed back to 1(ON).
While I'm here, clean up the sysctls, and make them dynamic.
Reviewed by: des
Tested on Alpha by: obrien
__FreeBSD_version 500015 can be used to detect their disappearance.
- Move the symbols for SMP_prvspace and lapic from globals.s to
locore.s.
- Remove globals.s with extreme prejudice.
symbols in globals.s.
PCPU_GET(name) returns the value of the per-cpu variable
PCPU_PTR(name) returns a pointer to the per-cpu variable
PCPU_SET(name, val) sets the value of the per-cpu variable
In general these are not yet used, compatibility macros remain.
Unifdef SMP struct globaldata, this makes variables such as cpuid
available for UP as well.
Rebuilding modules is probably a good idea, but I believe old
modules will still work, as most of the old infrastructure
remains.
of explicit calls to lockmgr. Also provides macros for the flags
pased to specify shared, exclusive or release which map to the
lockmgr flags. This is so that the use of lockmgr can be easily
replaced with optimized reader-writer locks.
- Add some locking that I missed the first time.
held and panic if so (conditional on witness).
- Change witness_list to return the number of locks held so this is easier.
- Add kern/syscalls.c to the kernel build if witness is defined so that the
panic message can contain the name of the offending system call.
- Add assertions that Giant and sched_lock are not held when returning from
a system call, which were missing for alpha and ia64.
spending, which was unused now that all software interrupts have
their own thread. Make the legacy schednetisr use an atomic op
for setting bits in the netisr mask.
Reviewed by: jhb
process is on the alternate stack or not. For compatibility
with sigstack(2) state is being updated if such is needed.
We now determine whether the process is on the alternate
stack by looking at its stack pointer. This allows a process
to siglongjmp from a signal handler on the alternate stack
to the place of the sigsetjmp on the normal stack. When
maintaining state, this would have invalidated the state
information and causing a subsequent signal to be delivered
on the normal stack instead of the alternate stack.
PR: 22286
counter register in-CPU.
This is to be used as a fast "timer", where linearity is more important
than time, and multiple lines in the linearity caused by multiple CPUs
in an SMP machine is not a problem.
This adds no code whatsoever to the FreeBSD kernel until it is actually
used, and then as a single-instruction inline routine (except for the
80386 and 80486 where it is some more inline code around nanotime(9).
Reviewed by: bde, kris, jhb