On any I/O timeout, check for csts.cfs==1. If set, the controller
is reporting fatal status and we reset the controller immediately,
rather than trying to abort the timed out command.
This changeset also includes deferring the controller start portion
of the reset to a separate task. This ensures we are always performing
a controller start operation from a consistent context.
Sponsored by: Intel
Reviewed by: carl
invoke it from nvmecontrol(8).
Controller reset will be performed in cases where I/O are repeatedly
timing out, the controller reports an unrecoverable condition, or
when explicitly requested via IOCTL or an nvme consumer. Since the
controller may be in such a state where it cannot even process queue
deletion requests, we will perform a controller reset without trying
to clean up anything on the controller first.
Sponsored by: Intel
Reviewed by: carl
Also add logic to clean up all outstanding asynchronous event requests
when resetting or shutting down the controller, since these requests
will not be explicitly completed by the controller itself.
Sponsored by: Intel
function.
This allows for completions outside the normal completion path, for example
when an ABORT command fails due to the controller reporting the targeted
command does not exist. This is mainly for protection against a faulty
controller, but we need to clean up our internal request nonetheless.
Sponsored by: Intel
the submit action assuming the qpair lock has already been acquired.
Also change nvme_qpair_submit_request to just lock/unlock the mutex
around a call to this new function.
This fixes a recursive mutex acquisition in the retry path.
Sponsored by: Intel
/usr/src/sys/modules/nvme/../../dev/nvme/nvme.c:211: warning: format '%qx' expects type 'long unsigned int', but argument 9 has type 'long long unsigned int' [-Wformat]
This change was originally intended to account for test kthreads under
the nvmecontrol process, but jhb indicated it may not be safe to
associate kthreads with userland processes and this could have
unintended consequences.
I did not observe any problems with this change, but my testing didn't
exhaust the kinds of corner cases that could cause problems. It is not
that important to account for these test threads under nvmecontrol, so I
am just reverting this change for now.
On a related note, the part of this patch for <= 7.x fails compilation
so reverting this fixes that too.
Suggested by: jhb
current CPU and not always CPU 0.
This has the added benefit of reducing a huge amount of spinlock
contention on the callout_cpu spinlock for CPU 0.
Sponsored by: Intel
This eliminates the need to manage queue depth at the nvd(4) level for
Chatham prototype board workarounds, and also adds the ability to
accept a number of requests on a single qpair that is much larger
than the number of trackers allocated.
Sponsored by: Intel
nvme_ctrlr_submit_io_request().
While here, also fix case where a uio may have more than 1 iovec.
NVMe's definition of SGEs (called PRPs) only allows for the first SGE to
start on a non-page boundary. The simplest way to handle this is to
construct a temporary uio for each iovec, and submit an NVMe request
for each.
Sponsored by: Intel
from an NVMe consumer.
This allows us to mostly build NVMe command buffers without holding the
qpair lock, and also allows for future queueing of nvme_request objects
in cases where the submission queue is full and no nvme_tracker objects
are available.
Sponsored by: Intel
This simplifies the driver significantly where it is constructing
commands to be submitted to hardware. By reducing the number of
PRPs (NVMe parlance for SGE) from 128 to 32, it ensures we do not
allocate too much memory for more common smaller I/O sizes, while
still supporting up to 128KB I/O sizes.
This also paves the way for pre-allocation of nvme_tracker objects
for each queue which will simplify the I/O path even further.
Sponsored by: Intel
This fixes issue in nvmecontrol(8), where clang throws a cast-align
warning when casting a __packed structure pointer to a uint32_t
pointer as part of printing raw hex output.
Reported by: dhw
support to FreeBSD. A full description of the overall functionality
being added is below. nvmexpress.org defines NVM Express as "an optimized
register interface, command set and feature set fo PCI Express (PCIe)-based
Solid-State Drives (SSDs)."
This commit adds nvme(4) and nvd(4) driver source code and Makefiles
to the tree.
Full NVMe functionality description:
Add nvme(4) and nvd(4) drivers and nvmecontrol(8) for NVM Express (NVMe)
device support.
There will continue to be ongoing work on NVM Express support, but there
is more than enough to allow for evaluation of pre-production NVM Express
devices as well as soliciting feedback. Questions and feedback are welcome.
nvme(4) implements NVMe hardware abstraction and is a provider of NVMe
namespaces. The closest equivalent of an NVMe namespace is a SCSI LUN.
nvd(4) is an NVMe consumer, surfacing NVMe namespaces as GEOM disks.
nvmecontrol(8) is used for NVMe configuration and management.
The following are currently supported:
nvme(4)
- full mandatory NVM command set support
- per-CPU IO queues (enabled by default but configurable)
- per-queue sysctls for statistics and full command/completion queue
dumps for debugging
- registration API for NVMe namespace consumers
- I/O error handling (except for timeoutsee below)
- compilation switches for support back to stable-7
nvd(4)
- BIO_DELETE and BIO_FLUSH (if supported by controller)
- proper BIO_ORDERED handling
nvmecontrol(8)
- devlist: list NVMe controllers and their namespaces
- identify: display controller or namespace identify data in
human-readable or hex format
- perftest: quick and dirty performance test to measure raw
performance of NVMe device without userspace/physio/GEOM
overhead
The following are still work in progress and will be completed over the
next 3-6 months in rough priority order:
- complete man pages
- firmware download and activation
- asynchronous error requests
- command timeout error handling
- controller resets
- nvmecontrol(8) log page retrieval
This has been primarily tested on amd64, with light testing on i386. I
would be happy to provide assistance to anyone interested in porting
this to other architectures, but am not currently planning to do this
work myself. Big-endian and dmamap sync for command/completion queues
are the main areas that would need to be addressed.
The nvme(4) driver currently has references to Chatham, which is an
Intel-developed prototype board which is not fully spec compliant.
These references will all be removed over time.
Sponsored by: Intel
Contributions from: Joe Golio/EMC <joseph dot golio at emc dot com>