there are stubs compiled into the kernel if BPF support is not enabled,
there aren't any problems with unresolved symbols. The modules in /modules
are compiled with BPF support enabled anyway, so the most this will do is
bloat GENERIC a little.
declaration for the interface driver from "foo" to "if_foo" but leave the
declaration for the miibus attached to the interface driver alone. This
lets the internal module name be "if_foo" while still allowing the miibus
instances to attach to "foo."
This should allow ifconfig to autoload driver modules again without
breaking the miibus attach.
This whole idea isn't going to work until somebody makes the bus/kld
code smarter. The idea here is to change the module's internal name
from "foo" to "if_foo" so that ifconfig can tell a network driver from
a non-network one. However doing this doesn't work correctly no matter
how you slice it. For everything to work, you have to change the name
in both the driver_t struct and the DRIVER_MODULE() declaration. The
problems are:
- If you change the name in both places, then the kernel thinks that
the device's name is now "if_foo", so you get things like:
if_foo0: <FOO ethernet> irq foo at device foo on pcifoo
if_foo0: Ethernet address: foo:foo:foo:foo:foo:foo
This is bogus. Now the device name doesn't agree with the logical
interface name. There's no reason for this, and it violates the
principle of least astonishment.
- If you leave the name in the driver_t struct as "foo" and only
change the names in the DRIVER_MODULE() declaration to "if_foo" then
attaching drivers to child devices doesn't work because the names don't
agree. This breaks miibus: drivers that need to have miibuses and PHY
drivers attached never get them.
In other words: damned if you do, damned if you don't.
This needs to be thought through some more. Since the drivers that
use miibus are broken, I have to change these all back in order to
make them work again. Yes this will stop ifconfig from being able
to demand load driver modules. On the whole, I'd rather have that
than having the drivers not work at all.
the Davicom DM9100 and DM9102 chipsets, including the Jaton Corporation
XPressNet. Datasheet is available from www.davicom8.com.
The DM910x chips are still more tulip clones. The API is reproduced
pretty faithfully, unfortunately the performance is pretty bad. The
transmitter seems to have a lot of problems DMAing multi-fragment
packets. The only way to make it work reliably is to coalesce transmitted
packets into a single contiguous buffer. The Linux driver (written by
Davicom) actually does something similar to this. I can't recomment this
NIC as anything more than a "connectivity solution."
This driver uses newbus and miibus and is supported on both i386
and alpha platforms.