This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
for better structure.
Much of this is related to <sys/clock.h>, which should really have
been called <sys/calendar.h>, but unless and until we need the name,
the repocopy can wait.
In general the kernel does not know about minutes, hours, days,
timezones, daylight savings time, leap-years and such. All that
is theoretically a matter for userland only.
Parts of kernel code does however care: badly designed filesystems
store timestamps in local time and RTC chips almost universally
track time in a YY-MM-DD HH:MM:SS format, and sometimes in local
timezone instead of UTC. For this we have <sys/clock.h>
<sys/time.h> on the other hand, deals with time_t, timeval, timespec
and so on. These know only seconds and fractions thereof.
Move inittodr() and resettodr() prototypes to <sys/time.h>.
Retain the names as it is one of the few surviving PDP/VAX references.
Move startrtclock() to <machine/clock.h> on relevant platforms, it
is a MD call between machdep.c/clock.c. Remove references to it
elsewhere.
Remove a lot of unnecessary <sys/clock.h> includes.
Move the machdep.disable_rtc_set sysctl to subr_rtc.c where it belongs.
XXX: should be kern.disable_rtc_set really, it's not MD.
filesystem-specific vnode data to the struct vnode. Provide the
default implementation for the vop_advlock and vop_advlockasync.
Purge the locks on the vnode reclaim by using the lf_purgelocks().
The default implementation is augmented for the nfs and smbfs.
In the nfs_advlock, push the Giant inside the nfs_dolock.
Before the change, the vop_advlock and vop_advlockasync have taken the
unlocked vnode and dereferenced the fs-private inode data, racing with
with the vnode reclamation due to forced unmount. Now, the vop_getattr
under the shared vnode lock is used to obtain the inode size, and
later, in the lf_advlockasync, after locking the vnode interlock, the
VI_DOOMED flag is checked to prevent an operation on the doomed vnode.
The implementation of the lf_purgelocks() is submitted by dfr.
Reported by: kris
Tested by: kris, pho
Discussed with: jeff, dfr
MFC after: 2 weeks
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.
Highlights include:
* Thread-safe kernel RPC client - many threads can use the same RPC
client handle safely with replies being de-multiplexed at the socket
upcall (typically driven directly by the NIC interrupt) and handed
off to whichever thread matches the reply. For UDP sockets, many RPC
clients can share the same socket. This allows the use of a single
privileged UDP port number to talk to an arbitrary number of remote
hosts.
* Single-threaded kernel RPC server. Adding support for multi-threaded
server would be relatively straightforward and would follow
approximately the Solaris KPI. A single thread should be sufficient
for the NLM since it should rarely block in normal operation.
* Kernel mode NLM server supporting cancel requests and granted
callbacks. I've tested the NLM server reasonably extensively - it
passes both my own tests and the NFS Connectathon locking tests
running on Solaris, Mac OS X and Ubuntu Linux.
* Userland NLM client supported. While the NLM server doesn't have
support for the local NFS client's locking needs, it does have to
field async replies and granted callbacks from remote NLMs that the
local client has contacted. We relay these replies to the userland
rpc.lockd over a local domain RPC socket.
* Robust deadlock detection for the local lock manager. In particular
it will detect deadlocks caused by a lock request that covers more
than one blocking request. As required by the NLM protocol, all
deadlock detection happens synchronously - a user is guaranteed that
if a lock request isn't rejected immediately, the lock will
eventually be granted. The old system allowed for a 'deferred
deadlock' condition where a blocked lock request could wake up and
find that some other deadlock-causing lock owner had beaten them to
the lock.
* Since both local and remote locks are managed by the same kernel
locking code, local and remote processes can safely use file locks
for mutual exclusion. Local processes have no fairness advantage
compared to remote processes when contending to lock a region that
has just been unlocked - the local lock manager enforces a strict
first-come first-served model for both local and remote lockers.
Sponsored by: Isilon Systems
PR: 95247 107555 115524 116679
MFC after: 2 weeks
Removed dead code that assumed that M_TRYWAIT can return NULL; it's not true
since the advent of MBUMA.
Reviewed by: arch
There are ongoing disputes as to whether we want to switch to directly using
UMA flags M_WAITOK/M_NOWAIT for mbuf(9) allocation.
BO_LOCK/UNLOCK/MTX when manipulating the bufobj.
- Create a new lock in the bufobj to lock bufobj fields independently.
This leaves the vnode interlock as an 'identity' lock while the bufobj
is an io lock. The bufobj lock is ordered before the vnode interlock
and also before the mnt ilock.
- Exploit this new lock order to simplify softdep_check_suspend().
- A few sync related functions are marked with a new XXX to note that
we may not properly interlock against a non-zero bv_cnt when
attempting to sync all vnodes on a mountlist. I do not believe this
race is important. If I'm wrong this will make these locations easier
to find.
Reviewed by: kib (earlier diff)
Tested by: kris, pho (earlier diff)
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
mount options that mount_nfs could pass down, if it passed
down string mount options. Right now, mount_nfs jut passes
down a single mount option named "nfs_args" with a fully
initialized 'struct nfs_args'.
In future commits, we will add code to the kernel for parsing stringified
NFS mount options, so that we can convert mount_nfs to pass string options
from userspace to kernel, instead of an initialized struct nfs_args.
the same way that it is default initialized in revision 1.77 of mount_nfs.c.
Right now, this is a no-op, because currently we initialize
struct nfs_args in mount_nfs in userspace, and pass it
down into the kernel via nmount(), so we overwrite whatever we initialize
here with the value passed in from userspace.
However, this lays the groundwork for moving away from passing
struct nfs_args from userspace to kernel via nmount(), so that we
can instead pass string mount options via nmount() which can be parsed in
the kernel. This will make it easier to add new NFS mount options.
always curthread.
As KPI gets broken by this patch, manpages and __FreeBSD_version will be
updated by further commits.
Tested by: Andrea Barberio <insomniac at slackware dot it>
namespace in order to handle lockmgr fields in a controlled way instead
than spreading all around bogus stubs:
- VN_LOCK_AREC() allows lock recursion for a specified vnode
- VN_LOCK_ASHARE() allows lock sharing for a specified vnode
In FFS land:
- BUF_AREC() allows lock recursion for a specified buffer lock
- BUF_NOREC() disallows recursion for a specified buffer lock
Side note: union_subr.c::unionfs_node_update() is the only other function
directly handling lockmgr fields. As this is not simple to fix, it has
been left behind as "sole" exception.
file system. In particular, stop overwriting mount point
flags in nfs_mountdiskless() because now they are set
elsewhere. (They were _initialized_ by that function in
the 4.4BSD days, when mount structures were not allocated
in a centralized manner -- see rev. 1.1 of this file.)
Fix nfs_mount(), which happened to depend on the loss of
MNT_ROOTFS when it came to update handling.
Also note that mountnfs() no longer handles updates. Now
they shouldn't reach this function, so printf a diagnostic
message if that happens due to a coding error.
A couple of notes for this:
* WITNESS support, when enabled, is only used for shared locks in order
to avoid problems with the "disowned" locks
* KA_HELD and KA_UNHELD only exists in the lockmgr namespace in order
to assert for a generic thread (not curthread) owning or not the
lock. Really, this kind of check is bogus but it seems very
widespread in the consumers code. So, for the moment, we cater this
untrusted behaviour, until the consumers are not fixed and the
options could be removed (hopefully during 8.0-CURRENT lifecycle)
* Implementing KA_HELD and KA_UNHELD (not surported natively by
WITNESS) made necessary the introduction of LA_MASKASSERT which
specifies the range for default lock assertion flags
* About other aspects, lockmgr_assert() follows exactly what other
locking primitives offer about this operation.
- Build real assertions for buffer cache locks on the top of
lockmgr_assert(). They can be used with the BUF_ASSERT_*(bp)
paradigm.
- Add checks at lock destruction time and use a cookie for verifying
lock integrity at any operation.
- Redefine BUF_LOCKFREE() in order to not use a direct assert but
let it rely on the aforementioned destruction time check.
KPI results evidently broken, so __FreeBSD_version bumping and
manpage update result necessary and will be committed soon.
Side note: lockmgr_assert() will be used soon in order to implement
real assertions in the vnode namespace replacing the legacy and still
bogus "VOP_ISLOCKED()" way.
Tested by: kris (earlier version)
Reviewed by: jhb
nfs_xid_gen() function instead of duplicating the logic in both
nfsm_rpchead() and the NFS3ERR_JUKEBOX handling in nfs_request().
MFC after: 1 week
Submitted by: mohans (a long while ago)
historical relic, and are no longer appropriate for either LAN or WAN
mounting. At modern (gigabit and 10 gigabit) LAN speeds packet loss
from socket buffer fill events is common, and sequence numbers wrap
quickly enough that data corruption is possible. TCP solves both of
these problems without imposing significant overhead.
MFC after: 1 month
owned by a NULL owner. This will lead consequent VOP_ISLOCKED() present
into nfs_upgrade_vnlock() to panic as it only acquire curthread now.
Fix nfs_upgrade_vnlock() and nfs_downgrade_vnlock() in order to not use
more the struct thread pointer passed as argument (as it is really nomore
required there as vn_lock() and VOP_UNLOCK doesn't get the lock more).
Using curthread, in place, doesn't get ambiguity as LK_EXCLOTHER should
be handled as a "not locked" request by both functions.
Reported by: kris
Tested by: kris
Reviewed by: ups
VOP_ISLOCKED(arg, curthread). Now, VOP_ISLOCKED() and lockstatus() should
only acquire curthread as argument; this will lead in axing the additional
argument from both functions, making the code cleaner.
Reviewed by: jeff, kib
- Remove the "thread" argument from the lockmgr() function as it is
always curthread now
- Axe lockcount() function as it is no longer used
- Axe LOCKMGR_ASSERT() as it is bogus really and no currently used.
Hopefully this will be soonly replaced by something suitable for it.
- Remove the prototype for dumplockinfo() as the function is no longer
present
Addictionally:
- Introduce a KASSERT() in lockstatus() in order to let it accept only
curthread or NULL as they should only be passed
- Do a little bit of style(9) cleanup on lockmgr.h
KPI results heavilly broken by this change, so manpages and
FreeBSD_version will be modified accordingly by further commits.
Tested by: matteo
lockmgr lkp, when held in exclusive mode, is recursed
- Introduce the function BUF_RECURSED() which does the same for bufobj
locks based on the top of lockmgr_recursed()
- Introduce the function BUF_ISLOCKED() which works like the counterpart
VOP_ISLOCKED(9), showing the state of lockmgr linked with the bufobj
BUF_RECURSED() and BUF_ISLOCKED() entirely replace the usage of bogus
BUF_REFCNT() in a more explicative and SMP-compliant way.
This allows us to axe out BUF_REFCNT() and leaving the function
lockcount() totally unused in our stock kernel. Further commits will
axe lockcount() as well as part of lockmgr() cleanup.
KPI results, obviously, broken so further commits will update manpages
and freebsd version.
Tested by: kris (on UFS and NFS)
conjuction with 'thread' argument passing which is always curthread.
Remove the unuseful extra-argument and pass explicitly curthread to lower
layer functions, when necessary.
KPI results broken by this change, which should affect several ports, so
version bumping and manpage update will be further committed.
Tested by: kris, pho, Diego Sardina <siarodx at gmail dot com>
via a new socket during an NFS operation as that reconnect takes place in
the context of an arbitrary thread with an arbitrary credential. Ideally
we would like to use the mount point's credential for the entire process
of setting up the socket to connect to the NFS server. Since some of the
APIs (sobind(), etc.) only take a thread pointer and infer the credential
from that instead of a direct credential, work around the problem by
temporarily changing the current thread's credential to that of the mount
point while connecting the socket and then reverting back to the original
credential when we are done.
Reviewed by: rwatson
Tested on: UDP, TCP, TCP with forced reconnect
soconnect()) instead of &thread0 when establishing a connection to the NFS
server. Otherwise inconsistent credentials may be used when setting up
the NFS socket.
MFC after: 1 week
Reviewed by: rwatson
Remove this argument and pass curthread directly to underlying
VOP_LOCK1() VFS method. This modify makes the code cleaner and in
particular remove an annoying dependence helping next lockmgr() cleanup.
KPI results, obviously, changed.
Manpage and FreeBSD_version will be updated through further commits.
As a side note, would be valuable to say that next commits will address
a similar cleanup about VFS methods, in particular vop_lock1 and
vop_unlock.
Tested by: Diego Sardina <siarodx at gmail dot com>,
Andrea Di Pasquale <whyx dot it at gmail dot com>
server-side RPC retranmission cache for non-idempotent operations: these
hacks substituted 0 (success) for the expected EEXIST in the event that
a target name already existed for LINK, SYMLINK, and MKDIR operations,
under the assumption that EEXIST represented a second application of the
original RPC rather than a true failure.
Background: certain NFS operations (in this case, LINK, SYMLINK, and
MKDIR) are not idempotent, as they leave behind persisting state on the
server that prevents them from being replayed without an error;if an UDP
RPC reply is lost leading to a retransmission by theclient, the second
reply will return EEXIST rather than success, asthe new object has
already been created. The NFS client previouslysilently mapped the
EEXIST return into success to paper over thisproblem.
However, in all modern NFS server implementations, a reply cache is kept
in order to retransmit the original reply to a retransmitted request,
rather than performing the operation a second time, allowing this hack
to be avoided. This allows link()-based filelocking over NFS to operate
correctly, as an application requestingthe creation of a new link for a
file to tell if it succeededatomically or not.
Other NFS clients, including Solaris and Linux, generally follow this
behavior for the same reasons. Most clients also now default to TCP,
which also helps avoid the issue of retransmitted but non-idempotent
requests in most cases.
Reported by: Adam McDougall <mcdouga9 at egr dot msu dot edu>,
Timo Sirainen <tss at iki dot fi>
Reviewed by: mohans
MFC after: 1 week
noatime, noexec, suiddir, nosuid, nosymfollow, union,
noclusterr, noclusterw, multilabel, acls, force, update,
async. These options correspond to MOPT_STDOPTS, MOPT_FORCE, MOPT_UPDATE,
and MOPT_ASYNC.
Currently, mount_nfs converts these "-o" options from strings
to MNT_ flags via getmntopts(),
and passes the flags from userspace to the kernel.
This change will allow us in future to pass these mount options
as strings directly to the kernel via nmount() when doing NFS mounts.
to kproc_xxx as they actually make whole processes.
Thos makes way for us to add REAL kthread_create() and friends
that actually make theads. it turns out that most of these
calls actually end up being moved back to the thread version
when it's added. but we need to make this cosmetic change first.
I'd LOVE to do this rename in 7.0 so that we can eventually MFC the
new kthread_xxx() calls.
- Eliminate the hideous nfs_sndlock that serialized NFS/TCP request senders
thru the sndlock.
- Institute a new nfs_connectlock that serializes NFS/TCP reconnects. Add
logic to wait for pending request senders to finish sending before
reconnecting. Dial down the sb_timeo for NFS/TCP sockets to 1 sec.
- Break out the nfs xid manipulation under a new nfs xid lock, rather than
over loading the nfs request lock for this purpose.
- Fix some of the locking in nfs_request.
Many thanks to Kris Kennaway for his help with this and for initiating the
MP scaling analysis and work. Kris also tested this patch thorougly.
Approved by: re@ (Ken Smith)
timeout occurring at exactly the same time. If this happens, the nfsiod
exits although there may be a queued async IO request for it.
Found by : Kris Kennaway
Approved by: re
previously conditionally acquired Giant based on debug.mpsafenet. As that
has now been removed, they are no longer required. Removing them
significantly simplifies error-handling in the socket layer, eliminated
quite a bit of unwinding of locking in error cases.
While here clean up the now unneeded opt_net.h, which previously was used
for the NET_WITH_GIANT kernel option. Clean up some related gotos for
consistency.
Reviewed by: bz, csjp
Tested by: kris
Approved by: re (kensmith)
nfsnode could lead to attrs being stale. One example (that we
ran into) was a READDIR+, WRITE. The responses came back in
order, but the attrs from the WRITE were loaded before the
attrs from the READDIR+, leading to the wrong size from being
read on the next stat() call.
MFC after: 1 week
Submitted by: mohans
Approved by: re (kensmith)
recoverable and unrecoverable. For the former, we redirty the
buffer and hang onto it for future retries. For the latter (eg.
ESTALE), we discard the buffer and return the error back to the
user on the next syscall. This fixes a number of vfs panics and
fixes having a large number of dirty buffers (that cannot be
written out and reclaimed) from hanging around. Thanks to ups@
for discussions on this issue.
Reported by: kris, Kai, others
Approved by: re (kensmith)
Now, we assume no more sched_lock protection for some of them and use the
distribuited loads method for vmmeter (distribuited through CPUs).
Reviewed by: alc, bde
Approved by: jeff (mentor)
td_ru. This removes the requirement for per-process synchronization in
statclock() and mi_switch(). This was previously supported by
sched_lock which is going away. All modifications to rusage are now
done in the context of the owning thread. reads proceed without locks.
- Aggregate exiting threads rusage in thread_exit() such that the exiting
thread's rusage is not lost.
- Provide a new routine, rufetch() to fetch an aggregate of all rusage
structures from all threads in a process. This routine must be used
in any place requiring a rusage from a process prior to it's exit. The
exited process's rusage is still available via p_ru.
- Aggregate tick statistics only on demand via rufetch() or when a thread
exits. Tick statistics are kept in the thread and protected by sched_lock
until it exits.
Initial patch by: attilio
Reviewed by: attilio, bde (some objections), arch (mostly silent)
Probabilly, a general approach is not the better solution here, so we should
solve the sched_lock protection problems separately.
Requested by: alc
Approved by: jeff (mentor)
lock and unlock conditionally, not just set the flag on it conditionally.
In practice, this bug couldn't manifest, as in the current revision of
the code, no callers pass a NULL rep.
CID: 1416
Found with: Coverity Prevent(tm)
vmcnts. This can be used to abstract away pcpu details but also changes
to use atomics for all counters now. This means sched lock is no longer
responsible for protecting counts in the switch routines.
Contributed by: Attilio Rao <attilio@FreeBSD.org>
- Fix for a bug where a close would not wait for all (directio)
dirty buffers to drain. The nfsnode was not marked NMODIFIED
when there were directio dirtied buffers pending, causing this.
- No reason to vhold/vrele the vp when enqueueing DirectIO requests
for the nfsiods. The vnode can't really go way since the close
has to wait for these requests to drain.
MFC after: 1 week
Submitted by: mohans
- Replace PRIV_NFSD with PRIV_NFS_DAEMON, add PRIV_NFS_LOCKD.
- Use PRIV_NFS_DAEMON in the NFS server.
- In the NFS client, move the privilege check from nfslockdans(), which
occurs every time a write is performed on /dev/nfslock, and instead do it
in nfslock_open() just once. This allows us to avoid checking the saved
uid for root, and just use the effective on open. Use PRIV_NFS_LOCKD.
late stages of unmount). On failure, the vnode is recycled.
Add insmntque1(), to allow for file system specific cleanup when
recycling vnode on failure.
Change getnewvnode() to no longer call insmntque(). Previously,
embryonic vnodes were put onto the list of vnode belonging to a file
system, which is unsafe for a file system marked MPSAFE.
Change vfs_hash_insert() to no longer lock the vnode. The caller now
has that responsibility.
Change most file systems to lock the vnode and call insmntque() or
insmntque1() after a new vnode has been sufficiently setup. Handle
failed insmntque*() calls by propagating errors to callers, possibly
after some file system specific cleanup.
Approved by: re (kensmith)
Reviewed by: kib
In collaboration with: kib
GETATTRs being generated - one from lookup()/namei() and the other
from nfs_open() (for cto consistency). This change eliminates the
GETATTR in nfs_open() if an otw GETATTR was done from the namei()
path. Instead of extending the vop interface, we timestamp each attr
load, and use this to detect whether a GETATTR was done from namei()
for this syscall. Introduces a thread-local variable that counts the
syscalls made by the thread and uses <pid, tid, thread syscalls> as
the attrload timestamp. Thanks to jhb@ and peter@ for a discussion on
thread state that could be used as the timestamp with minimal overhead.
SOCK_DGRAM (i.e. UDP), respect the value configured earlier. This allows
TCP NFS root mounts using e.g. the boot.nfsroot.options="tcp" tunable.
In this case some of the connection parameters like the retry timer were
previously set appropriately for TCP but inappropriately for the UDP
socket that was actually used, leading to e.g. extremely long recovery
times (O(hours)) after a nfs server reboot.
Reviewed by: mohans
MFC After: 2 weeks