can't do a timeout bigger than 15 seconds. The code wasn't checking for
this and because bitmasking was involved the requested timeout was
basically adjusted modulo-16. That led to things like a 128 second
timeout actually being a 9 second timeout, which accidentally worked fine
until watchdogd was changed to only pet the dog once every 10 seconds.
that expose new bugs with HS mode.
When the old code could not do the proper card detection it would boot with
lower defaults (and no HS mode) and this makes some HS cards boots.
Now, with the card always identified as HS capable, the sdhci controller
tries to run the card at HS speeds and makes the boot always fail.
Disable the HS mode for now (which still can be enabled with the tunable)
until it is properly fixed.
MFC with: r273264
Requested by: many
unit 0.
It seems that this 'simplification' was copied to all GPIO drivers in tree.
This fix a bug where a GPIO controller could fail to attach its children
(gpioc and gpiobus) if another GPIO driver attach first.
used for kernel devices it is used by i2c(8).
This fix the 'error: Device not configured' when i2c(8) tries to reset the
controller, as an example:
# i2c -r
Resetting I2C controller on /dev/iic0: error: Device not configured
For now use conservative settings for default i2c speeds.
MFC after: 1 week
EWOULDBLOCK.
Do not print any message at errors. The errors are properly sent to upper
layers which should be able to deal with it, including printing the errors
when they need to.
The error message was quite annoying while scanning the i2c bus.
MFC after: 1 week
This fix a race where the threads waiting for the bus would wake up early
and still see bus as busy.
While here, give a better description to wmesg for the two use cases we
have (bus and io waiting).
MFC after: 1 week
lose the contents of consecutive writes (that happens within two SD card
clock cycles).
This fixes the causes of instability during the SD card detection and
identification on Raspberry Pi (which happens at 400 kHz and so was much
more vulnerable to this issue).
Remove the previous workaround which clearly can't provide the same effect.
MFC after: 1 week
Relnotes: yes
(7-bit device address << 1), always leaving the room for the read/write bit.
This commit convert ti_i2c and revert r259127 on bcm2835_bsc to make them
compatible with 8-bit addresses. Previous to this commit an i2c device
would have different addresses depending on the controller it was attached
to (by example, when compared to any iicbb(4) based i2c controller), which
was a pretty annoying behavior.
Also, update the PMIC i2c address on beaglebone* DTS files to match the new
address scheme.
Now the userland utilities need to do the correct slave address shifting
(but it is going to work with any i2c controller on the system).
Discussed with: ian
MFC after: 2 weeks
platform code, it is expected these will be merged in the future when the
ARM code is more complete.
Until more boards can be tested only use this with the Raspberry Pi and
rrename the functions on the other SoCs.
Reviewed by: ian@
and the functionality it provided into arm/exception.S. Rename the main
irq handling routine from arm_handler_execute() to arm_irq_handler() to
make it more congruent with how other exception handlers are named, and
also update its signature to reflect what has long been reality: it is
passed just a trapframe pointer, no interrupt number argument.
appropriate for each of the 'foo' in the tree. This will allow us to
compile them together (although symbol conflicts prevent us from doing
that today, this just fixes the file name collision).
implementation in arm/machdep.c. Most arm platforms either don't need to
do anything, or just need to call the standard eventtimer init routines.
A generic implementation that does that is now provided via weak linkage.
Any platform that needs to do something different can provide a its own
implementation to override the generic one.
change the gpio children can be described as directly connected to the GPIO
controller without the need of describing the OFW GPIO bus itself on the
DTS file.
With this commit the OFW GPIO bus is fully functional on BBB and RPi.
GPIO controllers which want to use the OFW GPIO bus will need similar
changes.
Approved by: adrian (mentor, implicit)
a sub-node of nexus (ofwbus) rather than direct attach under nexus. This
fixes FDT on x86 and will make coexistence with ACPI on ARM systems easier.
SPARC is unchanged.
Reviewed by: imp, ian
to check the status property in their probe routines.
Simplebus used to only instantiate its children whose status="okay"
but that was improper behavior, fixed in r261352. Now that it doesn't
check anymore and probes all its children; the children all have to
do the check because really only the children know how to properly
interpret their status property strings.
Right now all existing drivers only understand "okay" versus something-
that's-not-okay, so they all use the new ofw_bus_status_okay() helper.
shifts into the sign bit. Instead use (1U << 31) which gets the
expected result.
This fix is not ideal as it assumes a 32 bit int, but does fix the issue
for most cases.
A similar change was made in OpenBSD.
Discussed with: -arch, rdivacky
Reviewed by: cperciva
rely only on checking the device unit to indentify the BSC unit we are
attaching to. Make use of the device base address to identify our BSC unit.
Approved by: adrian (mentor)
fdtbus in most cases. This brings ARM and MIPS more in line with existing
Open Firmware platforms like sparc64 and powerpc, as well as preventing
double-enumeration of the OF tree on embedded PowerPC (first through nexus,
then through fdtbus).
This change is also designed to simplify resource management on FDT platforms
by letting there exist a platform-defined root bus resource_activate() call
instead of replying on fdtbus to do the right thing through fdt_bs_tag.
The OFW_BUS_MAP_INTR() and OFW_BUS_CONFIG_INTR() kobj methods are also
available to implement for similar purposes.
Discussed on: -arm, -mips
Tested by: zbb, brooks, imp, and others
MFC after: 6 weeks
static device mappings, rather than as the first of the initializations
that a platform can hook into. This allows a platform to allocate KVA
from the top of the address space downwards for things like static device
mapping, and return the final "last usable address" result after that and
other early init work is done.
Because some platforms were doing work in initarm_lastaddr() that needs to
be done early, add a new initarm_early_init() routine and move the early
init code to that routine on those platforms.
Rename platform_devmap_init() to initarm_devmap_init() to match all the
other init routines called from initarm() that are designed to be
implemented by platform code.
Add a comment block that explains when these routines are called and the
type of work expected to be done in each of them.
new devmap.[ch] files. Emphasize the MD nature of these things by using
the prefix arm_devmap_ on the function and type names (already a few of
these things found their way into MI code, hopefully it will be harder to
do by accident in the future).
The only remaining user was the code that allocates bounce pages for armv4
busdma. It's not clear why bounce pages would need uncached memory, but
if that ever changes, kmem_alloc_attr() would be the way to get it.
really need it. That would be almost everywhere it was included. Add
it in a couple files that really do need it and were previously getting
it by accident via another header.
included by vm/pmap.h, which is a prerequisite for arm/machine/pmap.h
so there's no reason to ever include it directly.
Thanks to alc@ for pointing this out.