RAD_MICROSOFT_MS_MPPE_ENCRYPTION_POLICY
RAD_MICROSOFT_MS_MPPE_ENCRYPTION_TYPES
RAD_MICROSOFT_MS_MPPE_RECV_KEY
RAD_MICROSOFT_MS_MPPE_SEND_KEY
These attributes may be supplied by a RADIUS server when MSCHAPv2 is
used to authenticate.
It *should* now be possible to build ppp with -DNODES and still support
CHAP/MSCHAP/MSCHAPv2/MPPE via a RADIUS server, but the code isn't yet
smart enough to do that (building with -DNODES just looses these
facilities).
Sponsored by: Monzoon
o Bump version number to 3.0.4
o When talking to a RADIUS server, provide a NAS-Port-Type.
When the NAS-Port-Type is Ethernet, provide a NAS-Port value equal
to the SESSIONID from the environment in direct mode or the
NGM_PPPOE_SESSIONID message in other modes. If no SESSIONID is found,
default to the interface index in client mode or zero in server mode.
When the NAS-Port-Type is ISDN, set the NAS-Port to the minor number
of the physical device (ie, the N in /dev/i4brbchN).
This makes it easier for the RADIUS server to identify the client
WRT accounting data etc.
Prompted by: lsz8425 <lsz8425@mail.cd.hn.cn>
instead of u_char *.
The changes are cosmetic except:
RecvConfigAck() now displays the options that are being ACK'd
Huge (bogus) options sent from the peer won't cause an infinite loop
SendIdent and ReceiveIdent are displayed consistenlty with other FSM data
LCP AUTHPROTO options that aren't understood are NAK'd, not REJ'd
discipline to do the async escaping, but no other benefits are available yet.
Change ``ifdef HAVE_DES'' to ``ifndef NODES'' for consistency.
Make the Makefile a little more sane WRT RELEASE_CRUNCH.
structures (well, they're treated as opaque).
It's now possible to manage IPv6 interface addresses and routing
table entries and to filter IPV6 traffic whether encapsulated or
not.
IPV6CP support is crude for now, and hasn't been tested against
any other implementations.
RADIUS and IPv6 are independent of eachother for now.
ppp.linkup/ppp.linkdown aren't currently used by IPV6CP
o Understand all protocols(5) in filter rules rather than only a select
few.
o Allow a mask specification for the ``delete'' command. It's now
possible to specifically delete one of two conflicting routes.
o When creating and deleting proxy arp entries, do it for all IPv4
interface addresses rather than doing it just for the ``current''
peer address.
o When iface-alias isn't in effect, don't blow away manually (via ``iface
add'') added interface addresses.
o When listening on a tcp server (diagnostic) socket, bind so that a
tcp46 socket is created -- allowing both IPv4 and IPv6 connections.
o When displaying ICMP traffic, don't display the icmp type twice.
When display traffic, display at least some information about unrecognised
traffic.
o Bump version
Inspired after filtering work by: Makoto MATSUSHITA <matusita@jp.FreeBSD.org>
This is necessary because MPPE will combine the protocol id with the
payload received on the tun interface, encrypt it, then prepend its
own protocol id, effectively increasing the payload by two bytes.
encryption compatibility with Windows 2000. Stateful encryption
uses less CPU but is bad on lossy transports.
The ``set mppe'' command has been expanded. If it's used with any
arguments, ppp will insist on encryption, closing LCP if the other
end refuses.
Unfortunately, Microsoft have abused the CCP reset request so that
receiving a reset request does not result in a reset ack when using
MPPE...
Sponsored by: Monzoon Networks AG and FreeBSD Services Limited
is called prior to sending a CCP configure request for a
given protocol. The default is to send the request, but
this is overridden for MPPE which checks to see if the lcp
negotiations agreed CHAP81, and if not fails.
Use the same function to decide if we should reject peer
requests for MPPE.
This should get rid of those boring messages about not being
able to initialise MPPE when we don't negotiate CHAP81.
0.81.1 of the i4b code - namely support of the I4B_VR_REQ
ioctl via the i4brbchX device.
Ppp controls the phone number, but idle timers and
SYNC/RAW decisions are still made by isdnd (in isdnd.rc).
This involves a new datalink state machine phase. The
``wait for carrier'' phase happens after dialing but
before logging in. The whole dial state should really
be abstracted so that each device type can deal with it
in its own way (thinking about PPPoE) - but that'll have
to wait.
The ``set cd'' symantics remain the same for tty devices,
but we now delay until we either get CD or timeout waiting
(at which time we drop the link if we require CD).
For i4b devices we always insist on carrier.
Thanks to hm@ for his help, and especially for pointing out
that I *don't* need to re-implement isdnd (that was a huge
waste of time !) :-]
o Show more information about missing MP fragments in ``show mp''.
o Do away with mbuf_Log(). It was showing mbuf stats twice on
receipt of LCP/CCP/IPCP packets.... ???!!?
o Pre-allocate a bit extra when creating LQR packets to avoid having
to allocate another mbuf in mbuf_Prepend().
being the same as the previous (still supported) ``host:port''
syntax for tcp socket devices.
A udp device uses synchronous ppp rather than async, and avoids
the double-retransmit overhead that comes with ppp over tcp (it's
usually a bad idea to transport IP over a reliable transport that
itself is using an unreliable transport). PPP over UDP provides
througput of ** 1.5Mb per second ** with all compression disabled,
maxing out a PPro/200 when running ppp twice, back-to-back.
This proves that PPPoE is plausable in userland....
This change adds a few more handler functions to struct device and
allows derivations of struct device (which may contain their own
data etc) to pass themselves through the unix domain socket for MP.
** At last **, struct physical has lost all the tty crud !
iov2physical() is now smart enough to restore the correct stack of
layers so that MP servers will work again.
The version number has bumped as our MP link transfer contents have
changed (they now may contain a `struct device').
Don't extract the protocol twice in MP mode (resulting in protocol
rejects for every MP packet). This was broken with my original
layering changes.
Add ``Physical'' and ``Sync'' log levels for logging the relevent
raw packets and add protocol-tracking LogDEBUG stuff in various
LayerPush & LayerPull functions.
Assign our physical device name for incoming tcp connections by
calling getpeername().
Assign our physical device name for incoming udp connections from
the address retrieved by the first recvfrom().
header in fsm_Input() we often end up with a NULL mbuf.
Deal with a possible NULL mbuf being passed into
mbuf_Prepend().
Adjust some spacing to make things more consistent.
the layering.
We now ``stack'' layers as soon as we open the device (when we figure
out what we're dealing with). A static set of `dispatch' routines are
also declared for dealing with incoming packets after they've been
`pulled' up through the stacked layers.
Physical devices are now assigned handlers based on the device type
when they're opened. For the moment there are three device types;
ttys, execs and tcps.
o Increment version number to 2.2
o Make an entry in [uw]tmp for non-tty -direct invocations (after
pap/chap authentication).
o Make throughput counters quad_t's
o Account for the absolute number of mbuf malloc()s and free()s in
``show mem''.
o ``show modem'' becomes ``show physical''.
when we've simply missed a packet.
When our Predictor1 CRC is wrong (implying we've dropped
a packet), don't send a ResetReq(). Instead, send another
CCP ConfigReq(). *shrug* My tests show this as being far
worse than the ResetReq as we may have further Nak/Rejs etc
and we're basically resetting both our incoming and outgoing
compression dictionaries, but rfc1978 says the ConfigReq is
correct, so we'd better go along...
that are made in each of the FSMs (LCP, CCP & IPCP) and the
number of REQs/Challenges for PAP/CHAP by accepting more arguments
in the ``set {c,ip,l}cpretry'' and ``set {ch,p}apretry'' commands.
Change the non-convergence thresholds to 3 times the number of configured
REQ tries (rather than the previous fixed ``10''). We now notice
repeated NAKs and REJs rather than just REQs.
Don't suggest that CHAP 0x05 isn't supported when it's not configured.
Fix some bugs that expose themselves with smaller numbers of retries:
o Handle instantaneous disconnects (set device /dev/null) correctly
by stopping all fsm timers in fsm2initial.
o Don't forget to uu_unlock() devices that are files but are not
ttys (set device /dev/zero).
Fix a *HORRENDOUS* bug in RFC1661 (already fixed for an Open event in state
``Closed''):
According to the state transition table, a RCR+ or RCR- received in
the ``Stopped'' state are supposed to InitRestartCounter, SendConfigReq
and SendConfig{Ack,Nak}. However, in ``Stopped'', we haven't yet
done a TLS (or the last thing we did is a TLF). We must therefore
do the TLS at this point !
This was never noticed before because LCP and CCP used not use
LayerStart() for anything interesting, and IPCP tends to go into
Stopped then get a Down because of an LCP RTR rather than getting a
RCR again.
input routines and take advantage of the new init/continue
interface in libradius. This allows a timely response on
other links in an MP setup while RADIUS requests are in
progress as well as the ability to handle other data from
the peer in parallel. It should also make the future addition
of PAM support trivial.
While I'm in there, validate pap & chap header IDs if
``idcheck'' is enabled (the default) for other FSM packet
types.
NOTE: This involved integrating the generation of chap
challenges and the validation of chap responses
(and commenting what's going on in those routines).
I currently have no way of testing ppps ability
to respond to M$Chap CHALLENGEs correctly, so if
someone could do the honours, it'd be much
appreciated (it *looks* ok!).
Sponsored by: Internet Business Solutions Ltd., Switzerland
details. Compiling with -DNORADIUS (the default for `release')
removes support.
TODO: The functionality in libradius::rad_send_request() needs
to be supplied as a set of routines so that ppp doesn't
have to wait indefinitely for the radius server(s). Instead,
we need to get a descriptor back, select() on the descriptor,
and ask libradius to service it when necessary.
For now, ppp blocks SIGALRM while in rad_send_request(), so
it misses PAP/CHAP retries & timeouts if they occur.
Only PAP is functional. When CHAP is attempted, libradius
complains that no User-Password has been specified... rfc2138
says that it *mustn't* be used for CHAP :-(
Sponsored by: Internet Business Solutions Ltd., Switzerland
(see the new ``set callback'' and ``set cbcp'' commands)
o Add a ``cbcp'' log level and mbuf type.
o Don't dump core when \T is given in ``set login'' or
``set hangup''.
o Allow ``*'' and blanks as placeholders in ppp.secret and
allow a fifth field for specifying auth/cbcp dialback
parameters.
o Remove a few extraneous #includes
o Define the default number of REQs (restart counter) in defs.h
rather than hardcoding ``5'' all over the place.
o Fix a few man page inconsistencies.
o If we've denied and disabled all compression protocols, stay
in ST_INITIAL and do an LCP protocol reject if we receive any
CCP packets.
o If we've disabled all compression protocols, go to ST_STOPPED
and wait for the other side to ask for something.
o If we've got anything enabled, start REQing as soon as the auth
layer is up.
o If we're in multilink mode, than the link level CCP goes
straight to ST_STOPPED irrespective of what's configured so that
we never try to compress compressed stuff by default.
o Allow ``set ....'' when we have multiple links but aren't in
multilink mode.
o Do a TLS when we receive a ``Open'' event in ``Closed'' state,
despite the rfc state transition table. This is clearly an
error in the RFC as TLS cannot have yet been called (without
TLF) in the ``Closed'' state.
I've posted a message to comp.protocols.ppp for confirmation.
open capable of re-negotiatiating the various layers.
It is now possible to change various link options and then
re-open the relevant layer, making the changes effective -
for example, switching off VJ compression or starting ECHO
LQRs on-the-fly.
The delay defaults to 1 sec (as it always has) unless we've done
a ~p in interactive mode or we've actually detected a HDLC frame.
This is now cleanly implemented (via async timers) so that it is
possible for LCP to come up despite the delay if an LCP REQ is
received.
This will hopefully solve situations with slow servers or slirp
scenarios (where ECHO is left on the port for a second or so before
the peer enters packet mode).
Also, ~p in interactive mode no longer changes the value of the default
openmode delay and -dedicated mode enters packet mode in the right state
according to the value of openmode.
(I completely mis-read the rfc last time 'round!)
This means:
o Better CCP/WARN Reset diagnostics.
o After we've sent a REQ and before we've received an ACK, we drop
incoming compressed data and send another REQ.
o Before sending an ACK, re-sequence all pending PRI_NORMAL data in
the modem queue so that pending packets won't get to the peer
*after* the ResetAck.
o Send ACKs with the `identifier' from the REQ frame.
o After we've received a correct ACK, duplicate ACKs are ok (and will
reset our history).
o Incorrect ACKs (not matching the last REQ) are moaned about and dropped.
Also,
o Calculate the correct FCS after compressing a packet. DEFLATE
*may* produce an mbuf with more than a single link in the chain,
but HdlcOutput didn't know how to calculate the FCS :-(
o Make `struct fsm'::reqid a u_char, not an int.
This fix will prevent us from sending id `255' 2,000,000,000 times
before wrapping to `0' for another 2,000,000,000 sends :-/
o Bump the version number a little.
The end result: DEFLATE now works over an unreliable link layer.
I can txfr a 1.5Mb kernel over a (rather bad) null-modem
cable at an average of 21679 bytes per second using rcp.
Repeat after me: Don't test compression using a loopback ppp/tcp setup as
we never lose packets and therefore never have to reset!