- Remove the buftimelock mutex and acquire the buf's interlock to protect
these fields instead.
- Hold the vnode interlock while locking bufs on the clean/dirty queues.
This reduces some cases from one BUF_LOCK with a LK_NOWAIT and another
BUF_LOCK with a LK_TIMEFAIL to a single lock.
Reviewed by: arch, mckusick
repeatedly truncate the same file. Each time the file is truncated,
a buffer is grabbed to store the indirect block numbers that need
to be freed. Those blocks cannot be freed until the inode claiming
them is written to disk. Thus, the number of buffers being held by
soft updates explodes and in extreme cases can run the kernel out
of buffers. The problem can be avoided by doing an fsync on the
file every debug.maxindirdep truncates (currently defaulted to 50).
The fsync causes the inode to be written so that the held buffers
can be freed. The check for excessive buffers is checked as part
of the existing hook for excessive dependencies (softdep_slowdown)
in the truncate code.
Reported by: David Schultz <dschultz@uclink.Berkeley.EDU>
Sponsored by: DARPA & NAI Labs.
MFC after: 3 weeks
in half because of reports that under heavy load the kernel could
exhaust its memory pool. The limit is now (desiredvnodes * 4)
rather than (desiredvnodes * 8), so it will still scale with
larger systems, just not as quickly.
Sponsored by: DARPA & NAI Labs.
not have hit the disk and the dependencies cannot be unrolled.
In this case, the system will mark the buffer as dirty again so
that the write can be retried in the future. When the write
succeeds or the system gives up on the buffer and marks it as
invalid (B_INVAL), the dependencies will be cleared.
Sponsored by: DARPA & NAI Labs.
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
As this code is not actually used by any of the existing
interfaces, it seems unlikely to break anything (famous
last words).
The internal kernel interface to manipulate these attributes
is invoked using two new IO_ flags: IO_NORMAL and IO_EXT.
These flags may be specified in the ioflags word of VOP_READ,
VOP_WRITE, and VOP_TRUNCATE. Specifying IO_NORMAL means that
you want to do I/O to the normal data part of the file and
IO_EXT means that you want to do I/O to the extended attributes
part of the file. IO_NORMAL and IO_EXT are mutually exclusive
for VOP_READ and VOP_WRITE, but may be specified individually
or together in the case of VOP_TRUNCATE. For example, when
removing a file, VOP_TRUNCATE is called with both IO_NORMAL
and IO_EXT set. For backward compatibility, if neither IO_NORMAL
nor IO_EXT is set, then IO_NORMAL is assumed.
Note that the BA_ and IO_ flags have been `merged' so that they
may both be used in the same flags word. This merger is possible
by assigning the IO_ flags to the low sixteen bits and the BA_
flags the high sixteen bits. This works because the high sixteen
bits of the IO_ word is reserved for read-ahead and help with
write clustering so will never be used for flags. This merge
lets us get away from code of the form:
if (ioflags & IO_SYNC)
flags |= BA_SYNC;
For the future, I have considered adding a new field to the
vattr structure, va_extsize. This addition could then be
exported through the stat structure to allow applications to
find out the size of the extended attribute storage and also
would provide a more standard interface for truncating them
(via VOP_SETATTR rather than VOP_TRUNCATE).
I am also contemplating adding a pathconf parameter (for
concreteness, lets call it _PC_MAX_EXTSIZE) which would
let an application determine the maximum size of the extended
atribute storage.
Sponsored by: DARPA & NAI Labs.
direct calls for the two places where the kernel calls into soft
updates code. Set up the hooks in softdep_initialize() and NULL
them out in softdep_uninitialize(). This change allows soft updates
to function correctly when ufs is loaded as a module.
Reviewed by: mckusick
module. This adds an ffs_uninit() function that calls ufs_uninit()
and also calls a new softdep_uninitialize() function. Add a stub
for softdep_uninitialize() to cover the non-SOFTUPDATES case.
Reviewed by: mckusick
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
locking flags when acquiring a vnode. The immediate purpose is
to allow polling lock requests (LK_NOWAIT) needed by soft updates
to avoid deadlock when enlisting other processes to help with
the background cleanup. For the future it will allow the use of
shared locks for read access to vnodes. This change touches a
lot of files as it affects most filesystems within the system.
It has been well tested on FFS, loopback, and CD-ROM filesystems.
only lightly on the others, so if you find a problem there, please
let me (mckusick@mckusick.com) know.
the bio and buffer structures to have daddr64_t bio_pblkno,
b_blkno, and b_lblkno fields which allows access to disks
larger than a Terabyte in size. This change also requires
that the VOP_BMAP vnode operation accept and return daddr64_t
blocks. This delta should not affect system operation in
any way. It merely sets up the necessary interfaces to allow
the development of disk drivers that work with these larger
disk block addresses. It also allows for the development of
UFS2 which will use 64-bit block addresses.
without being reclaimed. This bug was introduced in revision 1.95
dealing with filenames placed in newly allocated directory blocks,
thus is not present in 4.X systems. The bug is triggered when a
new entry is made in a directory after the data block containing
the original new entry has been written, but before the inode
that references the data block has been written.
Submitted by: Bill Fenner <fenner@research.att.com>
been unlinked (e.g., with a zero link count). We have to expunge
all trace of these files from the snapshot so that they are neither
reclaimed prematurely by fsck nor saved unnecessarily by dump.
which small and/or nearly full filesystems would fail with `file
system full' messages when trying to replace a number of existing
files (for example during a system installation). When the allocation
routines are about to fail with a file system full condition, they
make a call to softdep_request_cleanup() which attempts to accelerate
the flushing of pending deletion requests in an effort to free up
space. In the face of filesystem I/O requests that exceed the
available disk transfer capacity, the cleanup request could take
an unbounded amount of time. Thus, the softdep_request_cleanup()
routine will only try for tickdelay seconds (default 2 seconds)
before giving up and returning a filesystem full error. Under typical
conditions, the softdep_request_cleanup() routine is able to free
up space in under fifty milliseconds.
lost if some other process uses the lock while we are sleeping. We
restore it after we have slept. This functionality is provided by
a new routine interlocked_sleep() that wraps the interlocking with
functions that sleep. This function is then used in place of the
old ACQUIRE_LOCK_INTERLOCKED() and FREE_LOCK_INTERLOCKED() macros.
Submitted by: Debbie Chu <dchu@juniper.net>
in softdep_sync_metadata(). Otherwise we may miss dependencies
that need to be flushed which will result in a later panic
with the message ``vinvalbuf: dirty bufs''.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
MFC after: 1 week
- Move the SPECIAL_FLAG #define up next to the NOHOLDER #define and fix a
little nit that caused it to be defined as -(sizeof (struct thread) + 1)
instead of -2.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
The symptom being treated in 1.98 was to avoid freeing a
pagedep dependency if there was still a newdirblk dependency
referencing it. That change is correct and no longer prints
a warning message when it occurs. The other part of revision
1.98 was to panic when a newdirblk dependency was encountered
during a file truncation. This fix removes that panic and
replaces it with code to find and delete the newdirblk
dependency so that the truncation can succeed.
incorrect due to a missing check for some dependency. This change
avoids the freelist corruption (but not the temporarily inconsistent
state of the file system).
A message is printed as a reminder of the under lying problem when a
pagedep structure is not freed due to the NEWBLOCK flag being set.
Submitted by: Tor.Egge@fast.no
committed to disk before clearing them. More specifically, when
free_newdirblk is called, we know that the inode claims the new
directory block. However, if the associated pagedep is still linked
onto the directory buffer dependency chain, then some of the entries
on the pd_pendinghd list may not be committed to disk yet. In this
case, we will simply note that the inode claims the block and let
the pd_pendinghd list be processed when the pagedep is next written.
If the pagedep is no longer on the buffer dependency chain, then
all the entries on the pd_pending list are committed to disk and
we can free them in free_newdirblk. This corrects a window of
vulnerability introduced in the code added in version 1.95.
whose name is within that block must ensure not only that the block
containing the file name has been written, but also that the on-disk
directory inode references that block. When a new directory block
is created, we allocate a newdirblk structure which is linked to
the associated allocdirect (on its ad_newdirblk list). When the
allocdirect has been satisfied, the newdirblk structure is moved
to the inodedep id_bufwait list of its directory to await the inode
being written. When the inode is written, the directory entries
are fully committed and can be deleted from their pagedep->id_pendinghd
and inodedep->id_pendinghd lists.
that are committed to being freed and reflect these blocks in the
counts returned by statfs (and thus also by the `df' command). This
change allows programs such as those that do news expiration to
know when to stop if they are trying to create a certain percentage
of free space. Note that this change does not solve the much harder
problem of making this to-be-freed space available to applications
that want it (thus on a nearly full filesystem, you may still
encounter out-of-space conditions even though the free space will
show up eventually). Hopefully this harder problem will be the
subject of a future enhancement.