In line to what is done in UFS, define an internal type
e2fs_lbn_t for the logical block numbers.
This change is basically a no-op as the new type is unchanged
(int32_t) but it may be useful as bumping this may be required
for ext4fs.
Also, as pointed out by Bruce Evans:
-Use daddr_t for daddr in ext2_bmaparray(). This seems to
improve reliability with the reallocblks option.
- Add a cast to the fsbtodb() macro as in UFS.
Reviewed by: bde
MFC after: 3 days
file's size attribute does not get updated. As such, it is necessary
to invalidate the attribute cache before clearing NMODIFIED for pNFS.
MFC after: 2 weeks
enable use of the (no)resvport mount option for NFSv4. I had thought
that the RFC required that non-reserved port #s be allowed, but I couldn't
find it in the RFC.
MFC after: 2 weeks
In the ext2fs driver we have a mixture of headers:
- The ext2_ prefixed headers have strong influence from NetBSD
and are carry specific ext2/3/4 information.
- The unprefixed headers are inspired on UFS and carry implementation
specific information.
Do some small adjustments so that the information is easier to
find coming from either UFS or the NetBSD implementation.
MFC after: 3 days
While the changes in r245820 are in line with the ext2 spec,
the code derived from UFS can use negative values so it is
better to relax some types to keep them as they were, and
somewhat more similar to UFS. While here clean some casts.
Some of the original types are still wrong and will require
more work.
Discussed with: bde
MFC after: 3 days
The superblock in ext2fs defines all the fields as unsigned but for
some reason the in-memory superblock was carrying e2fs_bpg and
e2fs_isize as signed.
We should preserve the specified types for consistency.
MFC after: 5 days
Uncover some, previously reserved, fields that are used by Ext4.
These are currently unused but it is good to have them for future
reference.
Reviewed by: bde
MFC after: 3 days
- Use a shared bufobj lock in getblk() and inmem().
- Convert softdep's lk to rwlock to match the bufobj lock.
- Move INFREECNT to b_flags and protect it with the buf lock.
- Remove unnecessary locking around bremfree() and BKGRDINPROG.
Sponsored by: EMC / Isilon Storage Division
Discussed with: mckusick, kib, mdf
truncated directory for some NFS servers. This turned out to
be because the size of a directory reported by an NFS server
can be smaller that the ufs-like directory created from the
RPC XDR in the client. This patch fixes the problem by changing
r248567 so that vnode_pager_setsize() is only done for regular files.
Reported and tested by: hartmut.brandt@dlr.de
Reviewed by: kib
MFC after: 1 week
for the case when the nullfs vnode is not reclaimed. Otherwise, later
reclamation would not unlock the lower vnode.
Reported by: antoine
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
null_hashget() obtains the reference on the nullfs vnode, which must
be dropped.
- Fix a wart which existed from the introduction of the nullfs
caching, do not unlock lower vnode in the nullfs_reclaim_lowervp().
It should be innocent, but now it is also formally safe. Inform the
nullfs_reclaim() about this using the NULLV_NOUNLOCK flag set on
nullfs inode.
- Add a callback to the upper filesystems for the lower vnode
unlinking. When inactivating a nullfs vnode, check if the lower
vnode was unlinked, indicated by nullfs flag NULLV_DROP or VV_NOSYNC
on the lower vnode, and reclaim upper vnode if so. This allows
nullfs to purge cached vnodes for the unlinked lower vnode, avoiding
excessive caching.
Reported by: G??ran L??wkrantz <goran.lowkrantz@ismobile.com>
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
the page. This both reduces the number of queues locking and avoids
moving the active page to inactive list just because the page was read
or written.
Based on the suggestion by: alc
Reviewed by: alc
Tested by: pho
to cdevpriv(9). This commit changes the semantic of mount_smbfs
in userland as well, which now passes file descriptor in order to
to mount a specific filesystem istance.
Reviewed by: attilio, ed
Tested by: martymac
system crash which happen after successfull fsync() return, the data
is accessible. For msdosfs, this means that FAT entries for the file
must be written.
Since we do not track the FAT blocks containing entries for the
current file, just do a sloppy sync of the devvp vnode for the mount,
which buffers, among other things, contain FAT blocks.
Simultaneously, for deupdat():
- optimize by clearing the modified flags before short-circuiting a
return, if the mount is read-only;
- only ignore the rest of the function for denode with DE_MODIFIED
flag clear when the waitfor argument is false. The directory buffer
for the entry might be of delayed write;
- microoptimize by comparing the updated directory entry with the
current block content;
- try to cluster the write, fall back to bawrite() if low on
resources.
Based on the submission by: bde
MFC after: 2 weeks
insmntque() is called. The standard insmntque destructor resets the
vop vector to deadfs one, and calls vgone() on the vnode. As result,
v_object is kept unchanged, which triggers an assertion in the reclaim
code, on instmntque() failure. Also, in this case, OBJ_TMPFS flag on
the backed vm object is not cleared.
Provide the tmpfs insmntque() destructor which properly clears
OBJ_TMPFS flag and resets v_object.
Reported and tested by: pho
Sponsored by: The FreeBSD Foundation
vnode v_object to avoid double-buffering. Use the same object both as
the backing store for tmpfs node and as the v_object.
Besides reducing memory use up to 2x times for situation of mapping
files from tmpfs, it also makes tmpfs read and write operations copy
twice bytes less.
VM subsystem was already slightly adapted to tolerate OBJT_SWAP object
as v_object. Now the vm_object_deallocate() is modified to not
reinstantiate OBJ_ONEMAPPING flag and help the VFS to correctly handle
VV_TEXT flag on the last dereference of the tmpfs backing object.
Reviewed by: alc
Tested by: pho, bf
MFC after: 1 month
buffer for the last vnode on the mount back to the server, it
returns. At that point, the code continues with the unmount,
including freeing up the nfs specific part of the mount structure.
It is possible that an nfsiod thread will try to check for an
empty I/O queue in the nfs specific part of the mount structure
after it has been free'd by the unmount. This patch avoids this problem by
setting the iodmount entries for the mount back to NULL while holding the
mutex in the unmount and checking the appropriate entry is non-NULL after
acquiring the mutex in the nfsiod thread.
Reported and tested by: pho
Reviewed by: kib
MFC after: 2 weeks
option. This can occur when an nfsiod thread that already holds
a buffer lock attempts to acquire a vnode lock on an entry in
the directory (a LOR) when another thread holding the vnode lock
is waiting on an nfsiod thread. This patch avoids the deadlock by disabling
readahead for this case, so the nfsiod threads never do readdirplus.
Since readaheads for directories need the directory offset cookie
from the previous read, they cannot normally happen in parallel.
As such, testing by jhb@ and myself didn't find any performance
degredation when this patch is applied. If there is a case where
this results in a significant performance degradation, mounting
without the "rdirplus" option can be done to re-enable readahead
for directories.
Reported and tested by: jhb
Reviewed by: jhb
MFC after: 2 weeks
it will work with either the old or new server.
The FHA code keeps a cache of currently active file handles for
NFSv2 and v3 requests, so that read and write requests for the same
file are directed to the same group of threads (reads) or thread
(writes). It does not currently work for NFSv4 requests. They are
more complex, and will take more work to support.
This improves read-ahead performance, especially with ZFS, if the
FHA tuning parameters are configured appropriately. Without the
FHA code, concurrent reads that are part of a sequential read from
a file will be directed to separate NFS threads. This has the
effect of confusing the ZFS zfetch (prefetch) code and makes
sequential reads significantly slower with clients like Linux that
do a lot of prefetching.
The FHA code has also been updated to direct write requests to nearby
file offsets to the same thread in the same way it batches reads,
and the FHA code will now also send writes to multiple threads when
needed.
This improves sequential write performance in ZFS, because writes
to a file are now more ordered. Since NFS writes (generally
less than 64K) are smaller than the typical ZFS record size
(usually 128K), out of order NFS writes to the same block can
trigger a read in ZFS. Sending them down the same thread increases
the odds of their being in order.
In order for multiple write threads per file in the FHA code to be
useful, writes in the NFS server have been changed to use a LK_SHARED
vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem
doesn't allow multiple writers to a file at once. ZFS is currently
the only filesystem that allows multiple writers to a file, because
it has internal file range locking. This change does not affect the
NFSv4 code.
This improves random write performance to a single file in ZFS, since
we can now have multiple writers inside ZFS at one time.
I have changed the default tuning parameters to a 22 bit (4MB)
window size (from 256K) and unlimited commands per thread as a
result of my benchmarking with ZFS.
The FHA code has been updated to allow configuring the tuning
parameters from loader tunable variables in addition to sysctl
variables. The read offset window calculation has been slightly
modified as well. Instead of having separate bins, each file
handle has a rolling window of bin_shift size. This minimizes
glitches in throughput when shifting from one bin to another.
sys/conf/files:
Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c
when either the old or the new NFS server is built.
sys/fs/nfs/nfsport.h,
sys/fs/nfs/nfs_commonport.c:
Bring in changes from Rick Macklem to newnfs_realign that
allow it to operate in blocking (M_WAITOK) or non-blocking
(M_NOWAIT) mode.
sys/fs/nfs/nfs_commonsubs.c,
sys/fs/nfs/nfs_var.h:
Bring in a change from Rick Macklem to allow telling
nfsm_dissect() whether or not to wait for mallocs.
sys/fs/nfs/nfsm_subs.h:
Bring in changes from Rick Macklem to create a new
nfsm_dissect_nonblock() inline function and
NFSM_DISSECT_NONBLOCK() macro.
sys/fs/nfs/nfs_commonkrpc.c,
sys/fs/nfsclient/nfs_clkrpc.c:
Add the malloc wait flag to a newnfs_realign() call.
sys/fs/nfsserver/nfs_nfsdkrpc.c:
Setup the new NFS server's RPC thread pool so that it will
call the FHA code.
Add the malloc flag argument to newnfs_realign().
Unstaticize newnfs_nfsv3_procid[] so that we can use it in
the FHA code.
sys/fs/nfsserver/nfs_nfsdsocket.c:
In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types
that use the LK_SHARED lock type.
sys/fs/nfsserver/nfs_nfsdport.c:
In nfsd_fhtovp(), if we're starting a write, check to see
whether the underlying filesystem supports shared writes.
If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE.
sys/nfsserver/nfs_fha.c:
Remove all code that is specific to the NFS server
implementation. Anything that is server-specific is now
accessed through a callback supplied by that server's FHA
shim in the new softc.
There are now separate sysctls and tunables for the FHA
implementations for the old and new NFS servers. The new
NFS server has its tunables under vfs.nfsd.fha, the old
NFS server's tunables are under vfs.nfsrv.fha as before.
In fha_extract_info(), use callouts for all server-specific
code. Getting file handles and offsets is now done in the
individual server's shim module.
In fha_hash_entry_choose_thread(), change the way we decide
whether two reads are in proximity to each other.
Previously, the calculation was a simple shift operation to
see whether the offsets were in the same power of 2 bucket.
The issue was that there would be a bucket (and therefore
thread) transition, even if the reads were in close
proximity. When there is a thread transition, reads wind
up going somewhat out of order, and ZFS gets confused.
The new calculation simply tries to see whether the offsets
are within 1 << bin_shift of each other. If they are, the
reads will be sent to the same thread.
The effect of this change is that for sequential reads, if
the client doesn't exceed the max_reqs_per_nfsd parameter
and the bin_shift is set to a reasonable value (22, or
4MB works well in my tests), the reads in any sequential
stream will largely be confined to a single thread.
Change fha_assign() so that it takes a softc argument. It
is now called from the individual server's shim code, which
will pass in the softc.
Change fhe_stats_sysctl() so that it takes a softc
parameter. It is now called from the individual server's
shim code. Add the current offset to the list of things
printed out about each active thread.
Change the num_reads and num_writes counters in the
fha_hash_entry structure to 32-bit values, and rename them
num_rw and num_exclusive, respectively, to reflect their
changed usage.
Add an enable sysctl and tunable that allows the user to
disable the FHA code (when vfs.XXX.fha.enable = 0). This
is useful for before/after performance comparisons.
nfs_fha.h:
Move most structure definitions out of nfs_fha.c and into
the header file, so that the individual server shims can
see them.
Change the default bin_shift to 22 (4MB) instead of 18
(256K). Allow unlimited commands per thread.
sys/nfsserver/nfs_fha_old.c,
sys/nfsserver/nfs_fha_old.h,
sys/fs/nfsserver/nfs_fha_new.c,
sys/fs/nfsserver/nfs_fha_new.h:
Add shims for the old and new NFS servers to interface with
the FHA code, and callbacks for the
The shims contain all of the code and definitions that are
specific to the NFS servers.
They setup the server-specific callbacks and set the server
name for the sysctl and loader tunable variables.
sys/nfsserver/nfs_srvkrpc.c:
Configure the RPC code to call fhaold_assign() instead of
fha_assign().
sys/modules/nfsd/Makefile:
Add nfs_fha.c and nfs_fha_new.c.
sys/modules/nfsserver/Makefile:
Add nfs_fha_old.c.
Reviewed by: rmacklem
Sponsored by: Spectra Logic
MFC after: 2 weeks
- Don't insert BKGRDMARKER bufs into the splay or dirty/clean buf lists.
No consumers need to find them there and it complicates the tree.
These flags are all FFS specific and could be moved out of the buf
cache.
- Use pbgetvp() and pbrelvp() to associate the background and journal
bufs with the vp. Not only is this much cheaper it makes more sense
for these transient bufs.
- Fix the assertions in pbget* and pbrel*. It's not safe to check list
pointers which were never initialized. Use the BX flags instead. We
also check B_PAGING in reassignbuf() so this should cover all cases.
Discussed with: kib, mckusick, attilio
Sponsored by: EMC / Isilon Storage Division