Mainly focus on files that use BSD 2-Clause license, however the tool I
was using mis-identified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
check hash to cylinder groups. If a check hash fails when a cylinder
group is read, no further allocations are attempted in that cylinder
group until it has been fixed by fsck. This avoids a class of
filesystem panics related to corrupted cylinder group maps. The
hash is done using crc32c.
Check hases are added only to UFS2 and not to UFS1 as UFS1 is primarily
used in embedded systems with small memories and low-powered processors
which need as light-weight a filesystem as possible.
Specifics of the changes:
sys/sys/buf.h:
Add BX_FSPRIV to reserve a set of eight b_xflags that may be used
by individual filesystems for their own purpose. Their specific
definitions are found in the header files for each filesystem
that uses them. Also add fields to struct buf as noted below.
sys/kern/vfs_bio.c:
It is only necessary to compute a check hash for a cylinder
group when it is actually read from disk. When calling bread,
you do not know whether the buffer was found in the cache or
read. So a new flag (GB_CKHASH) and a pointer to a function to
perform the hash has been added to breadn_flags to say that the
function should be called to calculate a hash if the data has
been read. The check hash is placed in b_ckhash and the B_CKHASH
flag is set to indicate that a read was done and a check hash
calculated. Though a rather elaborate mechanism, it should
also work for check hashing other metadata in the future. A
kernel internal API change was to change breada into a static
fucntion and add flags and a function pointer to a check-hash
function.
sys/ufs/ffs/fs.h:
Add flags for types of check hashes; stored in a new word in the
superblock. Define corresponding BX_ flags for the different types
of check hashes. Add a check hash word in the cylinder group.
sys/ufs/ffs/ffs_alloc.c:
In ffs_getcg do the dance with breadn_flags to get a check hash and
if one is provided, check it.
sys/ufs/ffs/ffs_vfsops.c:
Copy across the BX_FFSTYPES flags in background writes.
Update the check hash when writing out buffers that need them.
sys/ufs/ffs/ffs_snapshot.c:
Recompute check hash when updating snapshot cylinder groups.
sys/libkern/crc32.c:
lib/libufs/Makefile:
lib/libufs/libufs.h:
lib/libufs/cgroup.c:
Include libkern/crc32.c in libufs and use it to compute check
hashes when updating cylinder groups.
Four utilities are affected:
sbin/newfs/mkfs.c:
Add the check hashes when building the cylinder groups.
sbin/fsck_ffs/fsck.h:
sbin/fsck_ffs/fsutil.c:
Verify and update check hashes when checking and writing cylinder groups.
sbin/fsck_ffs/pass5.c:
Offer to add check hashes to existing filesystems.
Precompute check hashes when rebuilding cylinder group
(although this will be done when it is written in fsutil.c
it is necessary to do it early before comparing with the old
cylinder group)
sbin/dumpfs/dumpfs.c
Print out the new check hash flag(s)
sbin/fsdb/Makefile:
Needs to add libufs now used by pass5.c imported from fsck_ffs.
Reviewed by: kib
Tested by: Peter Holm (pho)
Extend the ino_t, dev_t, nlink_t types to 64-bit ints. Modify
struct dirent layout to add d_off, increase the size of d_fileno
to 64-bits, increase the size of d_namlen to 16-bits, and change
the required alignment. Increase struct statfs f_mntfromname[] and
f_mntonname[] array length MNAMELEN to 1024.
ABI breakage is mitigated by providing compatibility using versioned
symbols, ingenious use of the existing padding in structures, and
by employing other tricks. Unfortunately, not everything can be
fixed, especially outside the base system. For instance, third-party
APIs which pass struct stat around are broken in backward and
forward incompatible ways.
Kinfo sysctl MIBs ABI is changed in backward-compatible way, but
there is no general mechanism to handle other sysctl MIBS which
return structures where the layout has changed. It was considered
that the breakage is either in the management interfaces, where we
usually allow ABI slip, or is not important.
Struct xvnode changed layout, no compat shims are provided.
For struct xtty, dev_t tty device member was reduced to uint32_t.
It was decided that keeping ABI compat in this case is more useful
than reporting 64-bit dev_t, for the sake of pstat.
Update note: strictly follow the instructions in UPDATING. Build
and install the new kernel with COMPAT_FREEBSD11 option enabled,
then reboot, and only then install new world.
Credits: The 64-bit inode project, also known as ino64, started life
many years ago as a project by Gleb Kurtsou (gleb). Kirk McKusick
(mckusick) then picked up and updated the patch, and acted as a
flag-waver. Feedback, suggestions, and discussions were carried
by Ed Maste (emaste), John Baldwin (jhb), Jilles Tjoelker (jilles),
and Rick Macklem (rmacklem). Kris Moore (kris) performed an initial
ports investigation followed by an exp-run by Antoine Brodin (antoine).
Essential and all-embracing testing was done by Peter Holm (pho).
The heavy lifting of coordinating all these efforts and bringing the
project to completion were done by Konstantin Belousov (kib).
Sponsored by: The FreeBSD Foundation (emaste, kib)
Differential revision: https://reviews.freebsd.org/D10439
This both avoids some dependencies on xinstall.host and allows
bootstrapping on older releases to work due to lack of at least 'install -l'
support.
Sponsored by: EMC / Isilon Storage Division
Since METAMODE has been added, sys.mk loads bsd.mkopt.mk which ends load loading
bsd.own.mk which then defines SHLIBDIR before all the Makefile.inc everywhere.
This makes /lib being populated again.
Reported by: many
Off by default, build behaves normally.
WITH_META_MODE we get auto objdir creation, the ability to
start build from anywhere in the tree.
Still need to add real targets under targets/ to build packages.
Differential Revision: D2796
Reviewed by: brooks imp
the construct like printf("%\s", NULL) resulting from macroexpand of
ERROR(u, NULL), making it impossible to use LIBUFS_DEBUGGING.
With inline function, compiler cannot detect the NULL argument to
known function and does not try to convert it into puts().
In collaboration with: pho
brings in support for an optional intent log which eliminates the need
for background fsck on unclean shutdown.
Sponsored by: iXsystems, Yahoo!, and Juniper.
With help from: McKusick and Peter Holm
Similar to libexec/, do the same with lib/. Make WARNS=6 the norm and
lower it when needed.
I'm setting WARNS?=0 for secure/. It seems secure/ includes the
Makefile.inc provided by lib/. I'm not going to touch that directory.
Most of the code there is contributed anyway.
use almost anything that uses libufs(3) against a file as an unprivileged user, e.g.
tunefs(8) and dumpfs(8) against a makefs(8)-created image.
Prodded by: kensmith
prefix) as an argument and mount point path. At the end it has to find
device name file system is stored on, which means when mount point path is
given, it tries to look into /etc/fstab and find special device
corresponding to the given mount point. This is not perfect, because it
doesn't handle the case when file system is mounted by hand and mount point
is given as an argument.
I found this problem while trying to use snapinfo(8), which passes mount
points to the ufs_disk_fillout(3) function, but I had file system mounted
manually, so snapinfo(8) was exiting with the error below:
ufs_disk_fillout: No such file or directory
I modified libufs(3) to handle those arguments (the order is important):
1. special device with /dev/ prefix
2. special device without /dev/ prefix
3. mount point listed in /etc/fstab, directory exists
4. mount point listed in /etc/fstab, directory doesn't exist
5. mount point of a file system mounted by hand
binaries in /bin and /sbin installed in /lib. Only the versioned files
reside in /lib, the .so symlink continues to live /usr/lib so the
toolchain doesn't need to be modified.