directly accessed. Although this will work on some platforms, it can
throw an exception if the pointer is invalid and then panic the kernel.
Add a missing SYSCTL_IN() of "SCTP_BASE_STATS" structure.
MFC after: 3 days
Sponsored by: Mellanox Technologies
It had two bugs: one where mmap was still allowed and another where
D_TRACKCLOSE doesn't handle all cases.
Thanks to jhb and kib for pointing them out.
MFC after: 1 week
In some cases, TSC is broken and special applications might benefit
from memory mapping HPET and reading the registers to count time.
Most often the main HPET counter is 32-bit only[1], so this only gives
the application a 300 second window based on the default HPET
interval.
Other applications, such as Intel's DPDK, expect /dev/hpet to be
present and use it to count time as well.
Although we have an almost userland version of gettimeofday() which
uses rdtsc in userland, it's not always possible to use it, depending
on how broken the multi-socket hardware is.
Install the acpi_hpet.h so that applications can use the HPET register
definitions.
[1] I haven't found a system where HPET's main counter uses more than
32 bit. There seems to be a discrepancy in the Intel documentation
(claiming it's a 64-bit counter) and the actual implementation (a
32-bit counter in a 64-bit memory area).
MFC after: 1 week
Relnotes: yes
in userland rename in-kernel getenv()/setenv() to kern_setenv()/kern_getenv().
This fixes a namespace collision with libc symbols.
Submitted by: kmacy
Tested by: make universe
* Add a bus_if.m method - get_domain() - returning the VM domain or
ENOENT if the device isn't in a VM domain;
* Add bus methods to print out the domain of the device if appropriate;
* Add code in srat.c to save the PXM -> VM domain mapping that's done and
expose a function to translate VM domain -> PXM;
* Add ACPI and ACPI PCI methods to check if the bus has a _PXM attribute
and if so map it to the VM domain;
* (.. yes, this works recursively.)
* Have the pci bus glue print out the device VM domain if present.
Note: this is just the plumbing to start enumerating information -
it doesn't at all modify behaviour.
Differential Revision: D906
Reviewed by: jhb
Sponsored by: Norse Corp
This patch adds support for MSI interrupts when running on Xen. Apart
from adding the Xen related code needed in order to register MSI
interrupts this patch also makes the msi_init function a hook in
init_ops, so different MSI implementations can have different
initialization functions.
Sponsored by: Citrix Systems R&D
xen/interface/physdev.h:
- Add the MAP_PIRQ_TYPE_MULTI_MSI to map multi-vector MSI to the Xen
public interface.
x86/include/init.h:
- Add a hook for setting custom msi_init methods.
amd64/amd64/machdep.c:
i386/i386/machdep.c:
- Set the default msi_init hook to point to the native MSI
initialization method.
x86/xen/pv.c:
- Set the Xen MSI init hook when running as a Xen guest.
x86/x86/local_apic.c:
- Call the msi_init hook instead of directly calling msi_init.
xen/xen_intr.h:
x86/xen/xen_intr.c:
- Introduce support for registering/releasing MSI interrupts with
Xen.
- The MSI interrupts will use the same PIC as the IO APIC interrupts.
xen/xen_msi.h:
x86/xen/xen_msi.c:
- Introduce a Xen MSI implementation.
x86/xen/xen_nexus.c:
- Overwrite the default MSI hooks in the Xen Nexus to use the Xen MSI
implementation.
x86/xen/xen_pci.c:
- Introduce a Xen specific PCI bus that inherits from the ACPI PCI
bus and overwrites the native MSI methods.
- This is needed because when running under Xen the MSI messages used
to configure MSI interrupts on PCI devices are written by Xen
itself.
dev/acpica/acpi_pci.c:
- Lower the quality of the ACPI PCI bus so the newly introduced Xen
PCI bus can take over when needed.
conf/files.i386:
conf/files.amd64:
- Add the newly created files to the build process.
resume that is a superset of a pcb. Move the FPU state out of the pcb and
into this new structure. As part of this, move the FPU resume code on
amd64 into a C function. This allows resumectx() to still operate only on
a pcb and more closely mirrors the i386 code.
Reviewed by: kib (earlier version)
Also disable a couple of ACPI devices that are not usable under Dom0.
To this end a couple of booleans are added that allow disabling ACPI
specific devices.
Sponsored by: Citrix Systems R&D
Reviewed by: jhb
x86/xen/xen_nexus.c:
- Return BUS_PROBE_SPECIFIC in the Xen Nexus attachement routine to
force the usage of the Xen Nexus.
- Attach the ACPI bus when running as Dom0.
dev/acpica/acpi_cpu.c:
dev/acpica/acpi_hpet.c:
dev/acpica/acpi_timer.c
- Add a variable that gates the addition of the devices.
x86/include/init.h:
- Declare variables that control the attachment of ACPI cpu, hpet and
timer devices.
This includes:
o All directories named *ia64*
o All files named *ia64*
o All ia64-specific code guarded by __ia64__
o All ia64-specific makefile logic
o Mention of ia64 in comments and documentation
This excludes:
o Everything under contrib/
o Everything under crypto/
o sys/xen/interface
o sys/sys/elf_common.h
Discussed at: BSDcan
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
PCI root bridges except for the one known-valid case on x86 where bridges
claim the I/O port registers used for PCI config space access.
Tested by: Hilko Meyer <hilko.meyer@gmx.de>
MFC after: 1 week
instead of trying to cache it.
Previously, we only trusted the state if we did not have a cached state.
However, once a state was cached, the _STA method was always ignored.
Specifically, once a power resource had been turned on once (e.g.
during resume), the driver assumed it was always on even if _STA said it
was off and never turned it back on. This prevented the power resource
from being turned back on if a laptop was resumed twice, for example.
To fix, just remove the cached state entirely and always use the results
of _STA. The loops already skip any resources where _STA fails.
Submitted by: trasz (initial patch to invoke _ON)
MFC after: 1 week
that are being done by the OS.
For now this'll match up with the "wakeups"; although I'll dig deeper into
this to see if we can determine which sleep state the CPU managed to get
into. Most things I've seen these days only expose up to C2 or C3 via
ACPI even though the CPU goes all the way down to C6 or C7.
I/O windows, the default is to preserve the firmware-assigned resources.
PCI bus numbers are only managed if NEW_PCIB is enabled and the architecture
defines a PCI_RES_BUS resource type.
- Add a helper API to create top-level PCI bus resource managers for each
PCI domain/segment. Host-PCI bridge drivers use this API to allocate
bus numbers from their associated domain.
- Change the PCI bus and CardBus drivers to allocate a bus resource for
their bus number from the parent PCI bridge device.
- Change the PCI-PCI and PCI-CardBus bridge drivers to allocate the
full range of bus numbers from secbus to subbus from their parent bridge.
The drivers also always program their primary bus register. The bridge
drivers also support growing their bus range by extending the bus resource
and updating subbus to match the larger range.
- Add support for managing PCI bus resources to the Host-PCI bridge drivers
used for amd64 and i386 (acpi_pcib, mptable_pcib, legacy_pcib, and qpi_pcib).
- Define a PCI_RES_BUS resource type for amd64 and i386.
Reviewed by: imp
MFC after: 1 month
the memory ranges that they decode for downstream devices rather than
creating ResourceProducer range resource entries. The result is that
we allocate the full range to the PCI root bridge device causing
allocations in child devices to all fail.
As a workaround, ignore any standard memory resources on a PCI root
bridge device. It is normal for a PCI root bridge to allocate an I/O
resource for the I/O ports used for PCI config access, but I have not
seen any PCI root bridges that legitimately allocate a memory resource.
Reviewed by: jkim
MFC after: 1 week
shifts into the sign bit. Instead use (1U << 31) which gets the
expected result.
This fix is not ideal as it assumes a 32 bit int, but does fix the issue
for most cases.
A similar change was made in OpenBSD.
Discussed with: -arch, rdivacky
Reviewed by: cperciva
resist easy conversion since they implement a great deal of their attach
logic inside probe(). Some of this could be fixed by moving it to attach(),
but some requires something more subtle than BUS_PROBE_NOWILDCARD.
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification. The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them. Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.
Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping. The superpages are created as needed, but not
promoted. Faults are recorded, fault records could be obtained
programmatically, and printed on the console.
Implement the busdma(9) using DMARs. This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.
By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC. Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.
The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet. Intel GPUs do not work with
DMAR (yet).
Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
Xen PVHVM guest.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (blanket Xen)
MFC after: 2 weeks
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
- Make sure that are no MMU related IPIs pending on migration.
- Reset pending IPI_BITMAP on resume.
- Init vcpu_info on resume.
sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
sys/x86/acpica/acpi_wakeup.c:
sys/x86/x86/intr_machdep.c:
sys/x86/isa/atpic.c:
sys/x86/x86/io_apic.c:
sys/x86/x86/local_apic.c:
- Add a "suspend_cancelled" parameter to pic_resume(). For the
Xen PIC, restoration of interrupt services differs between
the aborted suspend and normal resume cases, so we must provide
this information.
sys/dev/acpica/acpi_timer.c:
sys/dev/xen/timer/timer.c:
sys/timetc.h:
- Don't swap out "suspend safe" timers across a suspend/resume
cycle. This includes the Xen PV and ACPI timers.
sys/dev/xen/control/control.c:
- Perform proper suspend/resume process for PVHVM:
- Suspend all APs before going into suspension, this allows us
to reset the vcpu_info on resume for each AP.
- Reset shared info page and callback on resume.
sys/dev/xen/timer/timer.c:
- Implement suspend/resume support for the PV timer. Since FreeBSD
doesn't perform a per-cpu resume of the timer, we need to call
smp_rendezvous in order to correctly resume the timer on each CPU.
sys/dev/xen/xenpci/xenpci.c:
- Don't reset the PCI interrupt on each suspend/resume.
sys/kern/subr_smp.c:
- When suspending a PVHVM domain make sure there are no MMU IPIs
in-flight, or we will get a lockup on resume due to the fact that
pending event channels are not carried over on migration.
- Implement a generic version of restart_cpus that can be used by
suspended and stopped cpus.
sys/x86/xen/hvm.c:
- Implement resume support for the hypercall page and shared info.
- Clear vcpu_info so it can be reset by APs when resuming from
suspension.
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/x86/xen/xen_intr.c:
- Support UP kernel configurations.
sys/x86/xen/xen_intr.c:
- Properly rebind per-cpus VIRQs and IPIs on resume.
A warning is emitted again if the temperature became briefly valid
meanwhile. This avoids spamming the user when the sensor is broken.
Other values (ie. not _TMP) always raise a warning.
settings for ACPI-enumerated serial ports by forcing any IRQs that use
an ISA IRQ value with these settings to active-high instead of active-low.
This is known to occur with the BIOS on an Intel D2500CCE motherboard.
Tested by: Robert Ames <robertames@hotmail.com>, lev
Submitted by: Juergen Weiss weiss at uni-mainz.de (original patch)
we are probing a PCI-PCI bridge it is because we found one by enumerating
the devices on a PCI bus, so the bridge is definitely present. A few
BIOSes report incorrect status (_STA) for some bridges that claimed they
were not present when in fact they were.
While here, move this check earlier for Host-PCI bridges so attach fails
before doing any work that needs to be torn down.
PR: kern/91594
Tested by: Jack Vogel @ Intel
MFC after: 1 week
that uses non-ISA IRQs but use a plain IRQ resource in _CRS. However,
a non-ISA IRQ can't fit into a plain IRQ resource. If we encounter a
link like this, build the resource buffer from _PRS instead of _CRS.
- Set the correct size of the end tag in a resource buffer.
Tested by: Benjamin Lee <ben@b1c1l1.com>
MFC after: 2 weeks
Switch eventtimers(9) from using struct bintime to sbintime_t.
Even before this not a single driver really supported full dynamic range of
struct bintime even in theory, not speaking about practical inexpediency.
This change legitimates the status quo and cleans up the code.