This fixes the obscure endless loop seen with case-insensitive
patterns containing characters in 128-255 range; originally
found running GNU grep test suite.
Our regex implementation being kludgy translates the characters
in case-insensitive pattern to bracket expression containing both
cases for the character and doesn't correctly handle the case when
original character is in bitmap and the other case is not, falling
into the endless loop going through in p_bracket(), ordinary(),
and bothcases().
Reducing the bitmap to 0-127 range for multibyte locales solves this
as none of these characters have other case mapping outside of bitmap.
We are also safe in the case when the original character outside of
bitmap has other case mapping in the bitmap (there are several of those
in our current ctype maps having unidirectional mapping into bitmap).
Reviewed by: bapt, kevans, pfg
Differential revision: https://reviews.freebsd.org/D18302
Mainly focus on files that use BSD 3-Clause license.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
EREs closer together. Prepare for this and reduce the diff of libregex changes by
refactoring and combining the top-level parsers for EREs/BREs ahead of time.
Branching functionality has been split out to make it easier to follow the combined
version of the top-level parser. It may also be enabled in the parsing context to make
it easier when libregex enables branching for BREs.
A branching context was also added for the various branching functions and so that
BREs, for instance, can determine if they're the first expression in a chain of expressions
within the current branch and treat '*' as ordinary if so.
This should have no functional impact and negligible performance impact.
Reviewed by: cem, emaste, pfg
Approved by: emaste (mentor)
MFC after: 1 month
Differential Revision: https://reviews.freebsd.org/D10920
Taking some hints from the regex variant in nvi(1) and higher-level
compiler warnings, update some types in our regex(3) implementation.
Joint work with: Kyle Evans
MFC after: 2 weeks
Renumber cluase 4 to 3, per what everybody else did when BSD granted
them permission to remove clause 3. My insistance on keeping the same
numbering for legal reasons is too pedantic, so give up on that point.
Submitted by: Jan Schaumann <jschauma@stevens.edu>
Pull Request: https://github.com/freebsd/freebsd/pull/96
inadvertently match a negative char in the RE being compiled.
This fixes compilation of "\376" (as an ERE) and "\376\376" (as a BRE).
PR: 84740
MFC after: 1 week
idea is that we perform multibyte->wide character conversion while parsing
and compiling, then convert byte sequences to wide characters when they're
needed for comparison and stepping through the string during execution.
As with tr(1), the main complication is to efficiently represent sets of
characters in bracket expressions. The old bitmap representation is replaced
by a bitmap for the first 256 characters combined with a vector of individual
wide characters, a vector of character ranges (for [A-Z] etc.), and a vector
of character classes (for [[:alpha:]] etc.).
One other point of interest is that although the Boyer-Moore algorithm had
to be disabled in the general multibyte case, it is still enabled for UTF-8
because of its self-synchronizing nature. This greatly speeds up matching
by reducing the number of multibyte conversions that need to be done.
previous commits.
At the time we search the pattern for the "must" string, we now compute
the longest offset from the beginning of the pattern at which the must
string might be found. If that offset is found to be infinite (through
use of "+" or "*"), we set it to -1 to disable the heuristics applied
later.
After we are done with pre-matching, we use that offset and the point in
the text at which the must string was found to compute the earliest
point at which the pattern might be found.
Special care should be taken here. The variable "start" is passed to the
automata-processing functions fast() and slow() to indicate the point in
the text at which they should start working from. The real beginning of
the text is passed in a struct match variable m, which is used to check
for anchors. That variable, though, is initialized with "start", so we
must not adjust "start" before "m" is properly initialized.
Simple tests showed a speed increase from 100% to 400%, but they were
biased in that regexec() was called for the whole file instead of line
by line, and parenthized subexpressions were not searched for.
This change adds a single integer to the size of the "guts" structure,
and does not change the ABI.
Further improvements possible:
Since the speed increase observed here is so huge, one intuitive
optimization would be to introduce a bias in the function that computes
the "must" string so as to prefer a smaller string with a finite offset
over a larger one with an infinite offset. Tests have shown this to be a
bad idea, though, as the cost of false pre-matches far outweights the
benefits of a must offset, even in biased situations.
A number of other improvements suggest themselves, though:
* identify the cases where the pattern is identical to the must
string, and avoid entering fast() and slow() in these cases.
* compute the maximum offset from the must string to the end of
the pattern, and use that to set the point at which fast() and
slow() should give up trying to find a match, and return then
return to pre-matching.
* return all the way to pre-matching if a "match" was found and
later invalidated by back reference processing. Since back
references are evil and should be avoided anyway, this is of
little use.
The BM algorithm works by scanning the pattern from right to left,
and jumping as many characters as viable based on the text's mismatched
character and the pattern's already matched suffix.
This typically enable us to test only a fraction of the text's characters,
but has a worse performance than the straight-forward method for small
patterns. Because of this, the BM algorithm will only be used if the
pattern size is at least 4 characters.
Notice that this pre-matching is done on the largest substring of the
regular expression that _must_ be present on the text for a succesful
match to be possible at all.
For instance, "(xyzzy|grues)" will yield a null "must" substring, and,
therefore, not benefit from the BM algorithm at all. Because of the
lack of intelligence of the algorithm that finds the "must" string,
things like "charjump|matchjump" will also yield a null string. To
optimize that, "(char|match)jump" should be used.
The setup time (at regcomp()) for the BM algorithm will most likely
outweight any benefits for one-time matches. Given the slow regex(3)
we have, this is unlikely to be even perceptible, though.
The size of a regex_t structure is increased by 2*sizeof(char*) +
256*sizeof(int) + strlen(must)*sizeof(int). This is all inside the
regex_t's "guts", which is allocated dynamically by regcomp(). If
allocation of either of the two tables fail, the other one is freed.
In this case, the straight-forward algorithm is used for pre-matching.
Tests exercising the code path affected have shown a speed increase of
50% for "must" strings of length four or five.
API and ABI remain unchanged by this commit.
The patch submitted on the PR was not used, as it was non-functional.
PR: 14342